Unveiling a Unique Genetic Diversity of Cultivated Coffea Arabica L. in Its Main Domestication Center: Yemen

Total Page:16

File Type:pdf, Size:1020Kb

Unveiling a Unique Genetic Diversity of Cultivated Coffea Arabica L. in Its Main Domestication Center: Yemen Genet Resour Crop Evol https://doi.org/10.1007/s10722-021-01139-y (0123456789().,-volV)( 0123456789().,-volV) RESEARCH ARTICLE Unveiling a unique genetic diversity of cultivated Coffea arabica L. in its main domestication center: Yemen C. Montagnon . A. Mahyoub . W. Solano . F. Sheibani Received: 21 July 2020 / Accepted: 15 January 2021 Ó The Author(s) 2021 Abstract Whilst it is established that almost all varieties and included no Yemen samples. Two other cultivated coffee (Coffea arabica L.) varieties origi- clusters were made up of worldwide varieties and nated in Yemen after some coffee seeds were intro- Yemen samples. We named these the Yemen Typica- duced into Yemen from neighboring Ethiopia, the Bourbon cluster and the Yemen SL-34 cluster. Finally, actual coffee genetic diversity in Yemen and its we observed one cluster that was unique to Yemen and significance to the coffee world had never been was not related to any known cultivated varieties and explored. We observed five genetic clusters. The first not even to any known Ethiopian accession: we name cluster, which we named the Ethiopian-Only (EO) this cluster the New-Yemen cluster. We discuss the cluster, was made up exclusively of the Ethiopian consequences of these findings and their potential to accessions. This cluster was clearly separated from the pave the way for further comprehensive genetic Yemen and cultivated varieties clusters, hence con- improvement projects for the identification of major firming the genetic distance between wild Ethiopian resilience/adaptation and cup quality genes that have accessions and coffee cultivated varieties around the been shaped through the domestication process of C. world. The second cluster, which we named the SL-17 arabica. cluster, was a small cluster of cultivated worldwide Keywords Coffea arabica Á Genetic diversity Á Yemen Á Domestication Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/ s10722-021-01139-y. & C. Montagnon ( ) Introduction RD2 Vision, 60 rue du Carignan, 34270 Valflaunes, France e-mail: [email protected] 12.5 million households around the world receive an income from coffee growing (Browning 2018). Coffee A. Mahyoub is mainly produced by two species:: Coffea arabica L. Qima Coffee, Asir, Sana’a, Yemen producing Arabica coffee and Coffea canephora W. Solano Pierre ex A.Froehner producing the coffee known as CATIE, Centro Agrono´mico Tropical de Investigacio´ny Conilon when produced in Brazil, and Robusta Ensen˜anza, Turrialba, Cartago 7170, Costa Rica anywhere else in the world. Arabica coffee production F. Sheibani is facing multiple challenges such as climate change Qima Coffee, 21 Warren Street, London W1T 5LT, UK 123 Genet Resour Crop Evol (Bunn et al. 2015) and serious diseases such as coffee (Alkimim et al. 2020). Scalabrin et al. (2020) demon- leaf rust caused by Hemileia vastatrix (Avelino et al. strated the recent unique polyploidization event by 2015), and Coffee Berry Disease caused by Col- sequencing the C. arabica genome using SNPs from letotrichum kahawae (Van der Vossen et al. 2015). the two sub-genomes of this tetraploid species. Whilst there is no single solution to such complex However, when the objective is fingerprinting or a challenges, the study of genetics and the breeding of genetic diversity study, the high level of polymor- improved varieties is a critical area of investigation for phism in SSRs renders it a reliable, practical and cost potential solutions. The search for genetically superior effective choice (Hodel et al. 2016). In grapes, the first quality coffee varieties has become a central issue for approach to characterize a Vitis germplasm collec- the specialty market (Montagnon et al. 2019). Unfor- tions with ten SSRs proved a high discriminating tunately, the genetic diversity of C. arabica is among capacity for grapevine varieties (Emmanuelli et al. the lowest in the cultivated crop, due to a recent single 2013). In the same study, SSRs proved as efficient as event of polyploidization (Scalabrin et al. 2020). SNPs to establish the genetic diversity of grapevine. Furthermore, the major part of this low genetic Singh et al. (2013) found that SSR markers were more diversity is found mainly in Ethiopia and to a lesser efficient than SNP markers when the objective was degree in South Sudan (Chevalier 1929; Harlan 1969; strictly the study of genetic diversity. Anthony et al. Sylvain 1958; Thomas 1942). (2002) found that 6 SSR markers were efficient to Whilst Ethiopia and South Sudan are the center of confirm the origin of cultivated C. arabica varieties, origin of C. arabica, Yemen has been its key center of spreading from Yemen after an early introduction domestication. Both historical records (de la Roque from Ethiopia. More recently, da Silva et al. (2019) 1716; Ukers 1922; Chevalier 1929; Cramer 1957; used 30 markers to efficiently discriminate between C. Haarer 1958; Meyer 1965; Koehler 2017) and past arabica varieties and three diploid Coffea species. phenotypic (Montagnon and Bouharmont 1996)or Benti et al. (2020) used 14 SSR markers to efficiently genetic studies (Lashermes et al. 1996; Anthony et al. discriminate between 40 cultivated C. arabica vari- 2002; Silvestrini et al. 2007; Pruvot-Woehl et al. 2020; eties in Ethiopia. Finally, Pruvot-Woehl et al. (2020) Scalabrin et al. 2020) indicate that all the Arabica demonstrated that a set 8 SSR markers—used in the varieties cultivated outside Ethiopia transited through present study-used to genotype 2533 samples repre- the Yemen domestication center. Still, while all the senting the largest known genetic diversity of C. previous genetic studies were using Yemeni coffee arabica was efficient in discriminating between vari- samples to check the Yemeni stop-over between eties and could be used for varietal authentication, and Ethiopia and the spread of Arabica coffee varieties hence for genetic diversity studies. to the world, none has revealed the Yemeni genetic Over the past half-decade, Qima Coffee (www. diversity. The few genetic studies focusing on Yemeni qimacoffee.com)—a coffee company working at the coffees (Al-Murish et al. 2013; Hussein et al. 2017) ground level in Yemen- has developed research indicated the genetic heterogeneity of varieties as activities in order to better understand the genetic identified by Yemeni farmers. Neither Ethiopian landscape of Yemeni coffee. A breeding population accessions nor worldwide cultivated varieties were made of 45 individuals representing various coffee included in these studies. morphotypes observed in Yemen has been gathered. Various molecular markers are available to geneti- Using this breeding population, together with Ethio- cists and breeders for genetic studies and genome pian accessions and cultivars as well as a representa- analysis, namely Single Nucleotide Polymorphism tion of the cultivated varieties worldwide, we present (SNPs) and Single Sequence Repeats (SSRs) (re- here the first global study aiming at describing the C. viewed by Adhikari et al. 2017). Genotyping by arabica coffee genetic diversity in Yemen. The main Sequencing (GBS) technique which provides thou- questions addressed in the study are as follows: What sands of SNPs for a dense coverage of the genome is is the magnitude and the structure of the genetic no doubt the ideal method to study the relationship diversity in Yemen? How does the genetic diversity of between genotype and phenotype, namely in poly- Yemen compare with the known genetic diversity of ploids (Clevenger et al. 2015). SNP’s are often used in coffee in Ethiopia and that of the cultivated C. arabica coffee for genome wide selection in C. canephora varieties worldwide? And finally, does Yemen’s 123 Genet Resour Crop Evol genetic diversity offer opportunities for genetic DNA extraction and SSR marker analysis improvement of C. arabica? All the operation of DNA extraction and SSR marker analysis were performed by the ADNiD laboratory of Material and methods the Qualtech company in the South of France (http:// www.qualtech-groupe.com/en/). Plant material Genomic DNA was extracted from approximately 20 mg of dried tissue according a homemade protocol 137 samples of C. arabica were studied. They belong with SDS buffer. DNA was then purified with to the following three categories (Table 1). magnetic bead (Agencourt AMPure XP, Beckman Coulter, Brea, California, USA) followed by elution in Ethiopian accessions (EA) Tris Edta (TE) buffer. The DNA concentration was estimated with a 72 accessions are representing the Ethiopian acces- Enspire spectrofluorimeter (Perkin Elmer) with a sions collected in 1966 and 1968 by the FAO and bisbenzimide DNA intercalator (Hoechst 33,258) Orstom survey, respectively (FAO 1968; Charrier and by comparison with known standards of DNA. 1978). Those 72 accessions were selected as they are Eight SSR primer pairs (Table 2) selected after part of the core collection defined by World Coffee Combes et al. (2000) and whose wide discrimination Research and the Centro Agrono´mico Tropical de power was confirmed by Pruvot-Woehl et al. (2020) Investigacio´n y Ensen˜anza (CATIE) in 2014 (Solano, have been used. personal communication). PCR was performed in a 15 lL final volume comprising 30 ng genomic DNA and 7.5 lLof Worldwide cultivars (WWC) 2 9 PCR buffer (Type-it Microsatellite PCR Kit, Qiagen), 1.0 lM each of forward and reverse primer 20 samples represent main cultivated varieties grown (10 lM). Amplifications were carried out in thermal worldwide outside Ethiopia. This includes Bourbon cycler (Eppendorf) programmed at 94 °C for 5 min and Typica, but also East African and Indian varieties for initial denaturation, followed by 94 °C for 30 s, that have been shown to have transited through Yemen annealing temperature depending on the primer used from Ethiopia before being introduced in all present for 30 s and 72 °C for 1 min for 35 cycles followed by coffee producing countries (reviewed in Pruvot- a final step of extension at 72 °C for 5 min.
Recommended publications
  • VOCATIONAL AGRICULTURE News and Notes
    UNIVERSITY OF ILLINOIS LIBRARY WURBANA-CHAMPAIGN ACES 3«SB WJ6 N TVjRtUW^ N&«^ Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/vocationalagricu1997univ \K&> y.yX-'-'-'-v"¥*>Yr:'?->>r^ VOCATIONAL AGRICULTURE SEP | 5 1997 try - I ihnr News and Notes Volume 56, Number 1 September, 1997 Vocational Agriculture Service ACES Information Technology and Communication Services College of Agricultural, Consumer and Environmental Sciences College of Agricultural University of Illinois at Urbana-Champaign Consumer or>d 1401 S. Maryland Drive, Urbana, IL 61801 Environmental Sconces (217) 333-3871 FAX (217) 333-0005 VOCATIONAL AGRICULTURE DATES TO REMEMBER 1997 September 1 Labor Day—University of Illinois holiday 16 ILCAE Meeting—IDOA Building, Springfield 20 State Horse Judging CDE—Blackhawk East CC, Kewanee 23-25 Farm Progress Show—Seneca, IL 29 Illinois FFA Board of Directors Meeting—Illinois FFA Center, Roanoke October 2 Moorman Mfg., Inc. /FFA Leadership Conference—Quincy (Tentative) 2-3 IACCAI Conference—Illinois Central College, East Peoria 10-11 Beginning FFA Advisors Workshop—Site TBA 11 IAVAT Board of Directors Meeting—Site TBA November 13-15 National FFA Convention—Kansas City, MO 27-28 Thanksgiving—University of Illinois holiday December 6 State Crops & Dairy Products CDE's—University of Illinois 10-14 NVATA/AVA Convention—Las Vegas, NV 24-26 Christmas—University of Illinois holiday 1998 January 1-2 New Years Break—University of Illinois holiday 9 IAVAT Board
    [Show full text]
  • Evolution and Sustainability of the Olive Production Systems
    Evolution and sustainability of the olive production systems Fernandez Escobar R., de la Rosa R., Leon L., Gomez J.A., Testi F., Orgaz M., Gil-Ribes J.A., Quesada-Moraga E., Trapero A. in Arcas N. (ed.), Arroyo López F.N. (ed.), Caballero J. (ed.), D'Andria R. (ed.), Fernández M. (ed.), Fernandez Escobar R. (ed.), Garrido A. (ed.), López-Miranda J. (ed.), Msallem M. (ed.), Parras M. (ed.), Rallo L. (ed.), Zanoli R. (ed.). Present and future of the Mediterranean olive sector Zaragoza: CIHEAM / IOC Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 106 2013 pages 11-42 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=6803 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Fernandez Escobar R., de la Rosa R., Leon L., Gomez J.A., Testi F., Orgaz M., Gil-Ribes J.A., Q uesada- Moraga E., Trapero A. Evolution and sustainability of the olive production systems. In : Arcas N. (ed.), Arroyo López F.N. (ed.), Caballero J. (ed.), D'Andria R. (ed.), Fernández M. (ed.), Fernandez
    [Show full text]
  • Sinningia Speciosa Sinningia Speciosa (Buell "Gloxinia") Hybrid (1952 Cover Image from the GLOXINIAN)
    GESNERIADS The Journal for Gesneriad Growers Vol. 61, No. 3 Third Quarter 2011 Sinningia speciosa Sinningia speciosa (Buell "Gloxinia") hybrid (1952 cover image from THE GLOXINIAN) ADVERTISERS DIRECTORY Arcadia Glasshouse ................................49 Lyndon Lyon Greenhouses, Inc.............34 Belisle's Violet House ............................45 Mrs Strep Streps.....................................45 Dave's Violets.........................................45 Out of Africa..........................................45 Green Thumb Press ................................39 Pat's Pets ................................................45 Kartuz Greenhouses ...............................52 Violet Barn.............................................33 Lauray of Salisbury ................................34 6GESNERIADS 61(3) Once Upon a Gloxinia … Suzie Larouche, Historian <[email protected]> Sixty years ago, a boy fell in love with a Gloxinia. He loved it so much that he started a group, complete with a small journal, that he called the American Gloxinia Society. The Society lived on, thrived, acquired more members, studied the Gloxinia and its relatives, gesneriads. After a while, the name of the society changed to the American Gloxinia and Gesneriad Society. The journal, THE GLOXINIAN, grew thicker and glossier. More study and research were conducted on the family, more members and chapters came in, and the name was changed again – this time to The Gesneriad Society. Nowadays, a boy who falls in love with the same plant would have to call it Sinningia speciosa. To be honest, the American Sinningia Speciosa Society does not have the same ring. So in order to talk "Gloxinia," the boy would have to talk about Gloxinia perennis, still a gesneriad, but a totally different plant. Unless, of course, he went for the common name of the spec- tacular Sinningia and decided to found The American Florist Gloxinia Society.
    [Show full text]
  • Starmaya: the First Arabica F1 Coffee Hybrid Produced Using Genetic Male Sterility
    METHODS published: 22 October 2019 doi: 10.3389/fpls.2019.01344 Starmaya: The First Arabica F1 Coffee Hybrid Produced Using Genetic Male Sterility Frédéric Georget 1,2*, Lison Marie 1,2, Edgardo Alpizar 3, Philippe Courtel 3, Mélanie Bordeaux 4, Jose Martin Hidalgo 4, Pierre Marraccini 1,2, Jean-christophe Breitler 1,2, Eveline Déchamp 1,2, Clément Poncon 3, Hervé Etienne 1,2 and Benoit Bertrand 1,2 1 CIRAD, UMR IPME, Montpellier, France, 2 IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France, 3 Plant material, ECOM, Exportadora Atlantic, Managua, Nicaragua, 4 FONDATION NICAFRANCE, Managua, Nicaragua In the present paper, we evaluated the implementation of a seed production system based on the exploitation of male sterility on coffee. We studied specifically the combination between CIR-SM01 and Marsellesa® (a Sarchimor line), which provides a hybrid population called Starmaya. We demonstrated that the establishment of seed garden under natural pollination is possible and produces a sufficient amount of hybrid seeds to be multiplied efficiently and economically. As expected for F1 hybrid, the performances of Starmaya are highly superior to conventional cultivars. However, we observed some heterogeneity on Starmaya cultivar Edited by: in the field. We confirmed by genetic marker analysis that the off-types were partly related to Marcelino Perez De La Vega, Universidad de León, Spain the heterozygosity of the CIR-SM01 clone and could not be modified. Regarding the level Reviewed by: of rust resistance of Starmaya cv., we saw that it could be improved if Marsellesa was more Aaron P. Davis, fully fixed genetically. If so, we should be able to decrease significantly the percentage of rust Royal Botanic Gardens, Kew, United Kingdom incidence of Starmaya from 15 to 5%, which would be quite acceptable at a commercial Eveline Teixeira Caixeta, level.
    [Show full text]
  • Olea Europaea L.) by Conventional and in Vitro Biotechnology Methods
    Biotechnology Advances 34 (2016) 687–696 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods E. Rugini ⁎, V. Cristofori, C. Silvestri Department of Agricultural and Forestry Science (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy article info abstract Article history: In olive (Olea europaea L.) traditional methods of genetic improvement have up to now produced limited results. Received 22 September 2015 Intensification of olive growing requires appropriate new cultivars for fully mechanized groves, but among the Received in revised form 1 March 2016 large number of the traditional varieties very few are suitable. High-density and super high-density hedge row Accepted 7 March 2016 orchards require genotypes with reduced size, reduced apical dominance, a semi-erect growth habit, easy to Available online 10 March 2016 propagate, resistant to abiotic and biotic stresses, with reliably high productivity and quality of both fruits and Keywords: oil. Innovative strategies supported by molecular and biotechnological techniques are required to speed up Olea europaea novel hybridisation methods. Among traditional approaches the Gene Pool Method seems a reasonable option, Intensive cultivation but it requires availability of widely diverse germplasm from both cultivated and wild genotypes, supported by Rootstocks a detailed knowledge of their genetic relationships. The practice of “gene therapy” for the most important Gene pool hybridization method existing cultivars, combined with conventional methods, could accelerate achievement of the main goals, but ef- In vitro techniques forts to overcome some technical and ideological obstacles are needed.
    [Show full text]
  • Identification of 205 Current Rice Cultivars in Japan by Dot-Blot-SNP Analysis
    Breeding Science 60: 447–453 (2010) doi:10.1270/jsbbs.60.447 Note Identification of 205 current rice cultivars in Japan by dot-blot-SNP analysis Hideki Sato1), Takashi Endo1,3), Sachiko Shiokai2), Takeshi Nishio2) and Masayuki Yamaguchi*1,4) 1) National Agricultural Research Center for Tohoku Region, Daisen Research Station, 3 Shimofurumichi, Yotsuya, Daisen, Akita 014- 0102, Japan 2) Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba, Sendai, Miyagi 981-8555, Japan 3) Present address: Miyagi Prefectural Furukawa Agricultural Experiment Station, 88 Fukoku Furukawa, Ousaki, Miyagi 989-6227, Japan 4) Present address: National Agricultural Research Center for Tohoku Region, 4 Akahira, Shimo-Kuriyagawa, Morioka, Iwate 020-0198, Japan Using 77 single-nucleotide polymorphic (SNP) markers and dot-blot analysis, we examined 218 rice cultivars, respectively occupying 99% and 92% of the planted areas of non-glutinous and glutinous rice for three con- secutive years from 2003 to 2005 in Japan. Among them, 205 cultivars were identified at one time by the genotypes of 18 markers, but 13 cultivars belonged to six groups in which cultivars were indistinguishable from each other. The 205 cultivars were individually distinguished from the others using combinations of up to six markers. This result was considered to be useful for the identification of Japanese commercial rice cul- tivars, monitoring the contamination of rice with other cultivars, and rice breeding using these cultivars. Key Words: rice, identification of rice cultivar, SNP, dot-blot. Introduction powerful tools for genetic analysis, since they are distributed over the rice genome at a very high frequency and the poly- As rice cultivars are discriminated by commercial brands, morphism is preserved firmly in alternate generations.
    [Show full text]
  • The European Garden Flora Flowering Plants Volume 5: Angiospermae – Dicotyledons, 2Nd Edition Edited by James Cullen , Sabina G
    Cambridge University Press 978-0-521-76164-2 — The European Garden Flora Flowering Plants Volume 5: Angiospermae – Dicotyledons, 2nd Edition Edited by James Cullen , Sabina G. Knees , H. Suzanne Cubey Frontmatter More Information THE EUROPEAN GARDEN FLORA The European Garden Flora is the definitive manual for the accurate identification of cultivated ornamental flowering plants. Designed to meet the highest scientific standards, the vocabulary has nevertheless been kept as uncomplicated as possible so that the work is fully accessible to the informed gardener as well as to the professional botanist. This new edition has been thoroughly reorganised and revised, bringing it into line with modern taxonomic knowledge. Although European in name, the Flora covers plants cultivated in most areas of the United States and Canada as well as in non- tropical parts of Asia and Australasia. Volume V completes the series, and includes many important ornamental families, such as Labiatae, Solanaceae, Scrophulariaceae, Acanthaceae, Campanulaceae, and the largest family of Dicotyledons, the Compositae. James Cullen has been a professional plant taxonomist for over 50 years, working particularly on the classification and identification of plants in cultivation (especially Rhododendron) at Liverpool and Edinburgh Universities, at the Royal Botanic Garden Edinburgh, and in Cambridge. With the late Dr S. M. Walters, he was the initiator of the first edition of The European Garden Flora and is responsible for two spin-offs, The Orchid Book (1992) and Manual of North European Garden Plants (2001). Sabina Knees is a taxonomist at the Royal Botanic Garden Edinburgh and although now working on plants of the Middle East, particularly the Flora of the Arabian Peninsula and Socotra, she spent over 20 years working as a horticultural taxonomist for the Royal Horticultural Society and the Royal Botanic Garden Edinburgh and is a founder member of the Horticultural Taxonomy Group (HORTAX).
    [Show full text]
  • For Peer Review
    Journal of the Science of Food and Agriculture Impact assessment of mechanical harvest on fruit physiology and consequences on oil physicochemical and sensorial quality from ‘Manzanilla de Sevilla’ and ‘Manzanilla Cacereña’ super-high density hedgerows. A For Peerpreliminary Review study Journal: Journal of the Science of Food and Agriculture Manuscript ID: JSFA-14-1781.R1 Wiley - Manuscript type: Research Article Date Submitted by the Author: 15-Oct-2014 Complete List of Authors: Morales-Sillero, Ana; Universidad de Sevilla, Departamento de Ciencias Agroforestales Garcia, Jose; Instituto de la Grasa, Fisiología y Tecnología de Productos Vegetales Olea europaea L, SHD orchards, grape straddle harvester, ethylene Key Words: production, oxidative stability, phenols [email protected] Page 1 of 30 Journal of the Science of Food and Agriculture 1 2 3 Impact assessment of mechanical harvest on fruit physiology and consequences on 4 5 oil physicochemical and sensorial quality from ‘Manzanilla de Sevilla’ and 6 7 ‘Manzanilla Cacereña’ super-high density hedgerows. A preliminary study 8 9 10 11 12 Running title: Impact of grape harvester on fruit physiology and oil quality from 13 14 SHD olive hedgerows 15 16 17 18 Ana Morales-Sillero,Fora José MªPeer García b* Review 19 20 * b 21 Correspondence to: José Mª García Dpto. Fisiología y Tecnología de Productos 22 23 Vegetales. Instituto de la Grasa (CSIC). Avda. Padre García Tejero 4, 41012 Sevilla, 24 25 Spain. E-mai:l [email protected] 26 27 28 29 a 30 Dpto. Ciencias Agroforestales, ETSIA, Universidad de Sevilla, Carretera de Utrera, 31 32 km 1, 41013 Sevilla, Spain. 33 34 b Dpto.
    [Show full text]
  • Pho300007 Risk Modeling and Screening for Brcai
    ?4 101111111111 PHO300007 RISK MODELING AND SCREENING FOR BRCAI MUTATIONS AMONG FILIPINO BREAST CANCER PATIENTS by ALEJANDRO Q. NAT09 JR. A Master's Thesis Submitted to the National Institute of Molecular Biology and Biotechnology College of Science University of the Philippines Diliman, Quezon City As Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN MOLECULAR BIOLOGY AND BIOTECHNOLOGY March 2003 In memory of my gelovedmother Mrs. josefina Q -Vato who passedaway while waitingfor the accomplishment of this thesis... Thankyouvery inuchfor aff the tremendous rove andsupport during the beautifil'30yearstfiatyou were udth me... Wom, you are he greatest! I fi)ve you very much! .And.. in memory of 4 collaborating 6reast cancerpatients who passedaway during te course of this study ... I e.Vress my deepest condolence to your (overtones... Tou have my heartfeligratitude! 'This tesis is dedicatedtoa(the 37 cofla6oratingpatients who aftruisticaffyjbinedthisstudyfor te sake offuture generations... iii This is to certify that this master's thesis entitled "Risk Modeling and Screening for BRCAI Mutations among Filipino Breast Cancer Patients" and submitted by Alejandro Q. Nato, Jr. to fulfill part of the requirements for the degree of Master of Science in Molecular Biology and Biotechnology was successfully defended and approved on 28 March 2003. VIRGINIA D. M Ph.D. Thesis Ad RIO SUSA B. TANAEL JR., M.Sc., M.D. Thesis Co-.A. r Thesis Reader The National Institute of Molecular Biology and Biotechnology endorses acceptance of this master's thesis as partial fulfillment of the requirements for the degree of Master of Science in Molecular Biology and Biotechnology.
    [Show full text]
  • The Weedy Rice Problem
    FAO Weedy rices – origin, PLANT PRODUCTION biology, ecology AND PROTECTION and control PAPER 188 by James C. Delouche Nilda R. Burgos David R. Gealy Gonzalo Zorrilla de San Martín and Ricardo Labrada with the collaboration of Michael Larinde and Cadmo Rosell FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2007 5IFNFOUJPOPSPNJTTJPOPGTQFDJmDDPNQBOJFT UIFJSQSPEVDUTPS CSBOEOBNFTEPFTOPUJNQMZBOZFOEPSTFNFOUPSKVEHFNFOUCZUIF 'PPEBOE"HSJDVMUVSF0SHBOJ[BUJPOPGUIF6OJUFE/BUJPOT 5IFEFTJHOBUJPOTFNQMPZFEBOEUIFQSFTFOUBUJPOPGNBUFSJBM JOUIJTJOGPSNBUJPOQSPEVDUEPOPUJNQMZUIFFYQSFTTJPOPGBOZ PQJOJPOXIBUTPFWFSPOUIFQBSUPGUIF'PPEBOE"HSJDVMUVSF 0SHBOJ[BUJPO PG UIF 6OJUFE /BUJPOT DPODFSOJOH UIF MFHBM PS EFWFMPQNFOUTUBUVTPGBOZDPVOUSZ UFSSJUPSZ DJUZPSBSFBPSPG JUTBVUIPSJUJFT PSDPODFSOJOHUIFEFMJNJUBUJPOPGJUTGSPOUJFSTPS CPVOEBSJFT *4#/ "MMSJHIUTSFTFSWFE3FQSPEVDUJPOBOEEJTTFNJOBUJPOPGNBUFSJBMJOUIJTJO GPSNBUJPOQSPEVDUGPSFEVDBUJPOBMPSPUIFSOPODPNNFSDJBMQVSQPTFTBSF BVUIPSJ[FEXJUIPVUBOZQSJPSXSJUUFOQFSNJTTJPOGSPNUIFDPQZSJHIUIPMEFST QSPWJEFEUIFTPVSDFJTGVMMZBDLOPXMFEHFE3FQSPEVDUJPOPGNBUFSJBMJOUIJT JOGPSNBUJPOQSPEVDUGPSSFTBMFPSPUIFSDPNNFSDJBMQVSQPTFTJTQSPIJCJUFE XJUIPVUXSJUUFOQFSNJTTJPOPGUIFDPQZSJHIUIPMEFST"QQMJDBUJPOTGPSTVDI QFSNJTTJPOTIPVMECFBEESFTTFEUPUIF$IJFG &MFDUSPOJD1VCMJTIJOH1PMJDZ BOE 4VQQPSU #SBODI $PNNVOJDBUJPO %JWJTJPO '"0 7JBMF EFMMF 5FSNF EJ $BSBDBMMB 3PNF *UBMZPSCZFNBJMUPDPQZSJHIU!GBPPSH ª'"0 iii Contents Acknowledgements x Preface xi List of acronyms xiii 1. Introduction 1 2. The weedy rice problem 3 What weedy rices are 3 Where weedy rices are a
    [Show full text]
  • The Coffee Machine Potent Mercantile Metaphors of the Programming Language JAVA «
    Media Culture and Cultural Techniques Working Papers N°003 2020 » The Coffee Machine Potent Mercantile Metaphors of the Programming Language JAVA « Markus Krajewski Department Arts, Media, Philosophy N° 2020.003 »The Coffee Machine: Potent Mercantile Metaphors of the Programming Language JAVA« Markus Krajewski DOI: 10.5451/unibas-ep78171 Media Culture and Cultural Techniques working papers BMCCT veröffentlicht Arbeitspapiere im Forschungsbereich des Basler Seminars für Medienwissenschaft. Die Arbeitspapiere erscheinen in unregelmässigen Abständen in deutscher und englischer Sprache. BMCCT publishes working papers in the research area of the Basel Seminar for Media Studies. The working papers appear at irregular intervals in German and English. Cite this item: The »Basel Media Culture and Cultural Concept and design: Markus Krajewski, »The Coffee Machine Techniques Working Papers« (BMCCT Mario Wimmer Potent Mercantile Metaphors of the working papers) are published by Programming Language JAVA«, BMCCT Hosted by University of Basel library’s working papers, (August 2020) No.3 Seminar für Medienwissenschaft eterna server (DOI: 10.5451/unibas-ep78171). Universität Basel Holbeinstrasse 12 4051 Basel medienwissenschaft.philhist.unibas.ch [email protected] under the creative commons licence Department https://creativecommons.org/licenses/by/ Arts, Media, Philosophy 4.0/ ISSN 2673-5792 . The Coffee Machine Potent Mercantile Metaphors of the Programming Language JAVA . Markus Krajewski Department Arts, Media, Philosophy, University of Basel, [email protected] DOI:10.5451/unibas-ep78171 »Te best Java is a very excellent coffee« (Ralph Holt Cheney, 1925) 1. Prologue The Program of History In the beginning was Green, and Green was with Sun. »And the light shines on in the darkness, but the darkness has not mastered it« (NET Bible, John 1:5).
    [Show full text]
  • EFFECT of WEEDY RICE (Oryza Sativa L.)
    EFFECT OF WEEDY RICE (Oryza sativa L.) ON THE YIELD OF CULTIVATED RICE (Oryza sativa L.) IN GREENHOUSE AND FIELD ENVIRONMENT SALMAH BINTI TAJUDDIN UNIVERSITI SAINS MALAYSIA 2014 EFFECT OF WEEDY RICE (Oryza sativa L.) ON THE YIELD OF CULTIVATED RICE (Oryza sativa L.) IN GREENHOUSE AND FIELD ENVIRONMENT by SALMAH BINTI TAJUDDIN Thesis submitted in fulfilment of the requirements for the degree of Master of Science AUGUST 2014 ACKNOWLEDGEMENTS My postgraduate (MSc) study at the Universiti Sains Malaysia (School of Biological Sciences) was a great challenge. It was made possible with the kind assistance of many individuals, either directly or indirectly, to whom I am indebted, not all of whom are mentioned in this page. First and foremost, my deepest appreciation goes to Prof. Mashhor Mansor for his strong support, unweary supervision and motivating guidance during the course of my study. In addition, I was also trained in writing scientific papers and had the opportunity to present scientific papers in seminars and conferences. Other academicians had also given support through inspirational motivations and guidance, particularly Dr. Azmi Man, Prof. Nashriyah Mat and Dr. Asyraf Mansor, my co-supervisors, to all of whom I am very grateful. I wish to thank the staff of the Malaysian Meteorological Department Pulau Pinang for providing me the necessary meteorological data needed for my thesis. The staff of MARDI (Seberang Perai) had been very helpful in my experimental work, especially En. Awang, En. Ebnil, En. Mustafa, Pn. Norhayati and Pn. Aqilah. The staff of USM for help me solve statistics analysis problems, particularly Dr.
    [Show full text]