Settlement and Metamorphosis in the Echiura: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Number of Living Species in Australia and the World
Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure. -
Zootaxa: Systematics of the Genus Scleroplax Rathbun, 1893
Zootaxa 1344: 33–41 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1344 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Systematics of the genus Scleroplax Rathbun, 1893 (Crustacea: Brachyura: Pinnotheridae) ERNESTO CAMPOS Facultad de Ciencias, Universidad Autónoma de Baja California, Apartado Postal 2300, Ensenada, Baja California, 22800 México. E-mail: [email protected]; [email protected] Abstract The taxonomic status of the monotypic genus Scleroplax Rathbun, 1893, is evaluated and separated from other genera of the Pinnixa White, 1846, complex. Distinguishing characters of Scleroplax are a hard, subheptagonal and dorsally, highly convex carapace, and a third maxilliped with a propodus that extends to the end of the dactylus. The genera Scleroplax, Pinnixa, Austinixa Heard & Manning, 1997, Glassella Campos & Wicksten, 1997, Indopinnixa Manning & Morton, 1987, and Tetrias Rathbun, 1898, share a carapace than is wider than long and a distinct lateral exopod lobe on the third maxilliped, all of which may represent monophyletic characters. Updated information on the distribution and hosts of S. granulata Rathbun, 1893, indicate that the species now ranges from Vancouver Island, British Columbia, Canada to El Coyote estuary, Punta Abreojos, Baja California Sur, México. It inhabits burrows of the echiuroid Urechis caupo Fisher & MacGinitie, 1928, and the mud shrimps Neotrypaea californiensis (Dana, 1854), N. gigas (Dana, 1852) (new host record), Upogebia pugettensis (Dana, 1852), and occasionally U. macginiteorum Williams, 1986 (new host record). Key words: Crustacea, Brachyura, Pinnotheridae, Scleroplax, systematics, geographic distribution, new hosts Resumen El estatus taxonómico del género monotípico Scleroplax Rathbun, 1893, es evaluado y separado de otros géneros del complejo Pinnixa White, 1846. -
Molecular Phylogeny of Echiuran Worms (Phylum: Annelida) Reveals Evolutionary Pattern of Feeding Mode and Sexual Dimorphism
Molecular Phylogeny of Echiuran Worms (Phylum: Annelida) Reveals Evolutionary Pattern of Feeding Mode and Sexual Dimorphism Ryutaro Goto1,2*, Tomoko Okamoto2, Hiroshi Ishikawa3, Yoichi Hamamura4, Makoto Kato2 1 Department of Marine Ecosystem Dynamics, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan, 2 Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan, 3 Uwajima, Ehime, Japan, 4 Kure, Hiroshima, Japan Abstract The Echiura, or spoon worms, are a group of marine worms, most of which live in burrows in soft sediments. This annelid- like animal group was once considered as a separate phylum because of the absence of segmentation, although recent molecular analyses have placed it within the annelids. In this study, we elucidate the interfamily relationships of echiuran worms and their evolutionary pattern of feeding mode and sexual dimorphism, by performing molecular phylogenetic analyses using four genes (18S, 28S, H3, and COI) of representatives of all extant echiuran families. Our results suggest that Echiura is monophyletic and comprises two unexpected groups: [Echiuridae+Urechidae+Thalassematidae] and [Bone- lliidae+Ikedidae]. This grouping agrees with the presence/absence of marked sexual dimorphism involving dwarf males and the paired/non-paired configuration of the gonoducts (genital sacs). Furthermore, the data supports the sister group relationship of Echiuridae and Urechidae. These two families share the character of having anal chaetae rings around the posterior trunk as a synapomorphy. The analyses also suggest that deposit feeding is a basal feeding mode in echiurans and that filter feeding originated once in the common ancestor of Urechidae. Overall, our results contradict the currently accepted order-level classification, especially in that Echiuroinea is polyphyletic, and provide novel insights into the evolution of echiuran worms. -
Section 3.5 Marine Biology
3.5 MARINE BIOLOGY 3.5.1 Introduction 3.5.1.1 Definition of Resource For purposes of this EIS/OEIS, marine biological resources are defined as marine flora and fauna and habitats that they occupy, occurring within the Point Mugu Sea Range, Mugu Lagoon, and the intertidal and nearshore environment of San Nicolas Island and Point Mugu. This section specifically addresses marine invertebrates and flora. Fish and sea turtles are addressed in Section 3.6, marine mammals are addressed in Section 3.7, and seabirds are addressed in Section 3.8. Threatened and endangered species, as defined by the U.S. Fish and Wildlife Service (USFWS), are also addressed. Species that are federally listed are afforded a degree of regulatory protection, which entails a permitting process including specific mitigation measures for any allowable (incidental) impacts on the species. Species that are proposed to be listed by the USFWS are treated similarly to listed species by that agency; recommendations of the USFWS, however, are advisory rather than mandatory in the case of proposed species. A federally listed endangered species is defined as any species, including subspecies, that is “in danger of extinction throughout all or a significant portion of its range.” A federally listed threatened species is defined as any species “likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.” “Proposed” endangered or threatened species are those species for which a proposed regulation has been published in the Federal Register, but a final rule has not yet been issued. 3.5.1.2 Regional Setting The Sea Range straddles the ocean off Point Conception which is considered a major geographic feature that affects marine biological diversity. -
Appendix 1. Bodega Marine Lab Student Reports on Polychaete Biology
Appendix 1. Bodega Marine Lab student reports on polychaete biology. Species names in reports were assigned to currently accepted names. Thus, Ackerman (1976) reported Eupolymnia crescentis, which was recorded as Eupolymnia heterobranchia in spreadsheets of current species (spreadsheets 2-5). Ackerman, Peter. 1976. The influence of substrate upon the importance of tentacular regeneration in the terebellid polychaete EUPOLYMNIA CRESCENTIS with reference to another terebellid polychaete NEOAMPHITRITE ROBUSTA in regard to its respiratory response. Student Report, Bodega Marine Lab, Library. IDS 100 ∗ Eupolymnia heterobranchia (Johnson, 1901) reported as Eupolymnia crescentis Chamberlin, 1919 changed per Lights 2007. Alex, Dan. 1972. A settling survey of Mason's Marina. Student Report, Bodega Marine Lab, Library. Zoology 157 Alexander, David. 1976. Effects of temperature and other factors on the distribution of LUMBRINERIS ZONATA in the substratum (Annelida: polychaeta). Student Report, Bodega Marine Lab, Library. IDS 100 Amrein, Yost. 1949. The holdfast fauna of MACROSYSTIS INTEGRIFOLIA. Student Report, Bodega Marine Lab, Library. Zoology 112 ∗ Platynereis bicanaliculata (Baird, 1863) reported as Platynereis agassizi Okuda & Yamada, 1954. Changed per Lights 1954 (2nd edition). ∗ Naineris dendritica (Kinberg, 1867) reported as Nanereis laevigata (Grube, 1855) (should be: Naineris laevigata). N. laevigata not in Hartman 1969 or Lights 2007. N. dendritica taken as synonymous with N. laevigata. ∗ Hydroides uncinatus Fauvel, 1927 correct per I.T.I.S. although Hartman 1969 reports Hydroides changing to Eupomatus. Lights 2007 has changed Eupomatus to Hydroides. ∗ Dorvillea moniloceras (Moore, 1909) reported as Stauronereis moniloceras (Moore, 1909). (Stauronereis to Dorvillea per Hartman 1968). ∗ Amrein reported Stylarioides flabellata, which was not recognized by Hartman 1969, Lights 2007 or the Integrated Taxonomic Information System (I.T.I.S.). -
Intertidal Organisms of Point Reyes National Seashore
Intertidal Organisms of Point Reyes National Seashore PORIFERA: sea sponges. CRUSTACEANS: barnacles, shrimp, crabs, and allies. CNIDERIANS: sea anemones and allies. MOLLUSKS : abalones, limpets, snails, BRYOZOANS: moss animals. clams, nudibranchs, chitons, and octopi. ECHINODERMS: sea stars, sea cucumbers, MARINE WORMS: flatworms, ribbon brittle stars, sea urchins. worms, peanut worms, segmented worms. UROCHORDATES: tunicates. Genus/Species Common Name Porifera Prosuberites spp. Cork sponge Leucosolenia eleanor Calcareous sponge Leucilla nuttingi Little white sponge Aplysilla glacialis Karatose sponge Lissodendoryx spp. Skunk sponge Ophlitaspongia pennata Red star sponge Haliclona spp. Purple haliclona Leuconia heathi Sharp-spined leuconia Cliona celata Yellow-boring sponge Plocarnia karykina Red encrusting sponge Hymeniacidon spp. Yellow nipple sponge Polymastia pachymastia Polymastia Cniderians Tubularia marina Tubularia hydroid Garveia annulata Orange-colored hydroid Ovelia spp. Obelia Sertularia spp. Sertularia Abientinaria greenii Green's bushy hydroid Aglaophenia struthionides Giant ostrich-plume hydroid Aglaophenia latirostris Dainty ostrich-plume hydroid Plumularia spp. Plumularia Pleurobrachia bachei Cat's eye Polyorchis spp. Bell-shaped jellyfish Chrysaora melanaster Striped jellyfish Velella velella By-the-wind-sailor Aurelia auria Moon jelly Epiactus prolifera Proliferating anemone Anthopleura xanthogrammica Giant green anemone Anthopleura artemissia Aggregated anemone Anthopleura elegantissima Burrowing anemone Tealia lofotensis -
Unit One Introduction to Marine Invertebrates
Unit One Introduction to Marine Invertebrates Activity 1 - Live Sea Animals . .3 Activity 2- Making an Undersea World . ..6 Objectives: To help students: Touch and identify common beach creatures such as sponges, jellyfishes, anemones, worms, crabs, barnacles, shrimps, amphipods, mollusks, sea stars, sea urchins and sea cucumbers (Activity 1). Understand the meaning of “invertebrate”: a soft-bodied animal without bones (Activity 1). Talk to a diver and/or marine biologist and observe their equipment (Activity 2). Decorate the classroom like an undersea world (Activity 2). Train “animals”(paper bag puppets) for an underwater circus (Activity 2). 1 . -- ., ., -<:.y:: ,.‘. :,” ; . .* . ‘. ..* 7 .*. ‘. ---=j.‘.’ : , ’ . UNIT ONE: Introduction to Marine Invertebrates. The ideal way to approach the study of invertebrates in all their diversity is through observation of live animals. All living things can be classified as belonging to either the plant Activity 1 kingdom orthe animal kingdom. Vertebrates and invertebrates are Live Sea Animals the two major subdivisions of the animal kingdom. Vertebrates are animals with backbones: humans, horses, elephants, mice, fishes, etc. Invertebrates are animals without backbones: sponges, sea stars,insects, worms, jellyfishes. Ninety-five percent of all animal species are invertebrates. There is a great assortment of colors, shapes and sizes among invertebrates found in Alaskan waters. Lacking backbones, they have various ways of supporting their bodies. Some,such as ane- 1 mones, rely on the water itself to give them shape and support. Sponges have a support system of Background: needlelike structures, which form In teaching children about marine entwining mesh. Crabs, an biology, nothing compares in shrimps,and beach hoppers have external skeletons, or “exoskele- excitement and value to the obser- vation of living creatures. -
Symbiotic Polychaetes: Review of Known Species
Martin, D. & Britayev, T.A., 1998. Oceanogr. Mar. Biol. Ann. Rev. 36: 217-340. Symbiotic Polychaetes: Review of known species D. MARTIN (1) & T.A. BRITAYEV (2) (1) Centre d'Estudis Avançats de Blanes (CSIC), Camí de Santa Bàrbara s/n, 17300-Blanes (Girona), Spain. E-mail: [email protected] (2) A.N. Severtzov Institute of Ecology and Evolution (RAS), Laboratory of Marine Invertebrates Ecology and Morphology, Leninsky Pr. 33, 129071 Moscow, Russia. E-mail: [email protected] ABSTRACT Although there have been numerous isolated studies and reports of symbiotic relationships of polychaetes and other marine animals, the only previous attempt to provide an overview of these phenomena among the polychaetes comes from the 1950s, with no more than 70 species of symbionts being very briefly treated. Based on the available literature and on our own field observations, we compiled a list of the mentions of symbiotic polychaetes known to date. Thus, the present review includes 292 species of commensal polychaetes from 28 families involved in 713 relationships and 81 species of parasitic polychaetes from 13 families involved in 253 relationships. When possible, the main characteristic features of symbiotic polychaetes and their relationships are discussed. Among them, we include systematic account, distribution within host groups, host specificity, intra-host distribution, location on the host, infestation prevalence and intensity, and morphological, behavioural and/or physiological and reproductive adaptations. When appropriate, the possible -
Study Report for Summer 2004 Bioturbation
STUDY REPORT FOR THE SUMMER 2004 BIOTURBATION MEASUREMENT PROGRAM ON THE PALOS VERDES SHELF July 2005 Prepared for: U.S. Army Corps of Engineers Los Angeles District 915 Wilshire Boulevard Los Angeles, CA 90017 U.S. Environmental Protection Agency Region IX Superfund Division (SFD-7-1) 75 Hawthorne Street San Francisco, CA 94105 Prepared by: Science Applications International Corporation 10260 Campus Point Drive San Diego, CA 92121 SAIC Report Number 679 Study Report for the Summer 2004 Bioturbation Measurement Program Conducted on the Palos Verdes Shelf Prepared for: U.S. Army Corps of Engineers U.S. Environmental Protection Agency Los Angeles District Region IX 915 Wilshire Boulevard Superfund Division (SFD-7-1) Los Angeles, CA 90017 75 Hawthorne Street San Francisco, CA 94105 July 2005 Prepared by: Science Applications International Corporation 10260 Campus Point Drive San Diego, CA 92121 SAIC Report Number 679 TABLE OF CONTENTS LIST OF FIGURES .....................................................................................................................................iii LIST OF TABLES........................................................................................................................................v LIST OF APPENDICES..............................................................................................................................vi 1.0 INTRODUCTION ...........................................................................................................................1 2.0 METHODS ......................................................................................................................................6 -
Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J
Tropical Marine Invertebrates CAS BI 569 Phylum ANNELIDA by J. R. Finnerty Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “BILATERIA” (=TRIPLOBLASTICA) Bilateral symmetry (?) Mesoderm (triploblasty) Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA “COELOMATA” True coelom Coelomata gut cavity endoderm mesoderm coelom ectoderm [note: dorso-ventral inversion] Phylum ANNELIDA Porifera Ctenophora Cnidaria Deuterostomia Ecdysozoa Lophotrochozoa Chordata Arthropoda Annelida Hemichordata Onychophora Mollusca Echinodermata Nematoda Platyhelminthes Acoelomorpha Silicispongiae Calcispongia PROTOSTOMIA PROTOSTOMIA “first mouth” blastopore contributes to mouth ventral nerve cord The Blastopore ! Forms during gastrulation ectoderm blastocoel blastocoel endoderm gut blastoderm BLASTULA blastopore The Gut “internal, epithelium-lined cavity for the digestion and absorption of food sponges lack a gut simplest gut = blind sac (Cnidaria) blastopore gives rise to dual- function mouth/anus through-guts evolve later Protostome = blastopore contributes to the mouth Deuterostome = blastopore becomes the anus; mouth is a second opening Protostomy blastopore mouth anus Deuterostomy blastopore -
Zoology Lab Manual
General Zoology Lab Supplement Stephen W. Ziser Department of Biology Pinnacle Campus To Accompany the Zoology Lab Manual: Smith, D. G. & M. P. Schenk Exploring Zoology: A Laboratory Guide. Morton Publishing Co. for BIOL 1413 General Zoology 2017.5 Biology 1413 Introductory Zoology – Supplement to Lab Manual; Ziser 2015.12 1 General Zoology Laboratory Exercises 1. Orientation, Lab Safety, Animal Collection . 3 2. Lab Skills & Microscopy . 14 3. Animal Cells & Tissues . 15 4. Animal Organs & Organ Systems . 17 5. Animal Reproduction . 25 6. Animal Development . 27 7. Some Animal-Like Protists . 31 8. The Animal Kingdom . 33 9. Phylum Porifera (Sponges) . 47 10. Phyla Cnidaria (Jellyfish & Corals) & Ctenophora . 49 11. Phylum Platyhelminthes (Flatworms) . 52 12. Phylum Nematoda (Roundworms) . 56 13. Phyla Rotifera . 59 14. Acanthocephala, Gastrotricha & Nematomorpha . 60 15. Phylum Mollusca (Molluscs) . 67 16. Phyla Brachiopoda & Ectoprocta . 73 17. Phylum Annelida (Segmented Worms) . 74 18. Phyla Sipuncula . 78 19. Phylum Arthropoda (I): Trilobita, Myriopoda . 79 20. Phylum Arthropoda (II): Chelicerata . 81 21. Phylum Arthropods (III): Crustacea . 86 22. Phylum Arthropods (IV): Hexapoda . 90 23. Phyla Onycophora & Tardigrada . 97 24. Phylum Echinodermata (Echinoderms) . .104 25. Phyla Chaetognatha & Hemichordata . 108 26. Phylum Chordata (I): Lower Chordates & Agnatha . 109 27. Phylum Chordata (II): Chondrichthyes & Osteichthyes . 112 28. Phylum Chordata (III): Amphibia . 115 29. Phylum Chordata (IV): Reptilia . 118 30. Phylum Chordata (V): Aves . 121 31. Phylum Chordata (VI): Mammalia . 124 Lab Reports & Assignments Identifying Animal Phyla . 39 Identifying Common Freshwater Invertebrates . 42 Lab Report for Practical #1 . 43 Lab Report for Practical #2 . 62 Identification of Insect Orders . 96 Lab Report for Practical #3 . -
Determination of the Biologically Relevant Sampling Depth for Terrestrial and Aquatic Ecological Risk Assessments
EPA/600/R-15/176 ERASC-015F October 2015 DETERMINATION OF THE BIOLOGICALLY RELEVANT SAMPLING DEPTH FOR TERRESTRIAL AND AQUATIC ECOLOGICAL RISK ASSESSMENTS Ecological Risk Assessment Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH NOTICE This document has been subjected to the Agency’s peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Cover art on left-hand side is an adaptation of illustrations in two Soil Quality Information Sheets published by the USDA, Natural Resources Conservation Service in May 2001: 1) Rangeland Sheet 6, Rangeland Soil Quality—Organic Matter, and 2) Rangeland Sheet 8, Rangeland Soil Quality—Soil Biota. Cover art on right-hand side is an adaptation of an illustration from Life in the Chesapeake Bay, by Alice Jane Lippson and Robert L. Lippson, published by Johns Hopkins University Press, 2715 North Charles Street, Baltimore, MD 21218. Preferred Citation: U.S. EPA (U.S. Environmental Protection Agency). 2015. Determination of the Biologically Relevant Sampling Depth for Terrestrial and Aquatic Ecological Risk Assessments. National Center for Environmental Assessment, Ecological Risk Assessment Support Center, Cincinnati, OH. EPA/600/R-15/176. ii TABLE OF CONTENTS LIST OF TABLES ........................................................................................................................