Molecular Identification and Toxin Analysis of Alexandrium Spp

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Identification and Toxin Analysis of Alexandrium Spp toxins Article Molecular Identification and Toxin Analysis of Alexandrium spp. in the Beibu Gulf: First Report of Toxic A. tamiyavanichii in Chinese Coastal Waters Yixiao Xu 1,2,* , Xilin He 1, Huiling Li 1, Teng Zhang 1, Fu Lei 3, Haifeng Gu 4 and Donald M. Anderson 5 1 Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China; [email protected] (X.H.); [email protected] (H.L.); [email protected] (T.Z.) 2 Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China 3 Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; [email protected] 4 Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; [email protected] 5 Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; [email protected] * Correspondence: [email protected] Abstract: The frequency of harmful algal blooms (HABs) has increased in China in recent years. Information about harmful dinoflagellates and paralytic shellfish toxins (PSTs) is still limited in China, especially in the Beibu Gulf, where PSTs in shellfish have exceeded food safety guidelines on multiple occasions. To explore the nature of the threat from PSTs in the region, eight Alexandrium strains were isolated from waters of the Beibu Gulf and examined using phylogenetic analyses of large subunit (LSU) rDNA, small subunit (SSU) rDNA, and internal transcribed spacer (ITS) sequences. Their toxin composition profiles were also determined using liquid chromatography-tandem mass spectrometry Citation: Xu, Y.; He, X.; Li, H.; (LC-MS/MS). All eight strains clustered in the phylogenetic tree with A. pseudogonyaulax, A. affine, Zhang, T.; Lei, F.; Gu, H.; Anderson, and A. tamiyavanichii from other locations, forming three well-resolved groups. The intraspecific D.M. Molecular Identification and genetic distances of the three Alexandrium species were significantly smaller than interspecific genetic Toxin Analysis of Alexandrium spp. in distances for Alexandrium species. Beibu Gulf isolates were therefore classified as A. pseudogonyaulax, the Beibu Gulf: First Report of Toxic A. tamiyavanichii in Chinese Coastal A. affine, and A. tamiyavanichii. No PSTs were identified in A. pseudogonyaulax, but low levels Waters. Toxins 2021, 13, 161. https:// of gonyautoxins (GTXs) 1 to 5, and saxitoxin (STX) were detected in A. tamiyavanichii (a total of doi.org/10.3390/toxins13020161 4.60 fmol/cell). The extremely low level of toxicity is inconsistent with PST detection above regulatory levels on multiple occasions within the Beibu Gulf, suggesting that higher toxicity strains may occur Received: 25 January 2021 in those waters, but were unsampled. Other explanations including biotransformation of PSTs in Accepted: 16 February 2021 shellfish and the presence of other PST-producing algae are also suggested. Understanding the Published: 18 February 2021 toxicity and phylogeny of Alexandrium species provides foundational data for the protection of public health in the Beibu Gulf region and the mitigation of HAB events. Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in Keywords: Alexandrium tamiyavanichii; paralytic shellfish poisoning; molecular identification; toxicity; published maps and institutional affil- harmful algal blooms; Beibu Gulf iations. Key Contribution: The first record of Alexandrium affine, A. pseudogonyaulax and A. tamiyavanichii from the seawaters of Beibu Gulf, and the first report of toxicity and phylogeny of A. tamiyavanichii from Chinese coastal waters. Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and 1. Introduction conditions of the Creative Commons The genus Alexandrium is an important toxic and harmful algal blooms (HABs) di- Attribution (CC BY) license (https:// noflagellate distributed in coastal waters worldwide [1]. This genus was first described by creativecommons.org/licenses/by/ Halim [2] and it has since become one of the most studied dinoflagellate genera. Among 4.0/). Toxins 2021, 13, 161. https://doi.org/10.3390/toxins13020161 https://www.mdpi.com/journal/toxins ToxinsToxinsToxinsToxins 2021 2021 2021 2021, 13, 13, ,,13 x13, x,FOR , x FORx FOR FOR PEER PEER PEER PEER REVIEW REVIEW REVIEW REVIEW 2 2of 2of2 17of of 17 17 17 1.1. 1.Introduction1. Introduction IntroductionIntroduction Toxins 2021, 13, 161 TheTheTheThe genus genus genusgenus Alexandrium Alexandrium AlexandriumAlexandrium is is an isis an an animportant important importantimportant toxic toxic toxictoxic and and andand harmful harmful harmfulharmful algal algal algalalgal blooms blooms bloomsblooms (HABs) (HABs) (HABs)(HABs) dino- dino- dino-dino-2 of 16 flagellateflagellateflagellateflagellate distributed distributed distributeddistributed in in incoastalin coastal coastalcoastal waters waters waterswaters worl worl worlworldwidedwidedwidedwide [1]. [1]. [1].[1]. This This ThisThis genus genus genusgenus was was waswas first first firstfirst described described describeddescribed by by by by HalimHalimHalimHalim [2] [2] [2] [2]and and andand it it has it ithas hashas since since sincesince become become becomebecome one one oneone of of ofthof th e thth emoste emost mostmost studied studied studiedstudied dinoflagellate dinoflagellate dinoflagellatedinoflagellate genera. genera. genera.genera. Among Among AmongAmong thethethethe over over overover 30 30 3030species species speciesspecies of of ofAlexandriumof Alexandrium AlexandriumAlexandrium reported reported reportedreported to to todate,to date, date,date, at at atleastat least leastleast half half halfhalf can can cancan cause cause causecause paralytic paralytic paralyticparalytic shell- shell- shell-shell- the over 30 species of Alexandrium reported to date, at least half can cause paralytic shellfish fishfishfishfish poisoning poisoning poisoningpoisoning (PSP) (PSP) (PSP)(PSP) [3,4]. [3,4]. [3,4].[3,4]. Paralytic Paralytic ParalyticParalytic shellfish shellfish shellfishshellfish toxins toxins toxinstoxins (PSTs) (PSTs) (PSTs)(PSTs) accumulate accumulate accumulateaccumulate in in inshellfish,in shellfish, shellfish,shellfish, fish, fish, fish,fish, poisoning (PSP) [3,4]. Paralytic shellfish toxins (PSTs) accumulate in shellfish, fish, and andandandand other other otherother organisms organisms organismsorganisms through through throughthrough the the thethe food food foodfood web. web. web.web. Humans Humans HumansHumans who who whowho consume consume consumeconsume sh sh shellfishshellfishellfishellfish containing containing containingcontaining andother other organisms organisms through through the the food food web. web. Humans Humans who who consume consume shellfish shellfish containing containing PSTs PSTsPSTs can can become become poisoned; poisoned; PSTs PSTs thus thus re representspresents a amajor major health health hazard hazard [1,5]. [1,5]. Alexandrium Alexandrium PSTsPSTscan cancan become becomebecome poisoned; poisoned;poisoned; PSTs PSTsPSTs thus thusthus represents rerepresentspresents aa majormajor health healthhealth hazard hazard [1,5].[1,5]. [1,5]. AlexandriumAlexandriumAlexandrium is isis aisis a common a acommon acommoncommon common species species speciesspecies species in in inthein the in thethe coastal thecoastal coastalcoastal coastal waters waters waterswaters waters of of ofChina.of China. ofChina.China. China. Over Over OverOver Overthe the thethe past past the pastpast 15 past15 1515years, years, years, 15years, years, 24 24 2424HABs HABs HABsHABs 24HABs due due duedue due toto toAlexandriumto Alexandrium AlexandriumAlexandriumto Alexandrium spp. spp. spp.spp. have havespp. havehave occurred haveoccurred occurredoccurred occurred in in inthein the thethe inBohai, Bohai, Bohai, theBohai, Bohai,Yellow, Yellow, Yellow,Yellow, Yellow, and and andand South South and SouthSouth SouthChina China ChinaChina ChinaSeas Seas SeasSeas [5], Seas[5], [5],[5], with with [withwith5], with disastrousdisastrousdisastrousdisastrousdisastrous consequences consequences consequencesconsequences consequences for for forfor local local local forlocal marine localmarine marinemarine marine fi fisheries, fisheries,fisheries,sheries, fisheries, ecosystems, ecosystems, ecosystems,ecosystems, ecosystems, an an andand coastald dcoastal and coastalcoastal coastal landscapes. landscapes. landscapes.landscapes. landscapes. TheTheTheThe morphological morphological The morphologicalmorphological morphological identification identification identificationidentification identification of of of Alexandriumof Alexandrium AlexandriumAlexandrium of Alexandrium is is based isis based basedbasedis basedprimarily primarily primarilyprimarily primarily on on on onthe the thethe onfine fine fine thefine struc- struc- fine struc-struc- struc- tureturetureture of ofture ofofthe the thethe ofapical apical theapicalapical apicalpore pore porepore comp porecomp compcomplex, complex,lex,lex,lex, the the thethe first first thefirstfirst apical apical first apicalapical apicaland and andand sixt sixt and sixtsixthh precingularh sixthhprecingular precingularprecingular precingular plates, plates, plates,plates, plates, the the thethe pres- pres- pres- thepres- pres- ence/absenceence/absenceence/absenceence/absenceence/absence of of ofofa a ventral a aventral ofventralventral a ventral pore
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics
    toxins Article Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics Bryan John J. Subong 1,2,* , Arturo O. Lluisma 1, Rhodora V. Azanza 1 and Lilibeth A. Salvador-Reyes 1,* 1 Marine Science Institute, University of the Philippines- Diliman, Velasquez Street, Quezon City 1101, Philippines; [email protected] (A.O.L.); [email protected] (R.V.A.) 2 Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-8654, Japan * Correspondence: [email protected] (B.J.J.S.); [email protected] (L.A.S.-R.) Abstract: Alexandrium minutum and Alexandrium tamutum are two closely related harmful algal bloom (HAB)-causing species with different toxicity. Using isobaric tags for relative and absolute quantita- tion (iTRAQ)-based quantitative proteomics and two-dimensional differential gel electrophoresis (2D-DIGE), a comprehensive characterization of the proteomes of A. minutum and A. tamutum was performed to identify the cellular and molecular underpinnings for the dissimilarity between these two species. A total of 1436 proteins and 420 protein spots were identified using iTRAQ-based proteomics and 2D-DIGE, respectively. Both methods revealed little difference (10–12%) between the proteomes of A. minutum and A. tamutum, highlighting that these organisms follow similar cellular and biological processes at the exponential stage. Toxin biosynthetic enzymes were present in both organisms. However, the gonyautoxin-producing A. minutum showed higher levels of osmotic growth proteins, Zn-dependent alcohol dehydrogenase and type-I polyketide synthase compared to the non-toxic A. tamutum. Further, A. tamutum had increased S-adenosylmethionine transferase that may potentially have a negative feedback mechanism to toxin biosynthesis.
    [Show full text]
  • Microzooplankton Composition and Dynamics in Lake Erie
    MICROZOOPLANKTON COMPOSITION AND DYNAMICS IN LAKE ERIE A Thesis Presented to The Graduate Faculty of the University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Kenneth M. Moats May 2006 MICROZOOPLANKTON COMPOSITION AND DYNAMICS IN LAKE ERIE Kenneth M. Moats Thesis Approved: Accepted: ______________________________ ______________________________ Advisor Department Chair Peter J. Lavrentyev Richard L. Londraville ______________________________ ______________________________ Committee Member Dean of the College R. Joel Duff Ronald F. Levant ______________________________ ______________________________ Committee Member Dean of the Graduate School David M. Klarer George R. Newkome ______________________________ Date ii ACKNOWLEDGEMENTS I would like to thank my graduate advisor Dr. Peter Lavrentyev for introducing me to the study of aquatic microbial ecology and for the opportunity to conduct this study. The importance of his guidance and expertise in every aspect of this research cannot be understated. I would also like to thank him for the patience, support, and encouragement he provided throughout my tenure. I would also like to thank the other members of my advisory committee, Dr. Joel Duff and Dr. David Klarer, for the helpful advice and comments offered during the preparation of this manuscript. I would like to extend my thanks to Dr. Klarer and the staff of Old Woman Creek NERR for logistical support and the sharing of unpublished data on Old Woman Creek. I thank Dr. Frank Jochem of Florida International University, Dr. Henry Vanderploeg and Dr. Stuart Ludsin of Great Lakes Environmental Research Laboratory, and the Captain and crew of the US EPA R/V Lake Guardian for logistical support during the Lake Erie experiments.
    [Show full text]
  • National Reports on Wetlands in South China Sea
    United Nations UNEP/GEF South China Sea Global Environment Environment Programme Project Facility “Reversing Environmental Degradation Trends in the South China Sea and Gulf of Thailand” National Reports on Wetlands in South China Sea First published in Thailand in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publicationas a source. No use of this publication may be made for resale or for any other commercial purpose without prior permission in writing from the United Nations Environment Programme. UNEP/GEF Project Co-ordinating Unit, United Nations Environment Programme, UN Building, 2nd Floor Block B, Rajdamnern Avenue, Bangkok 10200, Thailand. Tel. +66 2 288 1886 Fax. +66 2 288 1094 http://www.unepscs.org DISCLAIMER: The contents of this report do not necessarily reflect the views and policies of UNEP or the GEF. The designations employed and the presentations do not imply the expression of any opinion whatsoever on the part of UNEP, of the GEF, or of any cooperating organisation concerning the legal status of any country, territory, city or area, of its authorities, or of the delineation of its territories or boundaries. Cover Photo: A vast coastal estuary in Koh Kong Province of Cambodia. Photo by Mr. Koch Savath. For citation purposes this document may be cited as: UNEP, 2008.
    [Show full text]
  • Violence and Predation, Mainly in the Form of Piracy, Were Two Of
    violence and predation robert j. antony Violence and Predation on the Sino-Vietnamese Maritime Frontier, 1450–1850 iolence and predation, mainly in the form of piracy, were two of V the most persistent and pervasive features of the Sino-Vietnamese maritime frontier between the mid-fifteenth and mid-nineteenth cen- turies.1 In the Gulf of Tonkin, which is the focus of this article, piracy was, in fact, an intrinsic feature of this sea frontier and a dynamic and significant force in the region’s economic, social, and cultural devel- opment. My approach, what scholars call history from the bottom up, places pirates, not the state, at center stage, recognizing their impor- tance and agency as historical actors. My research is based on various types of written history, including Qing archives, the Veritable Records of Vietnam and China, local Chinese gazetteers, and travel accounts; I also bring in my own fieldwork in the gulf region conducted over the past six years. The article is divided into three sections: first, I discuss the geopolitical characteristics of this maritime frontier as a background to our understanding of piracy in the region; second, I consider the socio-cultural aspects of the gulf region, especially the underclass who engaged in clandestine activities as a part of their daily lives; and third, I analyze five specific episodes of piracy in the Gulf of Tonkin. The Gulf of Tonkin (often referred to here simply as the gulf), which is tucked away in the northwestern corner of the South China Sea, borders on Vietnam in the west and China in the north and east.
    [Show full text]
  • Removal of the Toxic Dinoflagellate Alexandrium Tamarense (Dinophyta
    Revista de Biología Marina y Oceanografía Vol. 50, Nº2: 347-352, agosto 2015 DOI 10.4067/S0718-19572015000300012 RESEARCH NOTE Removal of the toxic dinoflagellate Alexandrium tamarense (Dinophyta, Gonyaulacales) by Mnemiopsis leidyi (Ctenophora, Lobata) in controlled experimental conditions Remoción del dinoflagelado tóxico Alexandrium tamarense (Dinophyta, Gonyaulacales) por Mnemiopsis leidyi (Ctenophora, Lobata) en condiciones experimentales controladas Sergio Bolasina1,2, Hugo Benavides1,4, Nora Montoya1, José Carreto1,4, Marcelo Acha1,3,4 and Hermes Mianzan1,3,4 1Instituto Nacional de Investigación y Desarrollo Pesquero - INIDEP, Paseo Victoria Ocampo N°1, Escollera Norte, (7602), Mar del Plata, Buenos Aires, Argentina. [email protected] 2Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé -NUPEM/UFRJ, Rua São José do Barreto 764, Macaé, Rio de Janeiro, Brasil. (Present address) 3Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina 4Universidad Nacional de Mar del Plata, Funes 3350 (7600) Mar del Plata, Buenos Aires, Argentina Abstract.- The objective of the present study is to estimate the removal capability of the ctenophore Mnemiopsis leidyi (Ctenophora, Lobata) on cultures of the toxic dinoflagellate Alexandrium tamarense (Dinophyta, Gonyaulacales). For this purpose, observations on its clearance and survival rates were made in controlled experiments, using different A. tamarense cell concentrations. Mnemiopsis leidyi is able to remove dinoflagellates actively from the water column only at the lowest density tested (150 cells mL-1). Animals exposed to 300 cells mL-1 presented negative clearance and removal rates (survival= 67%). All ctenophores exposed at the highest concentrations of toxic dinoflagellates (600 cells mL-1) died after 4 h. Removal may occur mainly by incorporating and entangling cells in the mucus strands formed by the ctenophore, and in a lesser way by ingestion.
    [Show full text]
  • Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 12-2012 Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP. Emily R. Lyczkowski Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Oceanography Commons Recommended Citation Lyczkowski, Emily R., "Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP." (2012). Electronic Theses and Dissertations. 1861. http://digitalcommons.library.umaine.edu/etd/1861 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. ASSESSING ALLELOPATHIC EFFECTS OF ALEXANDRIUM FUNDYENSE ON THALASSIOSIRA SP. By Emily R. Lyczkowski B.A. Colby College, 2008 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Oceanography) The Graduate School The University of Maine December, 2012 Advisory Committee: Lee Karp-Boss, Associate Research Professor of Marine Sciences, Advisor Mary-Jane Perry, Professor of Marine Sciences David Townsend, Professor of Oceanography Mark Wells, Professor of Marine Sciences i ASSESSMENT OF ALLELOPATHIC EFFECTS OF ALEXANDRIUM FUNDYENSE ON THALASSIOSIRA SP. By Emily R. Lyczkowski Thesis Advisor: Dr. Lee Karp-Boss An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Oceanography) December, 2012 Production of allelopathic chemicals by the toxic dinoflagellate Alexandrium fundyense is one suggested mechanism by which this relatively slow grower outcompetes other phytoplankton, particularly diatoms. Despite well documented allelopathic potential of Alexandrium spp., the potency is variable.
    [Show full text]
  • Alexandrium Fundyense and A. Catenella) Have Minimal Apparent Evects on Oyster Hemocytes
    Mar Biol (2007) 152:441–447 DOI 10.1007/s00227-007-0703-3 RESEARCH ARTICLE Toxic dinoXagellates (Alexandrium fundyense and A. catenella) have minimal apparent eVects on oyster hemocytes Hélène Hégaret · Gary H. Wikfors · Philippe Soudant · Christophe Lambert · Sandra E. Shumway · Jean Baptiste Bérard · Patrick Lassus Received: 1 August 2005 / Accepted: 9 April 2007 / Published online: 8 May 2007 © Springer-Verlag 2007 Abstract The possible eVect of Alexandrium spp. con- in C. virginica and measured toxin accumulation in C. taining paralytic shellWsh poisoning (PSP) toxins on the gigas. The only signiWcant correlation found was between hemocytes of oysters was tested experimentally. In one toxin accumulation at one temperature and higher numbers trial, eastern oysters, Crassostrea virginica Gmelin, were of circulating live and dead hemocytes in C. gigas. The PSP exposed to bloom concentrations of the sympatric dinoXa- toxins are known to interfere speciWcally with sodium- gellate, Alexandrium fundyense Balech, alone and in a channel function; therefore, the Wnding that the toxins had mixture with a non-toxic diatom, Thalassiosira weissXogii no eVect on measured hemocyte functions suggests that (Grun) Fryxell et Hasle. Subsequently, another experiment sodium-channel physiology is not important in these hemo- exposed PaciWc oysters, Crassostrea gigas Thunberg, to a cyte functions. Finally, because oysters were exposed to the mixed suspension of the sympatric, toxic species Alexand- living algae, not puriWed toxins, there was no evidence of rium catenella (Whedon et Kofoid) Balech, with T. bioactive compounds other than PSP toxins aVecting hemo- weissXogii. Measurements of numbers of oyster hemocytes, cytes in the two species of Alexandrium studied.
    [Show full text]
  • Global Transcriptional Profiling of the Toxic Dinoflagellate Alexandrium
    BMC Genomics BioMed Central Research article Open Access Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using Massively Parallel Signature Sequencing Deana L Erdner*1 and Donald M Anderson2 Address: 1Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 78373, USA and 2Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA Email: Deana L Erdner* - [email protected]; Donald M Anderson - [email protected] * Corresponding author Published: 25 April 2006 Received: 13 December 2005 Accepted: 25 April 2006 BMC Genomics 2006, 7:88 doi:10.1186/1471-2164-7-88 This article is available from: http://www.biomedcentral.com/1471-2164/7/88 © 2006 Erdner and Anderson; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Dinoflagellates are one of the most important classes of marine and freshwater algae, notable both for their functional diversity and ecological significance. They occur naturally as free-living cells, as endosymbionts of marine invertebrates and are well known for their involvement in "red tides". Dinoflagellates are also notable for their unusual genome content and structure, which suggests that the organization and regulation of dinoflagellate genes may be very different from that of most eukaryotes. To investigate the content and regulation of the dinoflagellate genome, we performed a global analysis of the transcriptome of the toxic dinoflagellate Alexandrium fundyense under nitrate- and phosphate-limited conditions using Massively Parallel Signature Sequencing (MPSS).
    [Show full text]
  • 1 Alexandrium Fundyense Cyst Viability and Germling Survival in Light Vs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Woods Hole Open Access Server 1 Alexandrium fundyense cyst viability and germling survival in light vs. dark at a constant low 2 temperature 3 Emil Vahtera1*, Bibiana G. Crespo1, Dennis J. McGillicuddy Jr.1, Kalle Olli2 and Donald M. Anderson1 4 1Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 5 2Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu Estonia 6 7 Abstract 8 Both observations and models suggest that large-scale coastal blooms of Alexandrium fundyense in the 9 Gulf of Maine are seeded by deep-bottom cyst accumulation zones (“seed beds”) where cysts 10 germinate from the sediment surface or the overlying near-bottom nepheloid layers at water depths 11 exceeding 100 m. The germling cells and their vegetative progeny are assumed to be subject to modest 12 mortality while in complete darkness as they swim to illuminated surface waters. To test the validity of 13 this assumption we investigated in the laboratory cyst viability and the survival of the germling cells 14 and their vegetative progeny during prolonged exposure to darkness at a temperature of 6 °C, 15 simulating the conditions in deep Gulf of Maine waters. We isolated cysts from bottom sediments 16 collected in the Gulf of Maine under low red light and incubated them in 96-well tissue culture-plates 17 in culture medium under a 10:14h light: dark cycle and under complete darkness. Cyst viability was 18 high, with excystment frequency reaching 90% in the illuminated treatment after 30 days and in the 19 dark treatment after 50 days.
    [Show full text]