Multiphoton Microscopy

Total Page:16

File Type:pdf, Size:1020Kb

Multiphoton Microscopy Multiphoton Microscopy A. Neumann, Y. Kuznetsova Introduction Multi-Photon Fluorescence Microscopy is a relatively novel imaging technique in cell biology. It relies on the quasi-simultaneous absorption of two or more photons (of either the same or different energy) by a molecule. With normal fluorescence microscopy, one cannot resolve deep structures within a specimen because of large depth of focus. An enhanced method, the confocal microscopy [1], allows scanning a series of thin optical `slices' through the thickness (Z-direction) of the specimen, and its three-dimensional representation can be generated and manipulated with image-processing software. But, because we are interested in observing living specimens, often at several stages during development, we run into some serious problems with normal confocal fluorescence microscopy. One of these is photobleaching of the fluorescent label (chromophore)[2]. Because the small confocal aperture blocks most of the light emitted by the tissue, including light coming from the plane of focus, the exciting laser must be very bright to allow an adequate signal-to-noise ratio. This bright light causes fluorescent dyes to fade within minutes of continuous scanning. In addition to photobleaching, phototoxicity is also a problem [3]. Excited fluorescent dye molecules generate toxic free-radicals. Thus, one must limit the scanning time or light intensity if one hopes to keep the specimen alive. The solution was: Two-Photon Microscopy. Multi-photon absorption Multi-photon absorption was predicted by Maria Göppert-Mayer in 1930 , and the proof-of-principle was performed in the 1960s using continuous-wave laser sources [2]. Now multi-photon fluorescence microscopy in cell biology uses pulsed lasers (pulse width in the range of 20 fs to 5 ps, typically ~ 100 fs) with high repetition rates (10 - 100 MHz). Two-photon confocal imaging differs from one-photon confocal imaging in a number of ways (Fig 1). Fig. 1. One and two-photon excitation. In normal fluorescence microscopy, the fluorescent molecule absorbs a photon of light of a particular wavelength (usually around 350-500 nm) [4]. This photon of light 'carries' a particular amount of energy, the shorter the wavelength, the higher the associated energy. This energy then causes an electron in the molecule to be excited from the ground state into a higher energy level. Electrons quickly decay back to the ground state by losing the energy that they absorbed, in the form of new photons of light (fluorescence). In theory, this fluorescent light should be of the same wavelength as the photons that the molecule originally absorbed. In practice, however, the electron loses a bit of energy by decaying through the vibrational ladders of the higher energy level, resulting in fluorescent light of a longer wavelength than the absorbed light. In two-photon excitation, a fluorophore can be excited from its ground state by the near-simultaneous absorption of two photons of light of half the energy of its conventional one-photon absorption band. Fluorophores such as fura-2 and indo-1, which absorb in the UV to green region (350-500 nm), can therefore be excited by an ultra-fast, mode-locked Ti:sapphire laser, emitting light in the red to near infrared region of the spectrum (700-900 nm). Absorption for one, two and three photon process is described by the following formulas correspondently: dI dI dI = −αI , = −βI 2 , = −γI 3 dz dz dz where I – intensity, α,β,γ - absorption coefficients. As far as intensity of the focused beam is reciprocal proportional to the squared beam waist: 2 z πnw2 w2 = w2 1+ , where z = 0 , λ - is wave length, z-distance from focal plane, 0 z 0 λ 0 then the absorption for one, two and three photon process has the following spatial dependence: dI 1 dI 1 dI 1 ~ − , ~ − , ~ − dz 2 2 dz (z 2 + z 2 ) 2 dz (z 2 + z 2 )3 z0 + z 0 0 Two-Photon Microscopy We see that the probability of two-photon absorption increases quadratically with illumination intensity, and to the forth power with proximity to focal plane, what essentially limiting excitation to a tiny focal volume (Fig. 2a). Also this limits both out-of-focus background excitation and provides innate confocality, since only fluorophore in the plane of the focused beam will be excited. The main difference in confocal and two-photon detection is shown on Fig. 2b. Here the confocal one-photon excitation imaging compared with two-photon imaging in scattering tissue. Due to the longer wavelength, less excitation light is lost to scattering when using two-photon excitation. Ballistic (non-scattering) and diffusing fluorescence photons can be used in the two-photon case, but only ballistic photons can be used in the confocal case [5]. So, in multi-photon excitation more fluorescence photons are detected from a focal point than from a confocal method. a) b) Fig. 2 a) Scheme of two- and one-photon excitation, b) comparison between confocal and two-photon detection Three-photon microscopy Three-photon excitation can also be used in certain circumstances [6]. In this case three photons are absorbed simultaneously, effectively tripling the excitation energy. Using this technique, UV excited fluorophores may be imaged with IR excitation. Because excitation levels are dependent on the cube of the excitation power, resolution is improved (for the same excitation wavelength) compared to two-photon excitation where there is quadratic power dependence. It is possible to select fluorophores such that multiple labeled samples by can be imaged by combination of 2- and 3 photon excitation, using a single IR excitation source (Fig. 3). Fig. 3 Combination 2-photon (red and green) and 3-photon (blue) image of C.elegans embryo Scanningless depth resolved microscopy Multiphoton microscopes offer an own mechanism for optical sectioning. Rather than rejecting out-of-focus scattering, it is practically eliminated by its nonlinear dependence on the illumination intensity. A multiphoton process, is efficient only when the peak intensity of the illuminating light is high, i.e. at the focal spot [7]. Acquisition of an image still requires, however, scanning of either the sample or the laser beam, resulting in a similar restriction of the image frame rate. Numerous methods have been developed to increase the image acquisition rate in both confocal and multiphoton microscopes. Most involve multi-point illumination and scanning in a single spatial axis. Common examples are single-axis scanning and the use of line illumination [8, 9], or rotation of a patterned disk (in confocal microscopy) [10] or a lenslet array (in multiphoton microscopy) [11, 12, 13]. The same idea was implemented using beamsplitter arrays [14, 15]. Others have used chromatic multiplexing [16]. Overall, however, image acquisition times have not been reduced significantly beyond video-rate imaging. Performing depth-resolved microscopy completely without scanning could bring image acquisition times down to the shortest limit determined by the signal level. In a simple scanningless implementation of a multiphoton microscope the sample is illuminated with a low NA [14], but this results in a complete loss of the depth resolution property. It has been suggested that wide-field illumination maintaining the depth resolution can be done by massively splitting the excitation pulse with beamsplitter arrays, so that the generated foci overlap each other spatially but are temporally delayed relative to each other [15, 17, 18]. Up to several tens of such time-separated foci have been generated using beamsplitter arrays, but massive splitting as required for scanningless microscopy has never been practically realized, and may result in difficulty of achieving uniform illumination for the many thousands of beamlets required to image a reasonably sized area. Then another method was suggested to use temporal focusing of the excitation pulse rather than spatial focusing [19]. This principle is demonstrated in Fig. 4. The frame a) depicts the standard multiphoton technique, where an ultrashort pulse is spatially focused, generating high peak intensity at the focus; the temporal profile of the pulse (i.e. the pulse duration) remains nearly unchanged as it propagates through the sample. The panel b) is an illustration of the new method. The illumination beam excites the full frame of interest in the specimen, an area greater by orders of magnitude than the diffraction limited spot of the objective lens. The depth resolution is achieved by controlling the temporal profile of the pulse, which is compressed as it propagates through the sample, reaching its peak value at the focal plane, and stretching again as it propagates beyond it. The depth-resolved multiphoton signal can now be collected from the entire illuminated frame using an imaging setup. Two major advantages this scheme are an inherent high illumination uniformity as it is directly related to the spatial uniformity of the excitation pulse, and scalability of the illuminated area. The basic principle enabling these temporal manipulations can be best understood using the setup shown schematically in Fig. 4(c,d). It consists of a thin scattering plate, sitting at the front focal plane of a telescope. A short pulse with duration τ illuminates the plate, and each point scatters the light into many directions; each point in the image plane is also illuminated for duration τ, since all light rays emerging from a single point in the object travel identical optical pathlengths and reach the image at the same time, a concept known as the Fermat principle. However, any other point P, at some distance either from the scattering plate or from the image plane is illuminated for a longer duration, dictated by the different trajectories taken by the rays reaching it. A simple geometrical optics estimation of the illumination duration at the point P shows that the time delay of the illumination due to the two paths shown in the figure is ∆t = z(cos−1(θ)−1)/c.
Recommended publications
  • Two-Photon Excitation, Fluorescence Microscopy, and Quantitative Measurement of Two-Photon Absorption Cross Sections
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Fall 12-1-2017 Two-Photon Excitation, Fluorescence Microscopy, and Quantitative Measurement of Two-Photon Absorption Cross Sections Fredrick Michael DeArmond Portland State University Let us know how access to this document benefits ouy . Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Physics Commons Recommended Citation DeArmond, Fredrick Michael, "Two-Photon Excitation, Fluorescence Microscopy, and Quantitative Measurement of Two-Photon Absorption Cross Sections" (2017). Dissertations and Theses. Paper 4036. 10.15760/etd.5920 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact [email protected]. Two-Photon Excitation, Fluorescence Microscopy, and Quantitative Measurement of Two-Photon Absorption Cross Sections by Fredrick Michael DeArmond A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Physics Dissertation Committee: Erik J. Sánchez, Chair Erik Bodegom Ralf Widenhorn Robert Strongin Portland State University 2017 ABSTRACT As optical microscopy techniques continue to improve, most notably the development of super-resolution optical microscopy which garnered the Nobel Prize in Chemistry in 2014, renewed emphasis has been placed on the development and use of fluorescence microscopy techniques. Of particular note is a renewed interest in multiphoton excitation due to a number of inherent properties of the technique including simplified optical filtering, increased sample penetration, and inherently confocal operation. With this renewed interest in multiphoton fluorescence microscopy, comes increased interest in and demand for robust non-linear fluorescent markers, and characterization of the associated tool set.
    [Show full text]
  • Replace This with the Actual Title Using All Caps
    THREE-PHOTON MICROSCOPY AT 1700 NM FOR IN VIVO IMAGING A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Nicholas Geoffrey Horton May 2015 © 2015 Nicholas Geoffrey Horton THREE-PHOTON MICROSCOPY AT 1,700 NM FOR IN VIVO IMAGING Nicholas Geoffrey Horton, Ph. D. Cornell University 2015 Multiphoton fluorescence microscopy (MPM) allows scientists to noninvasively observe structures deep within tissue. Two-photon microscopy (2PM) in the 750-1000 nm excitation region has been the standard MPM technique since its first demonstration in 1990. However, the maximum imaging depth for 2PM is limited by the signal-to-background ratio (SBR). In this dissertation, three-photon imaging at 1700 nm excitation wavelength (1700 nm 3PM) is presented. The combination of the long excitation wavelength and the higher order nonlinear excitation overcomes the SBR limitations of 2PM, enabling biological investigations to take place at greater depth within tissue. In chapter 1, tissue imaging is discussed, paying special attention to the development of laser scanning fluorescence microscopy. In chapter 2, non-invasive, high resolution, in vivo imaging of subcortical structures within an intact mouse brain using 1700 nm 3PM is presented. Vascular structures as well as red fluorescent protein (RFP)-labeled neurons within the mouse hippocampus are imaged. In chapter 3, dispersion compensation of 1700 nm 3PM is discussed. Signal generation in 3PM is proportional to the inverse-squared of the pulse width. We show that the high normal dispersion of a silicon wafer can be conveniently used to compensate the anomalous dispersion of a 1,700 nm excitation three-photon microscope.
    [Show full text]
  • Wide. Fast. Deep. Recent Advances in Multi-Photon Microscopy of in Vivo Neuronal Activity
    TechSights Wide. Fast. Deep. Recent Advances in Multi- Photon Microscopy of in vivo Neuronal Activity https://doi.org/10.1523/JNEUROSCI.1527-18.2019 Cite as: J. Neurosci 2019; 10.1523/JNEUROSCI.1527-18.2019 Received: 2 March 2019 Revised: 27 September 2019 Accepted: 27 September 2019 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2019 the authors 1 Wide. Fast. Deep. Recent Advances in Multi-Photon Microscopy of in vivo Neuronal Activity. 2 Abbreviated title: Recent Advances of in vivo Multi-Photon Microscopy 3 Jérôme Lecoq1, Natalia Orlova1, Benjamin F. Grewe2,3,4 4 1 Allen Institute for Brain Science, Seattle, USA 5 2 Institute of Neuroinformatics, UZH and ETH Zurich, Switzerland 6 3 Dept. of Electrical Engineering and Information Technology, ETH Zurich, Switzerland 7 4 Faculty of Sciences, University of Zurich, Switzerland 8 9 Corresponding author: Jérôme Lecoq, [email protected] 10 Number of pages: 24 11 Number of figures: 6 12 Number of tables: 1 13 Number of words for: 14 ● abstract: 196 15 ● introduction: 474 16 ● main text: 5066 17 Conflict of interest statement: The authors declare no competing financial interests. 18 Acknowledgments: We thank Kevin Takasaki and Peter Saggau (Allen Institute for Brain Science) for providing helpful 19 comments on the manuscript; we thank Bénédicte Rossi for providing scientific illustrations.
    [Show full text]
  • Three-Photon Tissue Imaging Using Moxifloxacin
    www.nature.com/scientificreports OPEN Three-photon tissue imaging using moxifoxacin Seunghun Lee1, Jun Ho Lee1, Taejun Wang2, Won Hyuk Jang 2, Yeoreum Yoon1, Bumju Kim2, Yong Woong Jun 3, Myoung Joon Kim4 & Ki Hean Kim1,2 Received: 14 August 2017 Moxifoxacin is an antibiotic used in clinics and has recently been used as a clinically compatible cell- Accepted: 30 May 2018 labeling agent for two-photon (2P) imaging. Although 2P imaging with moxifoxacin labeling visualized Published: xx xx xxxx cells inside tissues using enhanced fuorescence, the imaging depth was quite limited because of the relatively short excitation wavelength (<800 nm) used. In this study, the feasibility of three-photon (3P) excitation of moxifoxacin using a longer excitation wavelength and moxifoxacin-based 3P imaging were tested to increase the imaging depth. Moxifoxacin fuorescence via 3P excitation was detected at a >1000 nm excitation wavelength. After obtaining the excitation and emission spectra of moxifoxacin, moxifoxacin-based 3P imaging was applied to ex vivo mouse bladder and ex vivo mouse small intestine tissues and compared with moxifoxacin-based 2P imaging by switching the excitation wavelength of a Ti:sapphire oscillator between near 1030 and 780 nm. Both moxifoxacin-based 2P and 3P imaging visualized cellular structures in the tissues via moxifoxacin labeling, but the image contrast was better with 3P imaging than with 2P imaging at the same imaging depths. The imaging speed and imaging depth of moxifoxacin-based 3P imaging using a Ti:sapphire oscillator were limited by insufcient excitation power. Therefore, we constructed a new system for moxifoxacin-based 3P imaging using a high-energy Yb fber laser at 1030 nm and used it for in vivo deep tissue imaging of a mouse small intestine.
    [Show full text]
  • Three-Photon Fluorescence Imaging of Melanin with a Dual-Wedge Confocal Scanning System
    Three-photon fluorescence imaging of melanin with a dual-wedge confocal scanning system Yair Mega1*, Joseph Kerimo1, Joseph Robinson1, Ali Vakili1 , Nicolette Johnson1,3 and Charles DiMarzio1,2 1Department of Electrical and Computer Engineering, The Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems (Gordon-CenSSIS); 2Department of Mechanical and Industrial Engineering Northeastern University, 360 Huntington Ave, Boston, Massachusetts, 02115, USA; 3Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa, 52242, USA *Corresponding author: [email protected] ABSTRACT Confocal microscopy can be used as a practical tool in non-invasive applications in medical diagnostics and evaluation. In particular, it is being used for the early detection of skin cancer to identify pathological cellular components and, potentially, replace conventional biopsies. The detection of melanin and its spatial location and distribution plays a crucial role in the detection and evaluation of skin cancer. Our previous work has shown that the visible emission from melanin is strong and can be easily observed with a near-infrared CW laser using low power. This is due to a unique step-wise, (SW) three-photon excitation of melanin. This paper shows that the same SW, 3-photon fluorescence can also be achieved with an inexpensive, continuous-wave laser using a dual-prism scanning system. This demonstrates that the technology could be integrated into a portable confocal microscope for clinical applications. The results presented here are in agreement with images obtained with the larger and more expensive femtosecond laser system used earlier. Keywords: Confocal microscopy, Melanin, Fluorescence, Risley prism 1. INTRODUCTION Confocal microscopy, invented first in the early 1960's [1], has had many improvements and is close to becoming a preliminary diagnostic tool [2-5].
    [Show full text]
  • Advanced Optical Imaging Techniques for Neurodevelopment
    CONEUR-1240; NO. OF PAGES 8 Available online at www.sciencedirect.com Advanced optical imaging techniques for neurodevelopment 1,3 2,3 2 1 Yicong Wu , Ryan Christensen , Daniel Colo´ n-Ramos and Hari Shroff Over the past decade, developmental neuroscience has been science, that will greatly enhance the accessibility of the transformed by the widespread application of confocal and nervous system to researchers. two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable Imaging deeper imaging with increased depth, speed, and spatial resolution; In the rodent brain, structures like the hippocampus and reduced phototoxicity; and in some cases without external other deep brain areas are covered by a millimeter or more fluorescent probes. We discuss these new techniques and of tissue that scatter or absorb light, rendering them emphasize their dramatic impact on neurobiology, including relatively inaccessible to conventional optical imaging. the ability to image neurons at depths exceeding 1 mm, to Scattering of the visible excitation wavelengths used in observe neurodevelopment noninvasively throughout confocal microscopy limits the penetration depth to less embryogenesis, and to visualize neuronal processes or than 100 mm. In two-photon microscopy, two longer- structures that were previously too small or too difficult to target wavelength (usually near-infrared) excitation photons with conventional microscopy. are absorbed instead of a single photon. Since this process depends on the near-simultaneous absorption of two Addresses 1 photons, it is strongly enhanced when the excitation is Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 concentrated in time (achieved with a pulsed excitation South Drive, Bethesda, MD 20892, United States source) and in space (at the excitation focus).
    [Show full text]
  • High-Pulse-Energy Multiphoton Imaging of Neurons and Oligodendrocytes in Deep Murine Brain with a Fiber Laser
    www.nature.com/scientificreports OPEN High‑pulse‑energy multiphoton imaging of neurons and oligodendrocytes in deep murine brain with a fber laser Michael J. Redlich1,2, Brad Prall3, Edesly Canto‑Said3, Yevgeniy Busarov1, Lilit Shirinyan‑Tuka1, Arafat Meah1 & Hyungsik Lim1,2* Here we demonstrate high‑pulse‑energy multiphoton microscopy (MPM) for intravital imaging of neurons and oligodendrocytes in the murine brain. Pulses with an order of magnitude higher energy (~ 10 nJ) were employed from a ytterbium doped fber laser source at a 1‑MHz repetition rate, as compared to the standard 80‑MHz Ti:Sapphire laser. Intravital imaging was performed on mice expressing common fuorescent proteins, including green (GFP) and yellow fuorescent proteins (YFP), and TagRFPt. One ffth of the average power could be used for superior depths of MPM imaging, as compared to the Ti:Sapphire laser: A depth of ~ 860 µm was obtained by imaging the Thy1‑YFP brain in vivo with 6.5 mW, and cortical myelin as deep as 400 µm ex vivo by intrinsic third‑harmonic generation using 50 mW. The substantially higher pulse energy enables novel regimes of photophysics to be exploited for microscopic imaging. The limitation from higher order phototoxicity is also discussed. Two-photon excitation microscopy (2PM) with descanned detection has a superior depth of imaging, far exceeding that of one-photon excitation microscopy1–3. Similar gain can be attained in general for multiphoton microscopy (MPM), expanding biological investigations by light microscopy from cultured cells to fresh thick tissues. By virtue of the safety of the near-infrared (NIR) excitation4, MPM has been the primary tool for intra- vital microscopy leading to breakthrough discoveries in broad biomedical felds.
    [Show full text]
  • Two-Photon-Like Microscopy with Orders-Of-Magnitude Lower Illumination Intensity Via Two-Step fluorescence
    ARTICLE Received 28 Jan 2015 | Accepted 24 Jul 2015 | Published 3 Sep 2015 DOI: 10.1038/ncomms9184 OPEN Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence Maria Ingaramo1,*, Andrew G. York1,*, Eric J. Andrade1, Kristin Rainey1 & George H. Patterson1 We describe two-step fluorescence microscopy, a new approach to non-linear imaging based on positive reversible photoswitchable fluorescent probes. The protein Padron approximates ideal two-step fluorescent behaviour: it equilibrates to an inactive state, converts to an active state under blue light, and blue light also excites this active state to fluoresce. Both activation and excitation are linear processes, but the total fluorescent signal is quadratic, proportional to the square of the illumination dose. Here, we use Padron’s quadratic non-linearity to demonstrate the principle of two-step microscopy, similar in principle to two-photon microscopy but with orders-of-magnitude better cross-section. As with two-photon, quadratic non-linearity from two-step fluorescence improves resolution and reduces unwanted out-of-focus excitation, and is compatible with structured illumination microscopy. We also show two-step and two-photon imaging can be combined to give quartic non- linearity, further improving imaging in challenging samples. With further improvements, two- step fluorophores could replace conventional fluorophores for many imaging applications. 1 National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to A.G.Y. (email: andrew.g.york þ [email protected]). NATURE COMMUNICATIONS | 6:8184 | DOI: 10.1038/ncomms9184 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited.
    [Show full text]
  • Three Photon Microscopy Brain Imaging
    Thinkstock32 OPTICS & PHOTONICS NEWS NOVEMBER 2013 Brain Imaging with Multiphoton Microscopy Ke Wang, Nicholas G. Horton and Chris Xu As scientists seek to unravel the mysteries of the brain, they will need to delve deeper than ever before in order to image individual neurons and their processes. Multiphoton microscopy is a promising new technology for getting there. NOVEMBER 2013 OPTICS & PHOTONICS NEWS 33 he brain initiates everything we do and pro- Optical imaging is noninvasive and pro- cesses all that we experience. Yet the mystery vides the high spatial resolution necessary of the brain rivals that of the universe. In fact, to resolve individual neurons and neuronal we probably know more about the universe processes. However, acquiring images through than we do about our own brains, which significant depths of the brain is no easy task Tconsist of approximately 100 billion neurons since brain tissue is extremely heterogeneous, and 1 trillion support cells. resulting in strong scattering by the various Elucidating how the brain works is a grand tissue components. Optical imaging technol- challenge within science. It will undoubtedly ogy will be essential in addressing these help us to better understand neurological challenges, and it will feature prominently diseases such as Alzheimer’s and Parkinson’s. in U.S. President Obama’s recently announced Research in the last several decades has pro- BRAIN initiative (see sidebar on facing page). Multiphoton microscopy (MPM), which was demonstrated more than two decades Femtosecond lasers are usually ago, has dramatically extended the depth required for multi-photon microscopy penetration of high-resolution optical imaging.
    [Show full text]
  • Proceedings of Spie
    PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging Lu Wei, Xinxin Zhu, Zhixing Chen, Wei Min Lu Wei, Xinxin Zhu, Zhixing Chen, Wei Min, "Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging," Proc. SPIE 8948, Multiphoton Microscopy in the Biomedical Sciences XIV, 894825 (28 February 2014); doi: 10.1117/12.2038753 Event: SPIE BiOS, 2014, San Francisco, California, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 6/8/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging Lu Weia; Xinxin Zhua; Zhixing Chena; Wei Mina,b aDepartment of Chemistry, Columbia University, New York, NY 10027 bKavli Institute for Brain Science, Columbia University, New York, NY 10027 Abstract Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging- depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus.
    [Show full text]
  • Adaptive Optical Microscopy for Neurobiology
    Available online at www.sciencedirect.com ScienceDirect Adaptive optical microscopy for neurobiology 1 1,2 Cristina Rodrı´guez and Na Ji With the ability to correct for the aberrations introduced by objective. Additionally, the optical properties of the spec- biological specimens, adaptive optics — a method originally imen and the immersion medium need to be matched. developed for astronomical telescopes — has been applied to The latter is seldom achieved for most biological samples, optical microscopy to recover diffraction-limited imaging whose very own mixture of ingredients (e.g. water, pro- performance deep within living tissue. In particular, this teins, nuclear acids, and lipids) gives rise to spatial varia- technology has been used to improve image quality and tions in the refractive index. Such inhomogeneities provide a more accurate characterization of both structure and induce wavefront aberrations, leading to a degradation function of neurons in a variety of living organisms. Among its in the resolution and contrast of microscope images that many highlights, adaptive optical microscopy has made it further deteriorates with imaging depth. possible to image large volumes with diffraction-limited resolution in zebrafish larval brains, to resolve dendritic spines By dynamically measuring the accumulated distortion of m over 600 m deep in the mouse brain, and to more accurately light as it travels through inhomogeneous specimens, characterize the orientation tuning properties of thalamic and correcting for it using active optical components, boutons in the primary visual cortex of awake mice. adaptive optics (AO) can recover diffraction-limited per- formance deep within living systems. In the present Addresses review, we outline the fundamental concepts and meth- 1 Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, ods of adaptive optical microscopy, highlighting VA 20147, USA recent applications of this technology to neurobiology.
    [Show full text]
  • Nonlinear Magic: Multiphoton Microscopy in the Biosciences
    FOCUS ON OPTICAL IMAGING REVIEW Nonlinear magic: multiphoton microscopy in the biosciences Warren R Zipfel, Rebecca M Williams & Watt W Webb Multiphoton microscopy (MPM) has found a niche in the world of biological imaging as the best noninvasive means of fluorescence microscopy in tissue explants and living animals. Coupled with transgenic mouse models of disease and ‘smart’ genetically encoded fluorescent indicators, its use is now increasing exponentially. Properly applied, it is capable of measuring calcium transients 500 µm deep in a mouse brain, or quantifying blood flow by imaging shadows of blood cells as they race through capillaries. With the multitude of possibilities afforded by variations of nonlinear optics and localized photochemistry, it is possible to image collagen fibrils directly within tissue through nonlinear scattering, or release caged compounds in sub- femtoliter volumes. http://www.nature.com/naturebiotechnology MPM is a form of laser-scanning microscopy that uses localized ‘nonlin- Nonlinear excitation also has ‘nonimaging’uses in biological research, ear’ excitation to excite fluorescence only within a thin raster-scanned such as the three-dimensional photolysis of caged molecules in femto- plane and nowhere else. Since its first demonstration by our group over liter volumes16,53–56, diffusion measurements by multiphoton fluor- a decade ago1, MPM has been applied to a variety of imaging tasks and escence correlation spectroscopy (MP-FCS)57,58 and multiphoton has now become the technique of choice for fluorescence microscopy in fluorescence photobleaching recovery (MP-FPR or MP-FRAP)16,59–61, thick tissue and in live animals. Neuroscientists have used it to measure and detecting bimolecular interactions using multiphoton two-color calcium dynamics deep in brain slices2–11 and in live animals12–14 cross-correlation spectroscopy (MP-FCCS)62.Targeted, localized (reviewed in ref.
    [Show full text]