The Sea Bottom Off Santa Barbara, California: Biomass and Community Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Section 3.5 Marine Biology
3.5 MARINE BIOLOGY 3.5.1 Introduction 3.5.1.1 Definition of Resource For purposes of this EIS/OEIS, marine biological resources are defined as marine flora and fauna and habitats that they occupy, occurring within the Point Mugu Sea Range, Mugu Lagoon, and the intertidal and nearshore environment of San Nicolas Island and Point Mugu. This section specifically addresses marine invertebrates and flora. Fish and sea turtles are addressed in Section 3.6, marine mammals are addressed in Section 3.7, and seabirds are addressed in Section 3.8. Threatened and endangered species, as defined by the U.S. Fish and Wildlife Service (USFWS), are also addressed. Species that are federally listed are afforded a degree of regulatory protection, which entails a permitting process including specific mitigation measures for any allowable (incidental) impacts on the species. Species that are proposed to be listed by the USFWS are treated similarly to listed species by that agency; recommendations of the USFWS, however, are advisory rather than mandatory in the case of proposed species. A federally listed endangered species is defined as any species, including subspecies, that is “in danger of extinction throughout all or a significant portion of its range.” A federally listed threatened species is defined as any species “likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.” “Proposed” endangered or threatened species are those species for which a proposed regulation has been published in the Federal Register, but a final rule has not yet been issued. 3.5.1.2 Regional Setting The Sea Range straddles the ocean off Point Conception which is considered a major geographic feature that affects marine biological diversity. -
Echinodermata
Echinodermata Bruce A. Miller The phylum Echinodermata is a morphologically, ecologically, and taxonomically diverse group. Within the nearshore waters of the Pacific Northwest, representatives from all five major classes are found-the Asteroidea (sea stars), Echinoidea (sea urchins, sand dollars), Holothuroidea (sea cucumbers), Ophiuroidea (brittle stars, basket stars), and Crinoidea (feather stars). Habitats of most groups range from intertidal to beyond the continental shelf; this discussion is limited to species found no deeper than the shelf break, generally less than 200 m depth and within 100 km of the coast. Reproduction and Development With some exceptions, sexes are separate in the Echinodermata and fertilization occurs externally. Intraovarian brooders such as Leptosynapta must fertilize internally. For most species reproduction occurs by free spawning; that is, males and females release gametes more or less simultaneously, and fertilization occurs in the water column. Some species employ a brooding strategy and do not have pelagic larvae. Species that brood are included in the list of species found in the coastal waters of the Pacific Northwest (Table 1) but are not included in the larval keys presented here. The larvae of echinoderms are morphologically and functionally diverse and have been the subject of numerous investigations on larval evolution (e.g., Emlet et al., 1987; Strathmann et al., 1992; Hart, 1995; McEdward and Jamies, 1996)and functional morphology (e.g., Strathmann, 1971,1974, 1975; McEdward, 1984,1986a,b; Hart and Strathmann, 1994). Larvae are generally divided into two forms defined by the source of nutrition during the larval stage. Planktotrophic larvae derive their energetic requirements from capture of particles, primarily algal cells, and in at least some forms by absorption of dissolved organic molecules. -
Study Report for Summer 2004 Bioturbation
STUDY REPORT FOR THE SUMMER 2004 BIOTURBATION MEASUREMENT PROGRAM ON THE PALOS VERDES SHELF July 2005 Prepared for: U.S. Army Corps of Engineers Los Angeles District 915 Wilshire Boulevard Los Angeles, CA 90017 U.S. Environmental Protection Agency Region IX Superfund Division (SFD-7-1) 75 Hawthorne Street San Francisco, CA 94105 Prepared by: Science Applications International Corporation 10260 Campus Point Drive San Diego, CA 92121 SAIC Report Number 679 Study Report for the Summer 2004 Bioturbation Measurement Program Conducted on the Palos Verdes Shelf Prepared for: U.S. Army Corps of Engineers U.S. Environmental Protection Agency Los Angeles District Region IX 915 Wilshire Boulevard Superfund Division (SFD-7-1) Los Angeles, CA 90017 75 Hawthorne Street San Francisco, CA 94105 July 2005 Prepared by: Science Applications International Corporation 10260 Campus Point Drive San Diego, CA 92121 SAIC Report Number 679 TABLE OF CONTENTS LIST OF FIGURES .....................................................................................................................................iii LIST OF TABLES........................................................................................................................................v LIST OF APPENDICES..............................................................................................................................vi 1.0 INTRODUCTION ...........................................................................................................................1 2.0 METHODS ......................................................................................................................................6 -
Glossary for the Echinodermata
February 2011 Christina Ball ©RBCM Phil Lambert GLOSSARY FOR THE ECHINODERMATA OVERVIEW The echinoderms are a globally distributed and morphologically diverse group of invertebrates whose history dates back 500 million years (Lambert 1997; Lambert 2000; Lambert and Austin 2007; Pearse et al. 2007). The group includes the sea stars (Asteroidea), sea cucumbers (Holothuroidea), sea lilies and feather stars (Crinoidea), the sea urchins, heart urchins and sand dollars (Echinoidea) and the brittle stars (Ophiuroidea). In some areas the group comprises up to 95% of the megafaunal biomass (Miller and Pawson 1990). Today some 13,000 species occur around the world (Pearse et al. 2007). Of those 13,000 species 194 are known to occur in British Columbia (Lambert and Boutillier, in press). The echinoderms are a group of almost exclusively marine organisms with the few exceptions living in brackish water (Brusca and Brusca 1990). Almost all of the echinoderms are benthic, meaning that they live on or in the substrate. There are a few exceptions to this rule. For example several holothuroids (sea cucumbers) are capable of swimming, sometimes hundreds of meters above the sea floor (Miller and Pawson 1990). One species of holothuroid, Rynkatorpa pawsoni, lives as a commensal with a deep-sea angler fish (Gigantactis macronema) (Martin 1969). While the echinoderms are a diverse group, they do share four unique features that define the group. These are pentaradial symmetry, an endoskeleton made up of ossicles, a water vascular system and mutable collagenous tissue. While larval echinoderms are bilaterally symmetrical the adults are pentaradially symmetrical (Brusca and Brusca 1990). All echinoderms have an endoskeleton made of calcareous ossicles (figure 1). -
DEPARTMENT of OCEANOG HY
COL UNRIA DEPARTMENT ofOCEANOGRAPHY NENALEN R. T/LLAMOOK BAY SCHOOL of SCIENCE OREGON STATE UNIVERSITY S!L ETZ R. YAOU/NA R. ALSEA PROGRESS REPORT Ecological Studies of Radioactivity in the Columbia River Estuary and Adjacent Pacific Ocean OREGON STATE UNIVERSITY William O. Forster, Principal Investigator Compiled and Edited by James E. McCauley Atomic Energy Commission MarinePollution Contract AT(45-1)1750 Ecology RLO 1750-54 QSU OCEANOGRAPHY Reference 69-9 1 July 1968 through 30 June 1969 Gc Q 7 3 ECOLOGICAL STUDIES OF RADIOACTIVITY IN THE COLUMBIA Sc.C RIVER ESTUARY AND ADJACENT PACIFIC OCEAN Compiled and Edited by James E. McCauley Principal Investigator:William O. Forster Co-investigators: Andrew G. Carey, Jr, James E. McCauley William G. Pearcy William C. Renfro Department of Oceanography Oregon State University Corvallis, Oregon 97331 PROGRESS REPORT 1 July 1968 through 30 June 1969 Submitted to U.S. Atomic Energy Commission Contract AT(45-1)1750 Reference 69-9 RLO 1750-54 July 19 69 Marine PollutionEcology OSU OCEANOGRAPHY STAFF William O. Forster, Ph.D. Principal Investigator Assistant Professor of Oceanography Andrew G. Carey, Jr., Ph.D. Co-Investigator Assistant Professor of Oceanography Benthic Ecology James E. McCauley,Ph. D. Co-Investigator Associate Professor of Oceanography BenthicEcology William G. Pearcy,Ph. D. Co-Investigator Associate Professor of Oceanography Nekton Ecology William C. Renfro, Ph.D. Co-Investigator Assistant Professor of Oceanography Radioecology Frances Bruce, B. S. Benthic Ecology Rodney J. Eagle, B. S. Nekton Ecology John Ellison, B. S. Radiochemistry Norman Farrow Instrument Technician Peter Kalk, B. S. Nekton Ecology Michael Kyte, B. -
Amphipoda Key to Amphipoda Gammaridea
GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K. -
Scaled Polychaetes
Scaled Polychaetes (Polynoidae) Associated with Ophiuroids and Other Invertebrates and Review of Species Referred to Malmgrenia Mclntosh and Replaced by Malmgreniella Hartman, with Descriptions of New Taxa MARIAN H. PETTIBONE I SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 538 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs'submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
2020 Interim Receiving Waters Monitoring Report
POINT LOMA OCEAN OUTFALL MONTHLY RECEIVING WATERS INTERIM RECEIVING WATERS MONITORING REPORT FOR THE POINTM ONITORINGLOMA AND SOUTH R EPORTBAY OCEAN OUTFALLS POINT LOMA 2020 WASTEWATER TREATMENT PLANT NPDES Permit No. CA0107409 SDRWQCB Order No. R9-2017-0007 APRIL 2021 Environmental Monitoring and Technical Services 2392 Kincaid Road x Mail Station 45A x San Diego, CA 92101 Tel (619) 758-2300 Fax (619) 758-2309 INTERIM RECEIVING WATERS MONITORING REPORT FOR THE POINT LOMA AND SOUTH BAY OCEAN OUTFALLS 2020 POINT LOMA WASTEWATER TREATMENT PLANT (ORDER NO. R9-2017-0007; NPDES NO. CA0107409) SOUTH BAY WATER RECLAMATION PLANT (ORDER NO. R9-2013-0006 AS AMENDED; NPDES NO. CA0109045) SOUTH BAY INTERNATIONAL WASTEWATER TREATMENT PLANT (ORDER NO. R9-2014-0009 AS AMENDED; NPDES NO. CA0108928) Prepared by: City of San Diego Ocean Monitoring Program Environmental Monitoring & Technical Services Division Ryan Kempster, Editor Ami Latker, Editor June 2021 Table of Contents Production Credits and Acknowledgements ...........................................................................ii Executive Summary ...................................................................................................................1 A. Latker, R. Kempster Chapter 1. General Introduction ............................................................................................3 A. Latker, R. Kempster Chapter 2. Water Quality .......................................................................................................15 S. Jaeger, A. Webb, R. Kempster, -
Oceanography
Department of OCEANOGRAPHY PROGRESS REPORT Ecological Studies of Radioactivity in the Columbia River Estuary and Adjacent Pacific Ocean Norman Cutshall, SCHOOL OF SCIENCE Principal Investigator Compiled and Edited by James E. McCauley Atomic Energy Commission Contract AT(45-1) 2227 Task Agreement 12 OREGON STATE UNIVERSITY RLO 2227-T12-10 Reference 71-18 1 July 1970 through 30 June 1971 ECOLOGICALSTUDIESOF RADIOACTIVITYIN THE COLUMBIA RIVER ESTUARY AND ADJACENTPACIFIC OCEAN Compiled andEdited by James E. McCauley Principal Investigator: NormanCutshall Co-investigators: Andrew G. Carey, Jr. James E. McCauley William G. Pearcy William C. Renfro William 0. Forster Department of Oceanography Oregon State University Corvallis, Oregon 97331 PROGRESS REPORT 1 July 1970 through 30 June 1971 Submitted to U.S. Atomic Energy Commission ContractAT(45-1)2227 Reference 71-18 RLO 2227-T-12-10 July 1971 ACKNOWLEDGMENTS A major expense in oceanographic research is "time at sea." Operations on the R/V YAQUINA, R/V CAYUSE, R/V PAIUTE, AND R/V SACAJEWEA were funded by several agencies, with the bulk coming from the National Science Founda- tion and Office of Naval Research. Certain special cruises of radiochemical or radioecological import were funded by the Atomic Energy Commission, as was much of the equipment for radioanalysis and stable element analysis. Support for student research, plussome of the gamma ray spectometry facilities, were provided by the Federal Water Quality Administration. We gratefully acknowledge the role of these agencies insupport of the research reported in the following pages. We also wish to express our thanks to the numerous students and staff who contributed to the preparation of thisprogress report. -
Settlement and Metamorphosis in the Echiura: a Review
Copyright 1978 by Elsevier/North-Holland Biomedical Press Chia/Rice, eds. Settlement and Metamorphosis of Marine Invertebrate Larvae. SETTLEMENT AND METAMORPHOSIS IN THE ECHIURA: A REVIEW John Pilger Smithsonian Institution, Fort Pierce Bureau, Route 1, Box 194-C, Fort Pierce, Florida 33450 Two types of settlement and metamorphosis are distinguished. Males of the family Bonellidae have specialized attachment structures used during settlement; they undergo an abbreviated, neotenic metamorphosis. Information on settlement of echiurans other than bon ell ids is limited. Metamorphosis of the trochophore proceeds through the loss of trochal bands and protonephridia, as well as the transformation of the gastrointestinal valve and the pre- and posttrochallobes into adult structures. The phenomenon of sex determination in the Bonellidae is reviewed. INTRODUCTION Echiurans occur in benthic habitats in shallow subtidal to hadal ocean depths1 and in some areas, they represent a significant component of the benthic community.2,3 Filter feeding spe cies such as Urechis caupo are important in their ability to direct planktonic energy to the marine benthos.4 Most echiurans feed on the nutrients in deposited sediments and thus playa major role in recycling energy in benthic communitit:s.5 The Echiura are suitable subjects for the study of reproduction and development.6 Early workers described the development of species in the genera Echiurus,7,8 Bonellia9,10,1l and Lissomyema (as Thalassema).12 The detailed work of Newby 13 ,14 on Urechis caupo added to the knowledge of echiuran development. Recent investigations have dealt primarily with the cyto logical, ultrastructural, and biochemical aspects of gametogenesis (see Gould-Somerol5 for a re view). -
Advanced Deployable System Environmental Assessment
Department of the Navy ENVIRONMENTAL ASSESSMENT PLOYA D DE BLE CE SY N S A T V E D M A Advanced Deployable System Ocean Tests Program Definition and Risk Reduction Phase October 1998 FA C L I LI N A T WEST DI ND AVA V I E H VI A L A UT SI S O O N S N W A ★ ★ E E R C R F N N A A T P A D E E R C G S V H N R E A T N E A O I L ★ W L O O N N M P F G A Y A E M SE E C O C I E L C FOR R IT G S D E I N Y N I C ES RI ST A N I ENGINEE EMS COMM G S E R V ENVIRONMENTAL ASSESSMENT ADVANCED DEPLOYABLE SYSTEM OCEAN TESTS PROGRAM DEFINITION AND RISK REDUCTION PHASE Prepared for: Space and Naval Warfare Systems Command 4301 Pacific Highway (OT1) San Diego, California 92110-3127 Program Point of Contact: CDR Kevin Delaney (619) 524-7248 Prepared by: Southwest Division Naval Facilities Engineering Command 1220 Pacific Highway San Diego, California 92132-5178 NEPA Point of Contact: Shawn Hynes (805) 982-1170 Date: October 1998 ABSTRACT This Environmental Assessment (EA)/Overseas Environmental Assessment (OEA) addresses potential impacts associated with four ocean tests of the Advanced Deployable System (ADS), a passive acoustic undersea surveillance system program sponsored by the Chief of Naval Operations (CNO) and managed by the Space and Naval Warfare Systems Command (SPAWAR). -
Marine Ecology Progress Series 523:1
Vol. 523: 1–14, 2015 MARINE ECOLOGY PROGRESS SERIES Published March 16 doi: 10.3354/meps11239 Mar Ecol Prog Ser FREEREE FEATURE ARTICLE ACCESSCCESS Megabenthic assemblage structure on three New Zealand seamounts: implications for seafloor massive sulfide mining R. E. Boschen1,2,*, A. A. Rowden1, M. R. Clark1, S. J. Barton1,3, A. Pallentin1, J. P. A. Gardner2 1National Institute for Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand 2School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand 3School of Geography, Environment and Earth Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand ABSTRACT: Seamounts are recognized for their bio- logical importance and, more recently, mineral wealth. However, in most cases the biological infor- mation required to assess the risk to seamount assem- blages from mining is lacking. This study uses towed video footage and environmental data to investigate the patterns of megafaunal distribution, assemblage structure and association with environmental vari- ables, both within and amongst 3 seamounts along the Kermadec volcanic arc in the New Zealand Exclu- sive Economic Zone. These seamounts represent dif- ferent levels of hydrothermal activity, with an over- lapping depth range: Rumble II East has no history of hydrothermal activity, Brothers is hydrothermally ac- tive and Rumble II West is predominantly inactive. All An assemblage including corals, crinoids, ascidians and 3 seamounts fall within an area previously licenced brittlestars on Rumble II West seamount, in the vicinity of for the prospecting phase of seafloor massive sulfide SMS deposits. Image: NIWA (SMS) mining. In total, 186 putative taxa were identi- fied from video samples and assigned to 20 assem- blages.