Superresolved Multiphoton Microscopy with Spatial Frequency-Modulated Imaging
Superresolved multiphoton microscopy with spatial frequency-modulated imaging Jeffrey J. Fielda,b,c,d,1,2, Keith A. Wernsinga,1, Scott R. Dominguea, Alyssa M. Allende Motze,f, Keith F. DeLucab,c,d, Dean H. Levif, Jennifer G. DeLucab,c,d, Michael D. Younge, Jeff A. Squiere, and Randy A. Bartelsa,c,d,g aDepartment of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523; bDepartment of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523; cMicroscope Imaging Network Foundational Core Facility, Colorado State University, Fort Collins, CO 80523; dInstitute for Genome Architecture and Function, Colorado State University, Fort Collins, CO 80523; eDepartment of Physics, Colorado School of Mines, Golden, CO 80401; fNational Renewable Energy Laboratory, Golden, CO 80401; and gSchool of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523 Edited by Rebecca R. Richards-Kortum, Rice University, Houston, TX, and approved April 19, 2016 (received for review February 23, 2016) Superresolved far-field microscopy has emerged as a powerful electronic states (19), and saturation of scattering due to surface tool for investigating the structure of objects with resolution well plasmon resonance (20, 21). below the diffraction limit of light. Nearly all superresolution Conversely, harmonic generation (HG) results in no net energy imaging techniques reported to date rely on real energy states of transfer to the contrast generating molecules. In this case, the fluorescent molecules to circumvent the diffraction limit, prevent- photokinetics are often described via virtual energy states that ing superresolved imaging with contrast mechanisms that occur drive instantaneous coherent nonlinear scattering. The application via virtual energy states, including harmonic generation (HG).
[Show full text]