PHYLUM Chlorophyta Phylum Chlorophyta to Order Level

Total Page:16

File Type:pdf, Size:1020Kb

PHYLUM Chlorophyta Phylum Chlorophyta to Order Level PHYLUM Chlorophyta Phylum Chlorophyta to Order Level P Chlorophyta C Bryopsidophyceae Chlorophyceae Nephroselmidophyceae Pedinophyceae Pleurastrophyceae Prasinophyceae Trebouxiophyceae Ulvophyceae O Bryopsidales Chlorocystidales Nephroselmidales Pedinomonadales Pleurastrales Pyramimonadales Chlorellales Cladophorales Volvocales Scourfieldiales Mamiellales Oocystales Codiolales Chaetopeltidales Chlorodendrales Prasiolales Trentepohliales Tetrasporales Prasinococcales Trebouxiales Ulotrichales Chlorococcales Pseudo- Ulvales Sphaeropleales scourfieldiales Siphonocladales Microsporales Dasycladales Oedogoniales Chaetophorales P Chlorophyta C Nephroselmidophyceae Pedinophyceae Pleurastrophyceae O Nephroselmidales Pedinomonadales Scourfieldiales Pleurastrales F Nephroselmidaceae Pedinomonadaceae Scourfieldiaceae Pleurastraceae G Anticomonas Anisomonas Scourfieldia Microthamnion Argillamonas Dioriticamonas Pleurastrosarcina Bipedinomonas Marsupiomonas Pleurastrum Fluitomonas Pedinomonas Hiemalomonas Resultor Myochloris Nephroselmis Pseudopedinomonas Sinamonas P Chlorophyta Prasinophyceae C O Pyramimonadales Mamiellales Chlorodendrales Prasinococcales Pseudoscourfieldiales F Polyblepharidaceae Mamiellaceae Chlorodendraceae Prasinococcaceae Pycnococcaceae Halosphaeraceae Monomastigaceae Mesostigmataceae G Polyblepharides Bathycoccus Prasinocladus Prasinococcus Pycnococcus Selenochloris Crustomastix Scherffelia Prasinoderma Pseudoscourfieldia Stepanoptera Dolichomastix Tetraselmis Sycamina Mamiella Mantoniella Prasinochloris Micromonas Protoaceromonas Ostreococcus Tasmanites Angulomonas Monomastix Cymbomonas Pocillomonas Trichloridella Pterosperma Pachysphaera Pyramimonas Halosphaera Mesostigma P Chlorophyta Chlorophyceae C (1) O Chlorocystidales Chaetopeltidales Sphaeropleales Microsporales Oedogoniales Chaetophorales Chlorococcales Tetrasporales Volvocales (see following pages) F Tetracystaceae Chlorocystidaceae Chaetopeltidaceae Ankistrodesmaceae Neochloridaceae Microsproaceae Oedogonaceae G Borodinellopsis Halochlorococcum Chaetopeltis Ankistrodesmus Chlorotetraedron Microspora Bulbochaete Spongiococcum Dicranochaete Chlorolobion Planktosphaeria Oedocladium Desmotetra Floydiella Closteriopsis Schroederia Oedogonium Hormotilopsis Diplochloris Tetraedron Schizochlamys Hyaloraphidium Keratococcus Kirchneriella Monoraphidium Pseudokirchneriella Quadrigula P Chlorophyta C Chlorophyceae (2) O Chaetophorales F Chaetophoraceae Aphanochaetaceae Aphanochaete G Entodictyon Desmococcus Gloelplax Pleurangium Chaetonema Myxonemopsis Gongrosira Gongrosirella Pleurococcus Thamniochaete Pseudodictyon Trichosarcina Hazenia Protoderma Pseuduvella Dermatohpyton] Helicodictyon Pseudochaete Acroblaste Diaphragma Herposteiron Pseudopleurococcus Arthrochaete Didymospor- Internoretia Pseudulvella Cedercreutziella angium Ireksokonia Rhexinema Chaetomnion Dilabifilum Iwanoffia Skvortzoviothris Chaetonemopsis Draparnaldia Jaagiella Sporocladopsis Chaetophora Draparnaldiopsis Klebahniella Stigeoclonium Chamaetrichon Ectochaete Kymatotrichon Strepochlora Chlorotylium Elaterodiscus Leptosira Stromatella Choreoclonium Endoclonium Leptosiropsis Thamniochloris Cloniophora Endoderma Nayalia Trichdiscus Coccobotrys Endophyton Periplegmatium Tumulofilum Crenacantha Epibolium Pilinella Uronema Ctenocladus Fritschiella Zoddaea Zygomitus P Chlorophyta C Chlorophyceae (3) O Chlorococcales (page 1) F Actinochloridaceae Hypnomonadaceae Chlorococcaceae Coccomyxaceae Characiaceae Chlorochytriaceae Chlorosarcinaceae Rhopalosolenaceae Sphaeropleaceae Radiococcaceae Endosphaeraceae G Deasonia Actinochloris Dictyochloropsis Follicularia Ankyra Dactylothece Actidesmium Botryokoryne Hypnomonas Dictyococcus Lobococcus Atractomorpha Dispora Bicuspidella Burkillia Kremastochloris Ectogeron Neochloris Characiopodium Lustania Characiella Chlorochytrium Myrmecia Ettlia Korshikoviella Nannochloris Characiellopsis Rhodochytrium Oophila Neospongio- Sphaeroplea Ourococcus Characium Pulchrasphaera coccum Palmogloea Pseudocharacium Chlorokybus Radiosphaera Octogoniella Coleochlamys Chlorosarcina Scotinosphaera Phaseolaria Deuterocharacium Polysphaera Apodochloris Planochloris Catenococcus Hydrianum Chlorosarcinopsis Bracteacoccus Pseudodictyo- Coenochloris Lanceola Chlorococcum chloris Coenococcus Marthea Chlorohippotes Pseudoplano- Coenocystis Pseudochloro- Closteridium phila Crucigloea thecium Coccomyxa Pseudospon- Dictyochlorella Pseudoschroederia Cryococcus giococcum Eutetramorus Sykidion Cystomonas Pseudotetracystis Gloeocystis Emergococcus Pseudotrochiscia Hindakochloris Codiolum Emergosphaera Skujaster Myurococcus Phyllobium Ferricystis Tetracystis Neocystis Trochisciopsis Palmellosphaerium Valkanoviella Palmodictyon Rhopalosolen Pseudotetraspora Radiococcus Schizochlamydella Sporotetras Tomaculum P Chlorophyta C Chlorophyceae (3) O Chlorococcales (page 2) F Micractiniaceae Hydrodictyaceae Heleochloridaceae Hormotilaceae Scnedesmaceae Treubariaceae Botryococcaceae Golenkiniaceae Protosiphonaceae Characiosiphonaceae Oocystaceae Sphaerodictyaceae Dictyosphaeriaceae Botryococcus G Phythelios Euastropsis Heleochloris Characiosiphon Palmodactylon Coelastropsis Desmatractum Echinosphaeri- Hydrodictyon Lobocharacium Dendrocystis Dicelluia Treubaria Botryosphaerella dium Paradoxia Heleococcus Gloeopedia Dictyosphaerium Golenkiniopsis Pediastrum Hormotila Schmidledesmus Ecballocystis Micractinium Sorastrum Actinastrum Dactylosphaerium Lobosystis Pseudo- Tetrapedia Closteriospira Mycotetraedron Bilgramia Dimorphococcopsis Coelastrum Gilbertsmithia dictyosphaerium Aerosphaera Mephrochlamys Quadricoccus Amphikrikos Mephrocytium Coronastrum Crucigenia Acanthosphaera Urnella Catenocystis Oocystaenium Cerasterias Oocystella Crucigeniella Golenkinia Protosiphon Willea Spongiochloris Chloroidium Oocystidium Chloropteridella Oonephris Danubia Chodatellopsis Pachycladella Dicloster Chondrosphaera Palmellococcus Didymocystis Coenolamellus Pilidiocystis Didymogenes Conradia Planktosphaerella Dimorphococcus Dactylococcus Polyedriopsis Enallax Diacanthos Pseudochlorococcum Gloeoactinium Ecdysichlamys Pseudococcomyxa Komarekia Echinocoleum Raphidium Lauterborniella Ettiella Raphidocelis Pseudodidymo- Fotterella Rayssiella cystis Glaucocystopsis Rhombocystis Scenedesmus Halochlorella Saturnella Schroederiella Hemichloris Scotiella Tetradesmus Hyalochlorella Selenastrum Tetrallantos Jaagichlorella Selenoderma Tetranephris Juranyiella Sestosoma Tetrastrum Keriochlamys Siderocelis Westella Kirchneriellosaccus Staurophanum Westellopsis Makinoella Thelesphaera Muriella Thorakochloris Dictyastrum Muriellopsis Trigonidiella Pectodictyon Mycacanthococcus Trochiscia Sphaerodictyon Mychonastes Zoochlorella Jaagichlorella Oocystis P Chlorophyta C Chlorophyceae (4) O Tetrasporales F Palmellopsidaceae Palmellaceae Characiochloridaceae Chlorangiellaceae Chaetochloridaceae Tetrasporaceae Nautococcaceae G Asterococcus Askenasyella Characiochloris Cecidochloris Chaetochloris Fottiella Apiococcus Chlamydocapsa Chalarodora Chlamydopodium Chlamydomona- Chlorangiochaete Stapfia Nautococcopsis Gloeococcus Chloranomala Malleochloris dopsis Polychaetochloris Apiocystis Nautococcus Nautocapsa Gloiodictyon Metapolytoma Chlorangiella Porochloris Gloeodendron Signiosphaera Palmellopsis Gyoerffyana Physocitium Chlorangiopsis Octosporiella Palmophyllum Oncosaccus Pseudochlorangium Chlorophysema Paulschulzia :loeotila Palmella Stylosphaeridiella Phacomyxa Pseudosphaeri- Palmoclathrus Stylosphaeridium Placosphaera cystis Planctococcus Schulziella Tetrasporidium Poloidion Tetraspora Vergigellas Sphaerocystis P Chlorophyta C Chlorophyceae (5) O Volvocales F Gloeotilaceae Dangeardinellaceae Dunaliellaceae Carteriaceae Phacotaceae Tetrabaenaceae Volvocaceae Radiofilaceae Raciborskiellaceae Chlamydomonadaceae Stephanosphaeraceae Spondylomoraceae Doniaceae G Binuclearia Dangeardinella Chlainomonas Carteria Chlamydoblepharis Basichlamys Conradimonas Geminella Chlorobrachis Pseudocarteria Delphinomonas Tetrabaena Eudorina Gloeotila Raciborskiella Costatochloris Fortiella Lundiella Hormidiopsis Furcilla Fortiellopsis Mastigosphaera Balticola Astrephomene Planctonema Apiochloris Gigantochloris Melomonas Pandorina Hirtusochloris Chlorogonium Pedinoperopsis Gonium Platydorina Asteromonas Haematococcus Radiofilum Hyalobrachion Pyramidococcus Pleodorina Aulacomonas Stephanosphaera Chloronephris Hyalogonium Tingitanella Stephanoon Dunaliella Lobochlamys Cephalomonas Volvox Hafniomonas Oltmannsiella Coccomonas Volvulina Hyaliella Oogamochlamys Dysmorphococcus Yamagishiella Hyalocardium Parapolytoma Granulochloris Korschikoffia Peterfiella Hemitoma Oltmannsiellopsis Phyllariochloris Iyengariomonas Papenfussiomonas Provasoliella Pedinopera Phyllocardium Pyramichlamys Phacotus Polytomella Spermatozopsis Pteromonas Quadrichloris Sphaerella Thoracomonas Sphenochloris Wislouchiella Spirogonium Tetrablepharis Chlorcorona Tetratoma Pascherina Tussetia Pyrobotrys Chlamydomonas Spondylomorum Chlamydonephris Heterochlamydomonas Chloromonas Gloeomonas Sphaerellopsis Vitreochlamys Lobomonas Brachiomonas Diplostauron Polytoma P Chlorophyta C Bryopsidophyceae O Bryopsidales F Bryopsidaceae Dichotomosphonaceae Udoteaceae Caulerpaceae Pseudocodiaceae Derbesiaceae Chaetosiphonaceae Halimedaceae Codiaceae Ostreobiaceae G Blastophysa Derbesia Dichotomosiphon Chaetosiphon Avrainvillea Halimeda Caulerpa Arabicodium Pseudocodium Ostreobium Bryopsidella Pedobesia Boodleopsis Caulerpella Callipsygma Bryopsis Botryodesmis Codium Lambia Chlorodesmis Gepella Pseudoderbesia Cladocephalus
Recommended publications
  • Lobo MTMPS (2019) First Record of Tetraspora Gelatinosa (Vaucher) Desvaux (Tetrasporales, Chlorophyceae) in the State of Goiás, Central-Western Brazil
    15 1 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 15 (1): 143–147 https://doi.org/10.15560/15.1.143 First record of Tetraspora gelatinosa Link ex Desvaux (Tetrasporales, Chlorophyceae) in the state of Goiás, Central-Western Brazil Weliton José da Silva1, Ina de Souza Nogueira2, Maria Tereza Morais Pereira Souza Lobo3 1 Universidade Estadual de Londrina, Centro de Ciências Biológicas, Departamento de Biologia Animal e Vegetal, Laboratório de Microalgas Continentais, Rodovia Celso Garcia Cid, Pr 445 Km 380, CEP 86057-970, Londrina, PR, Brazil. 2 Universidade Federal de Goiás, Instituto de Ciências Biológicas, Departamento de Botânica, Laboratório de Análise de Gerenciamento Ambiental de Recursos Hídricos, Alameda Palmeiras Quadra I - Lote i2, CEP 74690-900, Goiânia, GO, Brazil. 3 Universidade Federal de Goiás, Programa de Pós-graduação em Ciências Ambientais, Laboratório de Análise de Gerenciamento Ambiental de Recursos Hídricos, Alameda Palmeiras Quadra I - Lote i2, CEP 74690-900, Goiânia, GO, Brazil. Corresponding author: Weliton José da Silva, [email protected] Abstract Tetraspora gelatinosa is rare and has been recorded only in 3 Brazilian states since the 2000s. The flora of the state of Goiás is incipiently known, but there is no record of Tetraspora thus far. We record the occurrence of T. gelatinosa in Goiás and characterize this species’ morphology and ecological preferences. Specimens were found in the Samambaia Reservoir, Goiânia, Goiás. Physical and chemical characteristics of the water were measured. Where T. gelatinosa was found, the water was shallow and characterized as ultraoligotrophic. These conditions agree with those reported for other environments in Brazil. Key words Algae, Meia Ponte river basin, new record, rare species, ultraoligotrophic.
    [Show full text]
  • An Integrative Approach Sheds New Light Onto the Systematics
    www.nature.com/scientificreports OPEN An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Thomas Pröschold1*, Daniel Rieser1, Tatyana Darienko2, Laura Nachbaur1, Barbara Kammerlander1, Kuimei Qian1,3, Gianna Pitsch4, Estelle Patricia Bruni4,5, Zhishuai Qu6, Dominik Forster6, Cecilia Rad‑Menendez7, Thomas Posch4, Thorsten Stoeck6 & Bettina Sonntag1 Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of diferent Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one‑year cycle both from morphospecies counts and high‑ throughput sequencing (HTS), and, (v) proof of the co‑occurrence of Coleps and their endosymbiotic algae from HTS‑based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in diferent depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the diferent lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae).
    [Show full text]
  • Batophora Oerstedii
    MARINE ECOLOGY - PROGRESS SERIES Vol. 3: 75-77. 1980 Published July 31 Mar. Ecol. Prog. Ser. I l SHORT NOTE Method for Rapid Counting of Sporangia in the Green Alga Batophora Oerstedii S. Bonotto and A. Liittke Department of Radiobiology, C.E.N.1S.C.K.2400 Mol, Belgium Several species of green marine algae (Dasyc- permits rapid counting of the total number of ladaceae) have been object of ecological investiga- sporangia. Mature B. oerstedii cells bear numerous tions in recent years (Arasaki and Shihira-Ishikawa fertile whorls serially distributed on the stalk (Fig. la). 1979; Cinelli, 1979; Liddle, 1979). Nevertheless, most In cells of similar length the number of whorls may data accumulated do not permit good estimation of vary from one individual to another (Hammerling, their reproductive potential. This may be appraised by 1944). Moreover, under usual culture conditions, short counting the total number of sporangia (S) and cells (1-1.5 cm) have only 1-2 fertile whorls on the gametangia (cysts, C), assuming that the number of apical region of the stalk, with large sporangia (Fig. gametes (G) in the cysts does not undergo large varia- lb). tions. If all male and female gametes form pairs, the Figure 2 shows photographic recordings of the 14 theoretical total number of zygotes (Z) per plant would fertile whorls of a normal Batophora oerstedii cell with be: Z = '/z SCG.Thus far the total number of sporangia a total of 214 sporangia. It clearly demonstrates that the and/or gametangia has not been counted because of number of sporangia per whorl varies considerably technical difficulties.
    [Show full text]
  • Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: a Test with Chlorella-Like Species (Chlorophyta)
    RESEARCH ARTICLE Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta) Shanmei Zou, Cong Fei, Jiameng Song, Yachao Bao, Meilin He, Changhai Wang* Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China a11111 * [email protected] Abstract Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the OPEN ACCESS development of second-generation biofuels. However, the taxonomy of Chlorella–like organ- Citation: Zou S, Fei C, Song J, Bao Y, He M, Wang isms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like C (2016) Combining and Comparing Coalescent, Distance and Character-Based Approaches for species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL,ITS, Barcoding Microalgaes: A Test with Chlorella-Like tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P Species (Chlorophyta). PLoS ONE 11(4): e0153833. ID and character-based barcoding methods. First of all, the barcoding results gave new doi:10.1371/journal.pone.0153833 insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear Editor: Peter Prentis, Queensland University of species discrimination and resolution of potentially cryptic species complexes in C. sorokini- Technology, AUSTRALIA ana, D. ehrenbergianum and C. Vulgaris.ThetufA proved to be the most efficient barcoding Received: November 17, 2015 locus, which thus could be as potential “specific barcode” for Chlorella-like species.
    [Show full text]
  • DNA Barcoding of the German Green Supralittoral Zone Indicates the Distribution and Phenotypic Plasticity of Blidingia Species and Reveals Blidingia Cornuta Sp
    TAXON 70 (2) • April 2021: 229–245 Steinhagen & al. • DNA barcoding of German Blidingia species SYSTEMATICS AND PHYLOGENY DNA barcoding of the German green supralittoral zone indicates the distribution and phenotypic plasticity of Blidingia species and reveals Blidingia cornuta sp. nov. Sophie Steinhagen,1,2 Luisa Düsedau1 & Florian Weinberger1 1 GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Ecology Department, Düsternbrooker Weg 20, 24105 Kiel, Germany 2 Department of Marine Sciences-Tjärnö, University of Gothenburg, 452 96 Strömstad, Sweden Address for correspondence: Sophie Steinhagen, [email protected] DOI https://doi.org/10.1002/tax.12445 Abstract In temperate and subarctic regions of the Northern Hemisphere, green algae of the genus Blidingia are a substantial and environment-shaping component of the upper and mid-supralittoral zones. However, taxonomic knowledge on these important green algae is still sparse. In the present study, the molecular diversity and distribution of Blidingia species in the German State of Schleswig-Holstein was examined for the first time, including Baltic Sea and Wadden Sea coasts and the off-shore island of Helgo- land (Heligoland). In total, three entities were delimited by DNA barcoding, and their respective distributions were verified (in decreasing order of abundance: Blidingia marginata, Blidingia cornuta sp. nov. and Blidingia minima). Our molecular data revealed strong taxonomic discrepancies with historical species concepts, which were mainly based on morphological and ontogenetic char- acters. Using a combination of molecular, morphological and ontogenetic approaches, we were able to disentangle previous mis- identifications of B. minima and demonstrate that the distribution of B. minima is more restricted than expected within the examined area.
    [Show full text]
  • Floristic Survey of Algae in Some Freshwater Habitats of Kohima District, Nagaland (India)
    Journal of Advanced Plant Sciences 2021.11(1): 60-73 60 RESEARCH ARTICLE Floristic survey of Algae in some freshwater habitats of Kohima District, Nagaland (India) Keviphruonuo Kuotsu* and S. K. Chaturvedi Department of Botany, Nagaland University, Lumami-798627, Nagaland, India Received: 20 November 2020 / Revised: 12 April 2021 / Accepted: 30 April 2021 © Botanical Society of Assam 2021 blue green algae (Oinam et al.,2010, Devi et al., Abstract 2010) were reported from Nagaland. Studies was also done from the fresh water bodies (lakes, ponds The present paper deals with the algal flora study of streams and rivers) of Dimapur, Chumukedima, Kohima District, Nagaland, which is located Peren and Wokha districts, 94 algal taxa were between 25024’N - 25099’. N latitude and 94001’E - 0 reported (Das and Adhikary 2012). 94 29 E longitude with an average elevation of 1261m and an area of 1,595 sq. km. In the present Kohima district is the capital of Nagaland with an study, 40 algal taxa were reported where 5 algal taxa area of 1463 sq km and located between 25024’N - belongs to Class Cyanophyceae, 5 algal taxa belongs 25099’N latitude and 94001’E - 94029’E longitude to Class Chlorophyceae, 19 algal taxa belongs to with an average elevation of 1261 m. Algal work on Class Bacilariophyceae, 1 algal taxa belongs to Kohima District has not been reported by any Class Coscinodiscophyceae, 2 algal taxa belongs to workers and so the present study has been carried Class Ulvophyceae and 8 algal taxa belongs to Class out to study the flora and resources of algae on some Zygnematophyceae.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Genetic Diversity of Symbiotic Green Algae of Paramecium Bursaria Syngens Originating from Distant Geographical Locations
    plants Article Genetic Diversity of Symbiotic Green Algae of Paramecium bursaria Syngens Originating from Distant Geographical Locations Magdalena Greczek-Stachura 1, Patrycja Zagata Le´snicka 1, Sebastian Tarcz 2 , Maria Rautian 3 and Katarzyna Mozd˙ ze˙ ´n 1,* 1 Institute of Biology, Pedagogical University of Krakow, Podchor ˛azych˙ 2, 30-084 Kraków, Poland; [email protected] (M.G.-S.); [email protected] (P.Z.L.) 2 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland; [email protected] 3 Laboratory of Protistology and Experimental Zoology, Faculty of Biology and Soil Science, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: Paramecium bursaria (Ehrenberg 1831) is a ciliate species living in a symbiotic relationship with green algae. The aim of the study was to identify green algal symbionts of P. bursaria originating from distant geographical locations and to answer the question of whether the occurrence of en- dosymbiont taxa was correlated with a specific ciliate syngen (sexually separated sibling group). In a comparative analysis, we investigated 43 P. bursaria symbiont strains based on molecular features. Three DNA fragments were sequenced: two from the nuclear genomes—a fragment of the ITS1-5.8S rDNA-ITS2 region and a fragment of the gene encoding large subunit ribosomal RNA (28S rDNA), Citation: Greczek-Stachura, M.; as well as a fragment of the plastid genome comprising the 30rpl36-50infA genes. The analysis of two Le´snicka,P.Z.; Tarcz, S.; Rautian, M.; Mozd˙ ze´n,K.˙ Genetic Diversity of ribosomal sequences showed the presence of 29 haplotypes (haplotype diversity Hd = 0.98736 for Symbiotic Green Algae of Paramecium ITS1-5.8S rDNA-ITS2 and Hd = 0.908 for 28S rDNA) in the former two regions, and 36 haplotypes 0 0 bursaria Syngens Originating from in the 3 rpl36-5 infA gene fragment (Hd = 0.984).
    [Show full text]
  • Les Algues Du Fleuve Niger Et Des Milieux Humides Connexes De L’Ouest Du Niger
    RÉPUBLIQUE DU NIGER N°………….. Fraternité-Travail-Progrès UNIVERSITÉ ABDOU MOUMOUNI Faculté des Sciences et Techniques Département de Biologie THÈSE UNIQUE DE DOCTORAT DE L’UNIVERSITÉ ABDOU MOUMOUNI Présentée par Monsieur Djima Idrissou Tahirou Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ ABDOU MOUMOUNI DOMAINE Taxonomie, Morphologie et Biologie Végétales SPÉCIALITÉ Phycologie SUJET DE LA THÈSE LES ALGUES DU FLEUVE NIGER ET DES MILIEUX HUMIDES CONNEXES DE L’OUEST DU NIGER Thèse présentée et soutenue à Niamey le 28 Février 2013 devant le jury composé de : Monsieur AKÉ Assi Laurent, Professeur, Université Félix Houphouët-Boigny, Abidjan, Président Monsieur SAADOU Mahamane, Professeur, Université Abdou Moumouni, Niamey, Directeur de thèse Monsieur COUTÉ Alain, Professeur, Muséum National d’Histoire Naturelle, Paris, Rapporteur Monsieur DA Kouhété Philippe, Maître de Conférences, Université Félix Houphouët-Boigny, Abidjan, Rapporteur Monsieur MAHAMANE Ali, Professeur, Université Abdou Moumouni, Niamey, Examinateur Laboratoire de Biologie Végétale GARBA Mounkaïla Faculté des Sciences/Université ABDOU Moumouni/ Niamey/NIGER BP 10 662 Niamey-Niger Tél : +227 96 53 16 33 / +227 94 85 56 38 Table des matières Liste de figures ................................................................................................................... viii Liste des tableaux ...................................................................................................................x Principales Abréviations ......................................................................................................
    [Show full text]
  • Molecular Phylogeny and Taxonomic Revision of Chaetophoralean Algae (Chlorophyta)
    University of South Bohemia in České Budějovice Faculty of Science Molecular phylogeny and taxonomic revision of chaetophoralean algae (Chlorophyta) Ph.D. Thesis Mgr. Lenka Caisová Supervisor RNDr. Jiří Neustupa, Ph.D. Department of Botany, Faculty of Sciences, Charles University in Prague Formal supervisor Prof. RNDr. Jiří Komárek, DrSc. University of South Bohemia, Faculty of Science, Institute of Botany, Academy of Sciences, Třeboň Consultants Prof. Dr. Michael Melkonian Biozentrum Köln, Botanisches Institut, Universität zu Köln, Germany Mgr. Pavel Škaloud, Ph.D. Department of Botany, Faculty of Sciences, Charles University in Prague České Budějovice, 2011 Caisová, L. 2011: Molecular phylogeny and taxonomic revision of chaetophoralean algae (Chlorophyta). PhD. Thesis, composite in English. University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic, 110 pp, shortened version 30 pp. Annotation Since the human inclination to estimate and trace natural diversity, usable species definitions as well as taxonomical systems are required. As a consequence, the first proposed classification schemes assigned the filamentous and parenchymatous taxa to the green algal order Chaetophorales sensu Wille. The introduction of ultrastructural and molecular methods provided novel insight into algal evolution and generated taxonomic revisions based on phylogenetic inference. However, until now, the number of molecular phylogenetic studies focusing on the Chaetophorales s.s. is surprisingly low. To enhance knowledge about phylogenetic
    [Show full text]
  • Download Full Article 2.0MB .Pdf File
    Memoirs of the National Museum of Victoria 12 April 1971 Port Phillip Bay Survey 2 https://doi.org/10.24199/j.mmv.1971.32.08 8 INTERTIDAL ECOLOGY OF PORT PHILLIP BAY WITH SYSTEMATIC LIST OF PLANTS AND ANIMALS By R. J. KING,* J. HOPE BLACKt and SOPHIE c. DUCKER* Abstract The zonation is recorded at 14 stations within Port Phillip Bay. Any special features of a station arc di�cusscd in �elation to the adjacent stations and the whole Bay. The intertidal plants and ammals are listed systematically with references, distribution within the Bay and relevant comment. 1. INTERTIDAL ECOLOGY South-western Bay-Areas 42, 49, 50 By R. J. KING and J. HOPE BLACK Arca 42: Station 21 St. Leonards 16 Oct. 69 Introduction Arca 49: Station 4 Swan Bay Jetty, 17 Sept. 69 This account is basically coneerncd with the distribution of intertidal plants and animals of Eastern Bay-Areas 23-24, 35-36, 47-48, 55 Port Phillip Bay. The benthic flora and fauna Arca 23, Station 20, Ricketts Pt., 30 Sept. 69 have been dealt with in separate papers (Mem­ Area 55: Station 15 Schnapper Pt. 25 May oir 27 and present volume). 70 Following preliminary investigations, 14 Area 55: Station 13 Fossil Beach 25 May stations were selected for detailed study in such 70 a way that all regions and all major geological formations were represented. These localities Southern Bay-Areas 60-64, 67-70 are listed below and are shown in Figure 1. Arca 63: Station 24 Martha Pt. 25 May 70 For ease of comparison with Womersley Port Phillip Heads-Areas 58-59 (1966), in his paper on the subtidal algae, the Area 58: Station 10 Quecnscliff, 12 Mar.
    [Show full text]
  • Micractinium Tetrahymenae (Trebouxiophyceae, Chlorophyta), a New Endosymbiont Isolated from Ciliates
    diversity Article Micractinium tetrahymenae (Trebouxiophyceae, Chlorophyta), a New Endosymbiont Isolated from Ciliates Thomas Pröschold 1,*, Gianna Pitsch 2 and Tatyana Darienko 3 1 Research Department for Limnology, Leopold-Franzens-University of Innsbruck, Mondsee, A-5310 Mondsee, Austria 2 Limnological Station, Department of Plant and Microbial Biology, University of Zürich, CH-8802 Kilchberg, Switzerland; [email protected] 3 Albrecht-von-Haller-Institute of Plant Sciences, Experimental Phycology and Culture Collection of Algae, Georg-August-University of Göttingen, D-37073 Göttingen, Germany; [email protected] * Correspondence: [email protected] Received: 28 April 2020; Accepted: 13 May 2020; Published: 15 May 2020 Abstract: Endosymbiosis between coccoid green algae and ciliates are widely distributed and occur in various phylogenetic lineages among the Ciliophora. Most mixotrophic ciliates live in symbiosis with different species and genera of the so-called Chlorella clade (Trebouxiophyceae). The mixotrophic ciliates can be differentiated into two groups: (i) obligate, which always live in symbiosis with such green algae and are rarely algae-free and (ii) facultative, which formed under certain circumstances such as in anoxic environments an association with algae. A case of the facultative endosymbiosis is found in the recently described species of Tetrahymena, T. utriculariae, which lives in the bladder traps of the carnivorous aquatic plant Utricularia reflexa. The green endosymbiont of this ciliate belonged to the genus Micractinium. We characterized the isolated algal strain using an integrative approach and compared it to all described species of this genus. The phylogenetic analyses using complex evolutionary secondary structure-based models revealed that this endosymbiont represents a new species of Micractinium, M.
    [Show full text]