Alexandrium Fundyense and A. Catenella) Have Minimal Apparent Evects on Oyster Hemocytes

Total Page:16

File Type:pdf, Size:1020Kb

Alexandrium Fundyense and A. Catenella) Have Minimal Apparent Evects on Oyster Hemocytes Mar Biol (2007) 152:441–447 DOI 10.1007/s00227-007-0703-3 RESEARCH ARTICLE Toxic dinoXagellates (Alexandrium fundyense and A. catenella) have minimal apparent eVects on oyster hemocytes Hélène Hégaret · Gary H. Wikfors · Philippe Soudant · Christophe Lambert · Sandra E. Shumway · Jean Baptiste Bérard · Patrick Lassus Received: 1 August 2005 / Accepted: 9 April 2007 / Published online: 8 May 2007 © Springer-Verlag 2007 Abstract The possible eVect of Alexandrium spp. con- in C. virginica and measured toxin accumulation in C. taining paralytic shellWsh poisoning (PSP) toxins on the gigas. The only signiWcant correlation found was between hemocytes of oysters was tested experimentally. In one toxin accumulation at one temperature and higher numbers trial, eastern oysters, Crassostrea virginica Gmelin, were of circulating live and dead hemocytes in C. gigas. The PSP exposed to bloom concentrations of the sympatric dinoXa- toxins are known to interfere speciWcally with sodium- gellate, Alexandrium fundyense Balech, alone and in a channel function; therefore, the Wnding that the toxins had mixture with a non-toxic diatom, Thalassiosira weissXogii no eVect on measured hemocyte functions suggests that (Grun) Fryxell et Hasle. Subsequently, another experiment sodium-channel physiology is not important in these hemo- exposed PaciWc oysters, Crassostrea gigas Thunberg, to a cyte functions. Finally, because oysters were exposed to the mixed suspension of the sympatric, toxic species Alexand- living algae, not puriWed toxins, there was no evidence of rium catenella (Whedon et Kofoid) Balech, with T. bioactive compounds other than PSP toxins aVecting hemo- weissXogii. Measurements of numbers of oyster hemocytes, cytes in the two species of Alexandrium studied. percentages of diVerent cell types, and functions (phagocy- tosis, reactive oxygen species (ROS) production, and mor- tality) were made using Xow-cytometry. During and after Introduction exposure, almost no signiWcant eVects of Alexandrium spp. upon hemocyte numbers, morphology, or functions were Paralytic shellWsh poisoning (PSP) toxins are produced by a detected, despite observations of adductor-muscle paralysis number of dinoXagellates including Alexandrium spp. (formerly included in the genus Protogonyaulax or Gonyaulax), Gymnodinium catenatum, and Pyrodinium bahamense. Suspension feeders, such as bivalve molluscs, Communicated by J.P. Grassle. are the principal vectors transferring these phytotoxins to H. Hégaret · S. E. Shumway humans and other consumers of shellWsh, as bivalves accu- Marine Science Department, mulate toxins from the toxic algae they consume (Bricelj University of Connecticut, 1080 Shennecossett Road, and Shumway 1998). Capacity to accumulate PSP toxin Groton, CT 06340, USA diVers among bivalve species (Shumway et al. 1988; Gainey G. H. Wikfors (&) and Shumway 1988a; Bricelj and Shumway 1998; Bricelj NOAA Fisheries, Northeast Fisheries Science Center, et al. 2005). For example, when exposed simultaneously to 212 Rogers Avenue, Milford, CT 06460, USA a toxic algal bloom, oysters accumulated lower levels of e-mail: [email protected] toxins than did mussels (Lassus et al. 1999). P. Soudant · C. Lambert Despite apparent tolerance of accumulated PSP and LEMAR UMR 6539, IUEM-UBO, other toxins in their soft tissues, some bivalves may have Place Nicolas Copernic, Plouzané, France reduced survival and growth (Shumway 1990). Other stud- V J. B. Bérard · P. Lassus ies provide evidence of sub-lethal e ects, such as reduced IFREMER, BP 21105, Nantes, 44311, France clearance rates in juvenile bay scallops (Argopecten irradians 123 442 Mar Biol (2007) 152:441–447 irradians), northern quahogs (Mercenaria mercenaria), diVerences in experimental design and protocols for hemo- soft-shell clams (Mya arenaria), blue mussels (Mytilus edu- cyte-parameter analyses. lis), and Xat oysters (Ostrea edulis) in the presence of toxic Alexandrium spp. cells (Lesser and Shumway 1993). Simi- larly, Lassus et al. (1996) reported reduced clearance rates Materials and methods in PaciWc oysters (Crassostrea gigas) exposed to A. tama- rense and Shumway and Cucci (1987) demonstrated its Two experiments were conducted in which oysters were eVects on shell-valve closure and mucus production in sev- exposed to cultures of toxin-producing strains of dinoXa- eral bivalve species. Changes in heart rate of bivalves have gellates, Alexandrium spp. and then analyzed for hemocyte also been observed in the presence of A. tamarense (Gainey parameter changes: one was conducted in May 2004 at the and Shumway 1988b). Li et al. (2002) showed a decline in Milford Laboratory (Connecticut, USA), and another was the clearance rate of the clam Ruditapes philippinarum done in June 2004 at the IFREMER facility in Nantes exposed to highly toxic A. tamarense, and decreases in (France). Eastern oysters, C. virginica Gmelin, were stud- absorption eYciency of both clams (R. philippinarum) and ied in Milford, and PaciWc oysters, C. gigas Thunberg, were mussels (Perna viridis) coincident with toxin accumulation. studied in Nantes. Depending upon the bivalve species, morphological eVects of accumulated paralytic phycotoxins from A. tamarense Experimental oysters are seen in diVerent organs, especially in the digestive gland and the kidney, and less commonly in other organs, Eastern oysters, C. virginica, obtained from the F.M. such as the adductor muscle and the gonad (Lassus et al. Flower Hatchery (Oyster Bay, New York, USA), were used 1999; Bougrier et al. 2001; Choi et al. 2003). These diverse in the Milford experiment. Before being transferred to eVects of PSP-containing dinoXagellates on bivalve mol- experimental basins, oysters (ca. 30 mm shell height) were luscs suggest that other aspects of physiological processes conditioned in running, unWltered seawater (17°C) in the may also be aVected. Milford Laboratory. These oysters were not gametogenic. Invertebrates, including bivalves, have no acquired Triploid PaciWc oysters, C. gigas, used for the two immunity and are therefore, limited to an innate immune experiments in Nantes were obtained from a producer in Le response to pathogens, parasites, and physical injury (Jane- Croisic, France. These oysters were produced by the hatch- way 1994), which is mediated by chemical agents and spe- ery Vendée Naissain, and were grown in basins. The exper- cialized cells called hemocytes circulating throughout the imental oysters (9.1 § 1.6 g wet weight, ca. 60 mm shell body. Hemocytes recognize and attempt to eliminate non- height) were acclimated in basins containing running sea- self particles within an open vascular system and tissues, water for 6 days at the experimental temperature of but they do not “remember” a prior experience with a harm- 16 § 0.5°C and were transferred into experimental units ful agent and more eVectively protect an individual in sub- after being cleaned. Triploid oysters were chosen because, sequent exposures. Recent studies in the laboratory and in compared to diploids, they are thought to have faster the Weld (Hégaret et al. 2005a, b) of eVects of the harmful growth and better survival for aquaculture production (Nell dinoXagellate Prorocentrum minimum on bivalves were the 2002). Moreover, triploids do not produce gametes, which, Wrst to show eVects on hemocytes. These eVects included if present at the time of the experiment, could interfere with changes in morphological and functional parameters, such hemocyte analyses by contaminating hemolymph samples. as: concentrations and proportions of the diVerent hemo- cyte types, production of reactive oxygen species, phagocy- Algal cultures tosis or the percentage of dead hemocytes in eastern oysters (C. virginica) and northern bay scallops (A. irradians). The For the experiment in Milford, strains of A. fundyense bioactive compound or compounds in P. minimum respon- Balech (BF 2) and non-toxic T. weissXogii (Grun.) Fryxell sible for these eVects have not been identiWed. In the pres- et Hasle (TW) were obtained from the Milford Laboratory ent study, we evaluated hemocyte characteristics and microalgal culture collection. This strain of A. fundyense functions in: (1) C. virginica exposed to A. fundyense, two causes mortality in bay scallops after 24 h exposure to sta- species that co-occur on the east coast of north America, tionary-phase cells (Hégaret and Wikfors 2005a). Both BF and (2) C. gigas exposed to A. catenella, species that co- 2 and TW contain bacterial contaminants, but cultures were occur in western Europe. Experimental exposures used cul- managed aseptically to preclude contamination with additional tured algae and included additional variables, such as algal microbes. Strain TW was cultured in the “E + Si Medium” cell density, combination with non-toxic algae, and temper- seawater enrichment of Ukeles (1973) at a salinity of 15; ature. The two experiments were done independently and, BF 2 was cultured in E medium at 30. Carboy cultures, in part, for diVerent purposes. Thus, there were some grown under continuous illumination (300 Em¡2 s¡1) in a 123 Mar Biol (2007) 152:441–447 443 temperature controlled (18°C) room, were managed semi- T. weissXogii were monitored with a Coulter Multisizer and continuously, with half the volume harvested and replaced a microscope (using an Utermohl counting chamber) every aseptically every 7 days. morning during two experiments conducted at 12 or 18°C For the experiment in Nantes, strains of A. catenella with oysters pre-conditioned for 5 days to each tempera-
Recommended publications
  • Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 12-2012 Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP. Emily R. Lyczkowski Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Oceanography Commons Recommended Citation Lyczkowski, Emily R., "Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP." (2012). Electronic Theses and Dissertations. 1861. http://digitalcommons.library.umaine.edu/etd/1861 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. ASSESSING ALLELOPATHIC EFFECTS OF ALEXANDRIUM FUNDYENSE ON THALASSIOSIRA SP. By Emily R. Lyczkowski B.A. Colby College, 2008 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Oceanography) The Graduate School The University of Maine December, 2012 Advisory Committee: Lee Karp-Boss, Associate Research Professor of Marine Sciences, Advisor Mary-Jane Perry, Professor of Marine Sciences David Townsend, Professor of Oceanography Mark Wells, Professor of Marine Sciences i ASSESSMENT OF ALLELOPATHIC EFFECTS OF ALEXANDRIUM FUNDYENSE ON THALASSIOSIRA SP. By Emily R. Lyczkowski Thesis Advisor: Dr. Lee Karp-Boss An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Oceanography) December, 2012 Production of allelopathic chemicals by the toxic dinoflagellate Alexandrium fundyense is one suggested mechanism by which this relatively slow grower outcompetes other phytoplankton, particularly diatoms. Despite well documented allelopathic potential of Alexandrium spp., the potency is variable.
    [Show full text]
  • Global Transcriptional Profiling of the Toxic Dinoflagellate Alexandrium
    BMC Genomics BioMed Central Research article Open Access Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using Massively Parallel Signature Sequencing Deana L Erdner*1 and Donald M Anderson2 Address: 1Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373, USA and 2Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA Email: Deana L Erdner* - [email protected]; Donald M Anderson - [email protected] * Corresponding author Published: 25 April 2006 Received: 13 December 2005 Accepted: 25 April 2006 BMC Genomics 2006, 7:88 doi:10.1186/1471-2164-7-88 This article is available from: http://www.biomedcentral.com/1471-2164/7/88 © 2006 Erdner and Anderson; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Dinoflagellates are one of the most important classes of marine and freshwater algae, notable both for their functional diversity and ecological significance. They occur naturally as free-living cells, as endosymbionts of marine invertebrates and are well known for their involvement in "red tides". Dinoflagellates are also notable for their unusual genome content and structure, which suggests that the organization and regulation of dinoflagellate genes may be very different from that of most eukaryotes. To investigate the content and regulation of the dinoflagellate genome, we performed a global analysis of the transcriptome of the toxic dinoflagellate Alexandrium fundyense under nitrate- and phosphate-limited conditions using Massively Parallel Signature Sequencing (MPSS).
    [Show full text]
  • 1 Alexandrium Fundyense Cyst Viability and Germling Survival in Light Vs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Woods Hole Open Access Server 1 Alexandrium fundyense cyst viability and germling survival in light vs. dark at a constant low 2 temperature 3 Emil Vahtera1*, Bibiana G. Crespo1, Dennis J. McGillicuddy Jr.1, Kalle Olli2 and Donald M. Anderson1 4 1Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 5 2Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu Estonia 6 7 Abstract 8 Both observations and models suggest that large-scale coastal blooms of Alexandrium fundyense in the 9 Gulf of Maine are seeded by deep-bottom cyst accumulation zones (“seed beds”) where cysts 10 germinate from the sediment surface or the overlying near-bottom nepheloid layers at water depths 11 exceeding 100 m. The germling cells and their vegetative progeny are assumed to be subject to modest 12 mortality while in complete darkness as they swim to illuminated surface waters. To test the validity of 13 this assumption we investigated in the laboratory cyst viability and the survival of the germling cells 14 and their vegetative progeny during prolonged exposure to darkness at a temperature of 6 °C, 15 simulating the conditions in deep Gulf of Maine waters. We isolated cysts from bottom sediments 16 collected in the Gulf of Maine under low red light and incubated them in 96-well tissue culture-plates 17 in culture medium under a 10:14h light: dark cycle and under complete darkness. Cyst viability was 18 high, with excystment frequency reaching 90% in the illuminated treatment after 30 days and in the 19 dark treatment after 50 days.
    [Show full text]
  • The Windblown: Possible Explanations for Dinophyte DNA
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.242388; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The windblown: possible explanations for dinophyte DNA in forest soils Marc Gottschlinga, Lucas Czechb,c, Frédéric Mahéd,e, Sina Adlf, Micah Dunthorng,h,* a Department Biologie, Systematische Botanik und Mykologie, GeoBio-Center, Ludwig- Maximilians-Universität München, D-80638 Munich, Germany b Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, D- 69118 Heidelberg, Germany c Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA d CIRAD, UMR BGPI, F-34398, Montpellier, France e BGPI, Université de Montpellier, CIRAD, IRD, Montpellier SupAgro, Montpellier, France f Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, SK, Canada g Eukaryotic Microbiology, Faculty of Biology, Universität Duisburg-Essen, D-45141 Essen, Germany h Centre for Water and Environmental Research (ZWU), Universität Duisburg-Essen, D- 45141 Essen, Germany Running title: Dinophytes in soils Correspondence M. Dunthorn, Eukaryotic Microbiology, Faculty of Biology, Universität Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany Telephone number: +49-(0)-201-183-2453; email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.08.07.242388; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Alexandrium Monilatum in the Lower Chesapeake Bay: Sediment Cyst Distribution and Potential Health Impacts on Crassostrea Virginica
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2016 Alexandrium Monilatum in the Lower Chesapeake Bay: Sediment Cyst Distribution and Potential Health Impacts on Crassostrea Virginica Sarah Pease College of William and Mary - Virginia Institute of Marine Science, [email protected] Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Aquaculture and Fisheries Commons, Ecology and Evolutionary Biology Commons, and the Marine Biology Commons Recommended Citation Pease, Sarah, "Alexandrium Monilatum in the Lower Chesapeake Bay: Sediment Cyst Distribution and Potential Health Impacts on Crassostrea Virginica" (2016). Dissertations, Theses, and Masters Projects. Paper 1477068141. http://doi.org/10.21220/V5C30T This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Alexandrium monilatum in the Lower Chesapeake Bay: Sediment Cyst Distribution and Potential Health Impacts on Crassostrea virginica ______________ A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Science ______________ by Sarah K. D. Pease 2016 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science _________________________________ Sarah K. D. Pease Approved, by the Committee, August 2016 __________________________________ Kimberly S. Reece, Ph.D. Committee Co-Chairman/Co-Advisor __________________________________ Wolfgang K. Vogelbein, Ph.D.
    [Show full text]
  • Identification and Enumeration of Alexandrium Spp. from the Gulf Of
    ARTICLE IN PRESS Deep-Sea Research II 52 (2005) 2467–2490 www.elsevier.com/locate/dsr2 Identification and enumeration of Alexandrium spp. from the Gulf of Maine using molecular probes Donald M. Andersona,Ã, David M. Kulisa, Bruce A. Keafera, Kristin E. Gribblea, Roman Marinb, Christopher A. Scholinb aBiology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA bMonterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA Accepted 18 June 2005 Abstract Three different molecular methods were used with traditional brightfield microscope techniques to enumerate the toxic dinoflagellate Alexandrium fundyense in samples collected in the Gulf of Maine in 1998, 2000, 2001, and 2003. Two molecular probes were used in fluorescent whole-cell (WC) microscopic assays: a large-subunit ribosomal RNA (LSU rRNA) oligonucleotide probe (NA1) and a monoclonal antibody probe thought to be specific for Alexandrium spp. within the tamarense/catenella/fundyense complex. Cell abundance estimates also were obtained using the NA1 oligonucleotide probe in a semi-quantitative sandwich hybridization assay (SHA) that quantified target rRNA in cell lysates. Here we compare and contrast the specificity and utility of these probe types and assay approaches. WC counts of the 1998 field samples demonstrated that A. fundyense cell densities estimated using the antibody approach were higher than those using either the NA1 oligonucleotide or brightfield microscopy due to the co-occurrence of A. ostenfeldii with A. fundyense, and the inability of the antibody to discriminate between these two species. An approach using cell size and the presence or absence of food vacuoles allowed more accurate immunofluorescent cell counts of both species, but small cells of A.
    [Show full text]
  • Alexandrium Tamarense Species Complex”
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328938370 A practical guide to new nomenclature for species within the “Alexandrium tamarense species complex” Article · October 2018 CITATIONS READS 0 186 10 authors, including: Richard Wayne Litaker Marina Montresor National Oceanic and Atmospheric Administration Stazione Zoologica Anton Dohrn 159 PUBLICATIONS 4,155 CITATIONS 220 PUBLICATIONS 5,451 CITATIONS SEE PROFILE SEE PROFILE Michael Brosnahan Shauna Murray Woods Hole Oceanographic Institution University of Technology Sydney 21 PUBLICATIONS 408 CITATIONS 233 PUBLICATIONS 2,924 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: LIFEHAB View project Ecological and evolutionary significance of seed banks for the expansion of harmful algae blooms in the Baltic Sea View project All content following this page was uploaded by Richard Wayne Litaker on 14 November 2018. The user has requested enhancement of the downloaded file. A practical guide to new nomenclature designation of the Group I ribotype as A. fundyense. for species within the “Alexandrium The controversy regarding the tamarense species complex” Group I designation centers on whether the cells used for the original A. catenel- la description were from Group I or IV, For several decades, the “Alexandrium ITS2 complementary base pair changes, given that populations of both species tamarense species complex” included saxitoxin production and the presence in the Pacific are known to exhibit the three morphologically defined spe- or absence of a key gene involved in classic “A. catenella” morphotype. Mo- cies, A. catenella, A. fundyense, and A.
    [Show full text]
  • Horizontal Gene Transfer Is a Significant Driver of Gene Innovation in Dinoflagellates
    GBE Horizontal Gene Transfer is a Significant Driver of Gene Innovation in Dinoflagellates Jennifer H. Wisecaver1,3,*, Michael L. Brosnahan2, and Jeremiah D. Hackett1 1Department of Ecology and Evolutionary Biology, University of Arizona 2Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 3Present address: Department of Biological Sciences, Vanderbilt University, Nashville, TN *Corresponding author: E-mail: [email protected]. Accepted: November 12, 2013 Data deposition:TheAlexandrium tamarense Group IV transcriptome assembly described in this article has been deposited at DDBJ/EMBL/ GenBank under the accession GAIQ01000000. Abstract The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314–1,563 depending on inference method) relative to all other organisms in the analysis (0–782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation.
    [Show full text]
  • Environmental Factors Influencing the Distribution and Abundance Of
    Harmful Algae 77 (2018) 81–92 Contents lists available at ScienceDirect Harmful Algae journal homepage: www.elsevier.com/locate/hal Environmental factors influencing the distribution and abundance of T Alexandrium catenella in Kachemak bay and lower cook inlet, Alaska ⁎ Mark W. Vanderseaa, , Steven R. Kiblera, Patricia A. Testerb, Kristine Holderiedc, Dominic E. Hondoleroc, Kim Powellc, Steve Bairdd, Angela Doroffe, Darcy Duganf, R. Wayne Litakera a National Oceanographic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Beaufort Laboratory, Beaufort, NC 28516, USA b Ocean Tester, LLC, 381 Gillikin Road, Beaufort, NC 28516, USA c National Oceanographic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Kasitsna Bay Laboratory, Homer, AK, USA d Kachemak Bay National Estuarine Research Reserve, Homer, AK, USA e South Slough National Estuarine Research Reserve, Charleston, OR, USA f Alaska Ocean Observing System, Anchorage, AK, USA ARTICLE INFO ABSTRACT Keywords: Despite the long history of paralytic shellfish poisoning (PSP) events in Alaska, little is known about the seasonal Bloom distribution and abundance of the causative organism, Alexandrium, or the environmental factors that govern Nutrients toxic bloom development. To address this issue, a five year study (2012–2017) was undertaken in Kachemak Bay fi Paralytic shell sh poisoning and lower Cook Inlet Alaska to determine how the occurrence of Alexandrium catenella, the dominant PSP- Salinity causing Alexandrium species, was influenced by temperature, salinity, nutrient concentrations, and other en- Saxitoxin vironmental factors. Cell concentrations from 572 surface water samples were estimated using quantitative PCR. Temperature Dinoflagellate Monthly sampling revealed a seasonal pattern of A.
    [Show full text]
  • Phytoplankton Responses to Marine Climate Change – an Introduction
    Phytoplankton Responses to Marine Climate Change – An Introduction Laura Käse and Jana K. Geuer Abstract Introduction Phytoplankton are one of the key players in the ocean and contribute approximately 50% to global primary produc- Phytoplankton are some of the smallest marine organisms. tion. They serve as the basis for marine food webs, drive Still, they are one of the most important players in the marine chemical composition of the global atmosphere and environment. They are the basis of many marine food webs thereby climate. Seasonal environmental changes and and, at the same time, sequester as much carbon dioxide as nutrient availability naturally influence phytoplankton all terrestrial plants together. As such, they are important species composition. Since the industrial era, anthropo- players when it comes to ocean climate change. genic climatic influences have increased noticeably – also In this chapter, the nature of phytoplankton will be inves- within the ocean. Our changing climate, however, affects tigated. Their different taxa will be explored and their eco- the composition of phytoplankton species composition on logical roles in food webs, carbon cycles, and nutrient uptake a long-term basis and requires the organisms to adapt to will be examined. A short introduction on the range of meth- this changing environment, influencing micronutrient odology available for phytoplankton studies is presented. bioavailability and other biogeochemical parameters. At Furthermore, the concept of ocean-related climate change is the same time, phytoplankton themselves can influence introduced. Examples of seasonal plankton variability are the climate with their responses to environmental changes. given, followed by an introduction to time series, an impor- Due to its key role, phytoplankton has been of interest in tant tool to obtain long-term data.
    [Show full text]
  • Alexandrium Catenella Cyst Dynamics in a Coastal Embayment: Temperature Dependence of Dormancy, Germination, and Bloom Initiation
    ALEXANDRIUM CATENELLA CYST DYNAMICS IN A COASTAL EMBAYMENT: TEMPERATURE DEPENDENCE OF DORMANCY, GERMINATION, AND BLOOM INITIATION By Alexis Dal Fischer B.A., Wellesley College, 2010 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION June 2017 © 2017 Alexis Dal Fischer All rights reserved. The author hereby grants to MIT and WHOI permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author ______________________________________________________________________________ Joint Program in Oceanography / Applied Ocean Science and Engineering Massachusetts Institute of Technology and Woods Hole Oceanographic Institution May 26, 2017 Certified by ______________________________________________________________________________ Dr. Donald M. Anderson Thesis Supervisor Accepted by ______________________________________________________________________________ Dr. Ann M. Tarrant Chair, Joint Committee for Biological Oceanography Woods Hole Oceanographic Institution 2 Contents Acknowledgements 5 Abstract 7 CHAPTER 1 Introduction 9 CHAPTER 2 Cold exposure controls the duration of dormancy in cysts of the 23 toxic dinoflagellate, Alexandrium catenella CHAPTER 3 Field emergence and laboratory germination of cysts of the toxic 59 dinoflagellate Alexandrium catenella in response to vernal warming CHAPTER 4 Temperature modulation of dormancy transitions, germination, 93 and division as a determinant of Alexandrium catenella bloom initiation CHAPTER 5 Summary and conclusion 137 APPENDIX The persistence of Alexandrium catenella cyst seedbeds in Nauset 151 Marsh 3 4 Acknowledgements These past six years have been an incredible journey, both scientifically and personally. But it would not have been possible without the support and collaboration of many people and groups.
    [Show full text]
  • The Cost of Toxicity in Microalgae: Direct Evidence from the Dinoflagellatealexandrium
    ORIGINAL RESEARCH published: 22 May 2019 doi: 10.3389/fmicb.2019.01065 The Cost of Toxicity in Microalgae: Direct Evidence From the DinoflagellateAlexandrium Hannah E. Blossom1*, Bo Markussen 2, Niels Daugbjerg 3, Bernd Krock 4, Andreas Norlin1 and Per Juel Hansen1 1Marine Biological Section, Department of Biology, University of Copenhagen, Elsinore, Denmark, 2Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark, 3Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark, 4Alfred-Wegener Institut für Polar-und Meeresforschung, Bremerhaven, Germany Empirical evidence of the cost of producing toxic compounds in harmful microalgae is completely lacking. Yet costs are often assumed to be high, implying substantial ecological benefits with adaptive significance exist. To study potential fitness costs of toxin production, 16 strains including three species of the former Alexandrium tamarense species complex Edited by: were grown under both carbon limitation and unlimited conditions. Growth rates, levels Maria Montserrat Sala, Institute of Marine Sciences (ICM), of intracellular paralytic shellfish toxins (PSTs), and effects of lytic compounds were Spain measured to provide trade-off curves of toxicity for both PST and lytic toxicity under high Reviewed by: light (300 μmol photons m−2 s−1) and under low light (i.e., carbon limited; 20 μmol photons Shauna Murray, −2 −1 University of Technology Sydney, m s ). Fitness costs in terms of reduced growth rates with increasing PST content were Australia only evident under unlimited conditions, but not under carbon limitation, in which case Bin-Bin Xie, PST production was positively correlated with growth. The cost of production of lytic Shandong University, China compounds was detected both under carbon limitation and unlimited conditions, but only *Correspondence: Hannah E.
    [Show full text]