Breeding Science 60: 447–453 (2010) doi:10.1270/jsbbs.60.447

Note

Identification of 205 current in Japan by dot-blot-SNP analysis

Hideki Sato1), Takashi Endo1,3), Sachiko Shiokai2), Takeshi Nishio2) and Masayuki Yamaguchi*1,4)

1) National Agricultural Research Center for Tohoku Region, Daisen Research Station, 3 Shimofurumichi, Yotsuya, Daisen, Akita 014- 0102, Japan 2) Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba, Sendai, Miyagi 981-8555, Japan 3) Present address: Miyagi Prefectural Furukawa Agricultural Experiment Station, 88 Fukoku Furukawa, Ousaki, Miyagi 989-6227, Japan 4) Present address: National Agricultural Research Center for Tohoku Region, 4 Akahira, Shimo-Kuriyagawa, Morioka, Iwate 020-0198, Japan

Using 77 single-nucleotide polymorphic (SNP) markers and dot-blot analysis, we examined 218 rice cultivars, respectively occupying 99% and 92% of the planted areas of non-glutinous and for three con- secutive years from 2003 to 2005 in Japan. Among them, 205 cultivars were identified at one time by the genotypes of 18 markers, but 13 cultivars belonged to six groups in which cultivars were indistinguishable from each other. The 205 cultivars were individually distinguished from the others using combinations of up to six markers. This result was considered to be useful for the identification of Japanese commercial rice cul- tivars, monitoring the contamination of rice with other cultivars, and rice breeding using these cultivars.

Key Words: rice, identification of rice , SNP, dot-blot.

Introduction powerful tools for genetic analysis, since they are distributed over the rice genome at a very high frequency and the poly- As rice cultivars are discriminated by commercial brands, morphism is preserved firmly in alternate generations. Various and the demand for cultivar identification has increased in methods have been used to detect SNPs: DNA sequencing order to prevent rice seed contamination, reports on the iden- (Kwok et al. 1994), MALDI-TOF mass spectrometry (Haff tification of rice cultivars using DNA markers have become and Smirnov 1997), denaturing capillary electrophoresis more common (Akagi 2000, Ogasawara and Takahashi (Wenz et al. 1998), cleaved amplified polymorphic sequence 2000, Shinmura et al. 2005). Although genetic polymor- (CAPS) analysis using mismatched polymerase chain reac- phism between japonica and indica rice cultivars is easily tion (PCR) primers (Michaels and Amasino 1998), single- detected at a high frequency by DNA markers, the frequency strand conformation polymorphism (SSCP) analysis (Gonen among japonica cultivars is very low (Kono et al. 2000). Ac- et al. 1999, Kozlowski and Krzyzosiak 2001, Tahira et al. cording to the genealogy of current rice cultivars, many were 2002), allele-specific PCR by 3′ locked nucleic acid primer derived from crossing with cultivar ‘’, which is (Latorra et al. 2003), mismatch cleavage analysis using var- the most popular and the most-grown cultivar in Japan. ious nucleases (Till et al. 2004), and microarray technology ‘Hitomebore’, ‘Akitakomachi’ and ‘Hinohikari’ which are (Wang et al. 2005). Among them, dot-blot analysis can de- derived from crossing with ‘Koshihikari’, and are the second, tect SNPs at relatively low initial investment. After PCR, the third and fourth most-grown in Japan, are reported to exhibit process requires an incubator, which is standard equipment 80.8%, 80.0% and 61.3% of the ‘Koshihikari’ genome, re- in most laboratories. The dot-blot method is more effective spectively (Yamamoto et al. 2010). Therefore, it was as- when treating a large number of samples. Furthermore, since sumed that many of the cultivars were closely related to this method is conducted via specific PCR and hybridiza- each other, and thus difficult to be distinguished. Single- tion, it possesses higher reliability. nucleotide polymorphism (SNP) markers are considered Polymorphisms used to be difficult to detect with dot-blot analysis using SNP markers (hereafter referred to as “dot- Communicated by M. Yano blot-SNP analysis”) because of mismatch hybridization of Received August 10, 2010. Accepted October 14, 2010. the oligonucleotides used as probes. However, this problem *Corresponding author (e-mail: [email protected]) was effectively mitigated by the addition of competitive 448 Sato, Endo, Shiokai, Nishio and Yamaguchi oligonucleotides in the hybridization mixture (Shirasawa et tinous): ‘Koshihikari’-‘Yumegokochi’-‘Saga1’, ‘Hinohikari’- al. 2006). In this way, the identification of a single nucle- ‘Morinokumasan’, ‘Hitomebore’-‘Satonouta’, ‘Dewasansan’- otide substitution, insertion or deletion has become possible, ‘Ginginga’, ‘Koganemochi’-‘Miyakoganemochi’ and and this method is considered to be useful for genetic analy- ‘Shigahabutae-mochi’-‘Shin-habutaemochi’. Although sis. In this study, we used dot-blot-SNP analysis to identify ‘Satonouta’ was distinguished from ‘Hitomebore’ by head- the non-glutinous and glutinous rice cultivars that are grown ing date and ‘Saga1’ had significantly shorter culm length almost all rice fields in Japan. than ‘Koshihikari’-‘Yumegokochi’, we were unable to dis- tinguish cultivars in the other four groups by observation in Rice cultivars the field (data not shown). This study used 172 non-glutinous and 46 glutinous rice cultivars, planted on over 50 ha in Japan. These cultivars Specification of one rice cultivar from others were chosen from the compiled in 2003 We also determined the smallest number of SNP markers by the General Food Policy Bureau of the Ministry of Agri- that are needed to distinguish a certain rice cultivar from culture, Forestry and Fisheries. The rice cultivars used in others. Using five markers, all of the cultivars were distin- this study respectively occupied 99% and 92% of the planted guished from the others used in this study, except for the cul- areas of non-glutinous and glutinous rice over three consec- tivar ‘Hitomebore’, which required six markers. utive years from 2003 to 2005 in Japan. Table 2 shows an example of the identification of the cul- tivar ‘Akitakomachi’. Only ‘Akitakomachi’ represents a PCR and dot-blot analyses using SNP markers variant type in the five SNP markers, R2382, S3010, Genomic DNA of the 218 cultivars was extracted from C30024, S13781 and NK10. Only one SNP marker was fresh rice leaves according to Thomson and Henry (1995) needed to identify each of the cultivars ‘Milky queen’, and used for PCR as described below. DNA fragments in- ‘Shintaishomochi’ and ‘Takasagomochi’: namely, Wx-mq, cluding SNPs were amplified by PCR. The PCR primers and S10045 and Ehd1, respectively. Thus, the results of dot-blot probes are listed in Supplemental Table 1. Most of the dot- analysis can confirm whether a picked cultivar is truly the blot analysis procedures were conducted according to specified one; we were able to distinguish one cultivar from Shirasawa et al. (2006). Ten microliters of the PCR reaction the others using a small number of SNP markers. mixture contained 2 × Green GoTaq® DNA polymerase Yamamoto et al. (2010) applied large amounts of SNPs (Promega KK, USA), 0.2 μM of primer and 10–100 ng of found between ‘Koshihikari’ and ‘Nipponbare’ to 151 repre- DNA. PCR was conducted as follows: 1-min pre-denaturation sentative Japanese cultivars grown during the past 150 years at 94°C; 40 cycles of 30-sec denaturation at 94°C, 30-sec and revealed the dynamics of the genome composition. In annealing at 58°C, 30-sec extension at 72°C, and 1-min final the present study, we used 218 current cultivars that were extension at 72°C. The PCR products were alkali-denatured grown in almost all rice fields in Japan in 2003–5, and could with 8.4 μl of 25 mM EDTA and 1.6 μl of 5 N NaOH, and identify 205 cultivars by 77 SNP markers. This result will be dot-blotted on a nylon membrane using a Multi-pin Blotter useful as a dataset for the discrimination of Japanese com- (ATTO Corporation, Japan). The hybridization temperature, mercial rice cultivars, monitoring the contamination of rice washing temperature, and concentration of the washing with other cultivars in Japan, and rice breeding involving buffer are shown in Supplemental Table 1. DIG- or biotin- crosses of the rice cultivars examined in this study. labeled probes were detected by a chemiluminescent reac- tion following the protocol provided by Roche Diagnostics Acknowledgments K. K. (Switzerland). We are grateful to the National Institute of Agrobiological Rice cultivar identification by dot-blot-SNP analysis Sciences Genebank, National and Prefectural Agricultural Using 77 previously developed SNP markers (Shiokai et Research Centers and Agricultural Experiment Stations, al. 2010, Shirasawa et al. 2006), we examined 218 rice cul- Japan Tobacco Inc., Nakajima Yoshio Shoten Co., Ltd. and tivars (172 non-glutinous and 46 glutinous rice cultivars) by Mr. Jiro Ozeki for providing seeds of the rice cultivars. This dot-blot analysis (Supplemental Table 2). Out of the 218 work was supported in part by the Research Project for Uti- total cultivars, 205 were distinguishable using the 77 SNP lizing Advanced Technologies in Agriculture, Forestry, and markers. The 18 markers shown in Table 1 were the lowest Fisheries. number necessary to distinguish all 205 cultivars from each other at one time. Among non-glutinous and glutinous culti- vars, the smallest numbers of markers needed for the identi- fication at one time were 18 and 8, respectively (data not shown). As the number of available SNP markers grows, the required number of markers is expected to decrease. The 13 cultivars that were indistinguishable individually were divided into six groups (four non-glutinous and two glu- Rice identification by dot-blot-SNP analysis 449

Table 1. Identification of non-glutinous and glutinous rice cultivar by dot-blot-SNP analysis

Marker Aichinokaori Ainoyume Ajikodama Akanezora Akebono Akibare Akigeshiki Akihikari Akiho Akinishiki Akinouta Akiroman Akisayaka Akita39 Akitakomachi Akitsuho Anekomochi Aoinokaze Asahi Asahinoyume Asanohikari Awaminori Aya Ayahime Ayumimochi Banbanzai Biwaminori Chiyonishiki Daichinokaze Dewahikari Dewanomochi Dewasansan 1) Domannaka Dontokoi Fujinomai Fukuhikari Fukumirai Fukunohana Ginginga 1) Ginnosei Gin-otome Gin-oumi Ginpu Gohyakumangoku S0063 N N VNNVNV V VNV V V VNNNNVNNNVNVNVNV V VNVNNVNVNNNV V R0655 N VNNNNNNNNNVNNNVNNVNNNNNNNVNNNNVNNNNNV VNVNV V S10844 V V VNNVNNNNNV VNNNNNNV VNNNV V V V V VNVNVNNV V V V VNNV S13818 VNVNVNNNNNVNNNNNNVNVNNNNNVNVNNVNVNNNVNNNNNNV R2702 N N V V V VNVNVNV V V VNNNNVNVNNNNV VNVNV V V VNV V V V VNNV C12409 N N VNNVNVNNV V V V VNNVNNNNNNNVNV V V VNV VNNVNNNVNV V S0651 N V V V VNVNNNNVNVNNV VNV VNNV V VNV VNNNNVNNVNNV VNNN S3010 N N V V VNNV V V VNV V VNNNNVNNNV VNNNNVNNNVNVNVNVNNV V E20943 N N VNVNNVNNNNNVNNVNNNNNNNNNNNNV V VNVNNNNVNVNNV Wx-mq NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN R1744 NNNNNNNVNNNNNNNNVNNNNVNNNNNNNNV V V VNVNNV VNNNV NK10 N V VNNNVNV V VNNNVNVNNNNNV VNNNVNNNV VNNV VNVNNNV V S2092 N VNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNVNNNNNNN E20920 N N VNNNNV V VNNNNNNV VNNNVNNVNNNNNNVNVNNNNVNNNNV S20045 NNNNNNNVNNNNNNNNNNNNNNNNNNNNNNV VNNNNNNVNNNNN C52909 N N VNNV V VNNNNNV VNVNNNVNNNV VNVNV V V VNNV VNVNNNVN R2382 N VNNNVNNVNNNV V V VNNNNNNNNNV V VNV VNVNNVNNNNVNNN S723(Pb1) N N N VNNNNVNVNNNNNNVNV VNNV V VNNVNVNNNVNNNNNNV VN

Marker Goropikari Gunmamochi5 Haenuki Hakuchoumochi Hakutomochi Hanaechizen Hanafubuki Hananomai Hanasatsuma Harimamochi Haruru Hatajirushi Hatsuboshi Hatsushimo Hattan Hattannishiki1 Hattannishiki2 Heiseimochi Hidahomare Hidekomochi Higonohana Himenomochi Himikomochi Hinohikari 2) Hitogokochi Hitomebore 3) Hiyokumochi Hohoemi Hohohonoho Horei Hoshinoyume Hoshitaro Husaotome Hyogokitanishiki Hyogoyumenishiki Ishikawamochi24 Itadaki Iwai Iwata11 Iwata3 Iwatekko Jugoyamochi Kaguramochi Kaguyamochi S0063 N N VNNV V V VNV V VNVNNNNNVNNNV VNVNV V V VNNNV V VNVNV V R0655 N N N V VNNNV V VNNNNV VNVNVNNNVNVNNV VNNV VNNVNNNV VN S10844 VNNNNNNNNVNV VNNVNNVNVNVNV VNVNNV V V VNNVNNNVNNN S13818 NNNNNNNVNNV VNVNNNNNNNNNNVNNNNV V VNVNNNV VNVNNN R2702 N N VNNNV V VNV V VNVNNNVNNV V V V V V V VNNNNV VNV V VNVNNV C12409 VNVNNNNNNV V V VNNV VNNV V V VNV V V V V V V V V VNNV V V V VNNN S0651 VNNNNNV VNNV V VNVNNNNNNNNNVNNVNVNNNNNNVNV V VNNN S3010 NNNNNVNVNNV VNNVNNNVNNNNNVNNNVNV V V V V V V V VNNNNN E20943 N VNV VNVNNV VNNNNNNNNNNVNNNNVNNNNNNVNNNNNNVNNV Wx-mq NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN R1744 N N VNVNVNNVNNNV V V V VNVNV VNNNVNNNNNNVNVNVNNNNV V NK10 VNVNNV V VNNV V V V V V VNNVNV V V V VNVNV V V V V VNNV V V V VNN S2092 VNNNNNNNVNNNNNNV VNNNNNNVNNV VNNNNNV VNNVNNNNNN E20920 N VNV VNNNNV VNVNVNNVNVNNVNNV VNVNV V VNV VNV V V V V VN S20045 NNNNNNVNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNVN C52909 VNVNNV V V VNNV VNVNVNVNNV V VNV V VNNNNVNNVNV VNVNNN R2382 N N V VNVNNNNNNNNNNNNNNVNVNNNVNNNV VNVNV VNNNNNVN S723(Pb1) V VNNNNNNNNNNNNNV V VNNNNNNNNNNNNNVNNVNNNV VNNNN 450 Sato, Endo, Shiokai, Nishio and Yamaguchi

Table 1. (continued)

Marker Kakehashi Karinomai Kazenokomochi Kibinohana Kijumochi Kinmaze Kinmonnishiki Kinuhikari Kinunohada Kirara397 Kirarimiyazaki Kirarin Kiyonishiki Koganebare Koganemasari Koganemochi 4) Koganenishiki Koigokoro Koimomiji Kokonoemochi Kokoromachi Koshihikari 5) Koshiibuki Koshijiwase Kuranohana Kurenaimochi Kusutamamochi Maihime Manamusume Mangetsumochi Matsuribare Matsuyamamitsui Menkoina Mienoemi Mienoyume Milky queen Minamihikari Mineasahi Minenoyukimochi Minonishiki Miyako95 Miyamanishiki Miyakoganemochi 4) Miyatamamochi S0063 V VNNNNNV V V V V VNNV VNV V V V V V VNV V VNNNV VNV V VNNV V VN R0655 N V V V V V VNNVNNVNNNVNNNNNNNNNVNNVNVNNNNVNNNV VNV S10844 NNNNNVNNNV VNNVNNNNV V VNNNVNNNVNVNV V VNV VNNNVNN S13818 NNNNNNNVNV V VNNNVNNV V V V VNNVNNVNNNNNNVNNNNNNVN R2702 VNNVNV V V VNVNVNNVNV VNV V VNV V V V VNNNV VNV V V VNV V VN C12409 N VNNV VNNV V V V VNV V VNV V V V V V V V VNV V VNV V V V V V VNVNVN S0651 VNNNNNNVNNNVNVNNNNV V VNNNVNNV VNVNNNVNV VNNNNNN S3010 NNNNNNNVNVNVNNNNNVNVNVNV VNNVNNNNNVNVNNVNNNNN E20943 N N VNNV V V VNNNNNNVNNNV VNNNNNNVNVNNVNNNNNVNNV VN Wx-mq NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNVNNNNNNNN R1744 N N N VNNV V VNNNNNVNVNNNNNV VNV VNNVNNNNNNVNV VNVNV NK10 V V VNNNNVNV V V VNNNNNVNNV V V V VNV VNNVNVNVNNV VNVNV S2092 NNNNNNVNNNNNNVNNVNNNNNNNNNNNNNNNNNNNNVNNNNNN E20920 V VNNVNV V VNVNVNNNNNNVNV VNNNVNVNNNNVNVNNNNNVNV S20045 NNNNNNVNVNNNNNNNNNNNNNNNNNNNNVNNNNNNNNNNNNNN C52909 N V VNNNNNVNV V V VNVNNV VNV VNV V V V VNVNV V V VNV VNNNVN R2382 NNNNNNNNNNNNNNVNVNNNVNNV VNV VNNNNVNNNNNNNNNNV S723(Pb1)NNNNNNNNNNNNNNNNNVNNNNNNNNNNNNVNNNNNNNNVNNNN

Marker Mochibijin Mochihikari Mochiminori Morinokumasan 2) Mutsuhomare Mutsukaori Nakateshinsenbon Nanatsuboshi Natsuhikari Nipponbare Nishihomare Notohikari Norin22 Norin48 Okiniiri Omachi Omachikane Ooseto Oragamochi Oyamanishiki Reiho Saga1 5) Sagaurara Saikai134 Sainokagayaki Sainokirabiyaka Saiwaimochi Sakitamahime Satonouta 3) Sawanohana Senbonnishiki Shigahabutaemochi6) Shinhabutaemochi6) Shinriki Shintaishoumochi Shirakabanishiki Shirayamamochi Snow pearl Surugamochi Takaneminori Takanenishiki Takasagomochi Takayamamochi S0063 V VNNV VNV VNNNVNV VNNNNNVNNNNNNNV VNNNNNNNNNV V VN R0655 V V VNNNV V VNNNNNNVNVNV VNNVNNNNNNNV V V V V V VNVNV VN S10844 N VNNNNNNNNNNNNNNNNNVNNVNVNNNNVNV V V VNNVNVNVNN S13818 N VNNNNNNNNNNNV V V VNNNNVNNNNNNVNNNNNNNNNNNVNNV R2702 N V V V V V VNVNNNNV V V VNNV V V VNNNVNV VNV V V V VNNV V V V V V C12409 V V VNNNNNVNNV VNV V VNVNNVNV V V V V V VNNV VNVNNVNNNNN S0651 V VNNV V VNNNNNNNVNNNVNNNVNVNNVNNNNNNNNVNNV VNNV S3010 N VNNVNNV VNNVNNNVNNNVNVNNNNNNNNNVNNNNVNVNVNNN E20943 V VNNV V VNNNNVNNNVNNNNVNNNV VNNNNNNV V VNVNVNNV VN Wx-mq NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN R1744 N VNNNVNNNNNV V VNVNNV V VNNNNNVNNNNNNNNV V V VNV VNV NK10 V VNVNNNV VNNVNNV V VNVNNVNVNNNNNV V V V VNNNNNV V VNV S2092 N N N VNNNNNNVNNNNVNNNNVNNVNNNNNNNVNNNNNNNNNNNN E20920 V V VNNVNV VNNNNNNVNNV VNVNNNNVNNV V VNNNNV VNV V V V V S20045 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNVNNNNVNN C52909 N VNV V VNNVNNNNNVNNNVNNV VNNV VNV VNNV VNNV V VNNNNN R2382 NNNNVNNVNNV V VNVNNVNNVNV V V V VNVNNNNNNNNVNNNNNV S723(Pb1)NNNNNNNVNNNNNNNNNVNNNNNNV VNVNNNNNNNNNNNNNNNN Rice identification by dot-blot-SNP analysis 451

Table 1. (continued)

Marker Takitate Tamasakae Tanchomochi Tatsukomochi Tenshinouta Tentakaku Todorokiwase Tomichikara Toyonishiki Tsugaruroman Tsukimimochi Tsukinohikari Tsukushihomare Tsukushiroman Tsukushiwase Wakamizu Wasejiman Wataboushi Yamabiko Yamadanishiki Yamafukumochi Yamahikari Yamahoushi Yashiromochi Yawarakomachi Yukigesho Yukihikari Yukimaru Yukinosei Yumeakari Yumegokochi 5) Yumehikari Yumehitachi Yumeminori Yumemizuho Yumemusubi Yumenokaori Yumeoumi Yumesayaka Yumeshinano Yumeshizuku Yumetsukushi S0063 VNNV V V VNV V VNNV VNV V V VNV VNNNV V V V V V V V V VNNV V V V R0655 N V VNNNNVNNVNNNNVNV V VNNNVNNNNVNNVNNNNVNNNNN S10844 VNNNNV V VNNNNV VNNVNNNNNNNNNVNNNNNVNNNV VNNNN S13818 V V V VNNVNNNNNNVNV VNNNNV V VNNNVNV VNVNNVNNNNV V R2702 V V VNNNV V V V VNV VNV VNNVNV VNNNVNV V VNVNV VNNVNV V C12409 N VNVNNVNV V VNNVNV V VNNV VNNNVNNNNV VNV V V V V V V VN S0651 VNNNNNV VNNNVNNVNVNNNNNNNNV VNNVNNV VNVNNV VNN S3010 V VNVNV VNV VNNNNNVNVNVNVNNNV V V V V V VNNV VNNNVNV E20943 N V V V VNV V VNNNNNNNV VNNNNNVNNVNVNNNVNNVNNNNV V Wx-mq NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN R1744 VNV VNNNVNNVNNNV VNVNNNV VNNVNNVNNNNNNV VNNNVN NK10 VNVNV V V VNNNNNV V V V VNV V VNNNNV V V V V V VNV V VNV V V V S2092 NNNNNNNNNNNNNVNNNNNVNNNNNNNNNNNNNNNNVNNNNN E20920 NNNNNNNNNNNNNNV VNVNV VNNVNNV VNNV V VNV VNNNNV V S20045 VNNVNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN C52909 V VNV V V V V V VNNV VNVNNNNNV VNNVNNNV V V VNNV VNVNVN R2382 VNNNNVNNV VNNV VNNVNVNNNNNV VNNNVNNNVNNNNVNNN S723(Pb1)NNNNNNNNNNNVNNNNNNNNNNNNNNNNNNNNNVNNVNNNNN N and V represent the genotype for Nipponbare type and Variant type, respectively. Numbers following cultivar names indicate groups of cultivars that could not be distinguished individually.

Table 2. The lowest number of marker combinations needed to identify the cultivars ‘Akitakomachi’, ‘Shintaishomochi’ and ‘Takasagomochi’

Marker Aichinokaori Ainoyume Ajikodama Akanezora Akebono Akibare Akigeshiki Akihikari Akiho Akinishiki Akinouta Akiroman Akisayaka Akita39 Akitakomachi Akitsuho Anekomochi Aoinokaze Asahi Asahinoyume Asanohikari Awaminori Aya Ayahime Ayumimochi Banbanzai Biwaminori Chiyonishiki Daichinokaze Dewahikari Dewanomochi Dewasansan Domannaka Dontokoi Fujinomai Fukuhikari Fukumirai Fukunohana Ginginga Ginnosei Gin-otome Gin-oumi Ginpu Gohyakumangoku R2382 N VNNNVNNVNNNV V V VNNNNNNNNNV V VNV VNVNNVNNNNVNNN S3010 N N V V VNNV V V VNV V V NNNNVNNNV VNNNNVNNNVNVNVNVNNV V C30024 NNNNNNNVNNNNNNV N VNNNNNVNVNNNNNVNVNNNNVNNVNNN S13781 VNNVNNVNNNNNNV V NNVNNNNNNNNNV VNVNNNNNVNNVNNNN NK10 N V VNNNVNV V VNNNV N VNNNNNV VNNNVNNNV VNNV VNVNNNV V S10045 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Ehd1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Marker Goropikari Gunmamochi5 Haenuki Hakuchoumochi Hakutomochi Hanaechizen Hanafubuki Hananomai Hanasatsuma Harimamochi Haruru Hatajirushi Hatsuboshi Hatsushimo Hattan Hattannishiki1 Hattannishiki2 Heiseimochi Hidahomare Hidekomochi Higonohana Himenomochi Himikomochi Hinohikari Hitogokochi Hitomebore Hiyokumochi Hohoemi Hohohonoho Horei Hoshinoyume Hoshitaro Husaotome Hyogokitanishiki Hyogoyumenishiki Ishikawamochi24 Itadaki Iwai Iwata11 Iwata3 Iwatekko Jugoyamochi Kaguramochi Kaguyamochi R2382 N N V VNVNNNNNNNNNNNNNNVNVNNNVNNNV VNVNV VNNNNNVN S3010 NNNNNVNVNNV VNNVNNNVNNNNNVNNNVNV V V V V V V V VNNNNN C30024 N N VNNNVNNNVNNNNNNNV VNNVNNNNNVNV VNNNNNNNVNNNV S13781 VNVNNNNVNNNV VNVNNNNNNNNVNVNV VNNNNNNNNNV V VNNN NK10 VNVNNV V VNNV V V V V V VNNVNV V V V VNVNV V V V V VNNV V V V VNN S10045 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Ehd1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 452 Sato, Endo, Shiokai, Nishio and Yamaguchi

Table 2. (continued)

Marker Kakehashi Karinomai Kazenokomochi Kibinohana Kijumochi Kinmaze Kinmonnishiki Kinuhikari Kinunohada Kirara397 Kirarimiyazaki Kirarin Kiyonishiki Koganebare Koganemasari Koganemochi Koganenishiki Koigokoro Koimomiji Kokonoemochi Kokoromachi Koshihikari Koshiibuki Koshijiwase Kuranohana Kurenaimochi Kusutamamochi Maihime Manamusume Mangetsumochi Matsuribare Matsuyamamitsui Menkoina Mienoemi Mienoyume Milky queen Minamihikari Mineasahi Minenoyukimochi Minonishiki Miyako95 Miyakoganemochi Miyamanishiki Miyatamamochi R2382 NNNNNNNNNNNNNNVNVNNNVNNV VNV VNNNNVNNNNNNNNNNV S3010 NNNNNNNVNVNVNNNNNVNVNVNV VNNVNNNNNVNVNNVNNNNN C30024 NNNNNNNNNNNNVNNVNNNNVNVNNNNVNNNNNNNNNNVNNVNN S13781 N VNNNNNNNNVNVNNVNV VNV VNNVNNNVNNNV VNVNVNNNVNN NK10 V V VNNNNVNV V V VNNNNNVNNV V V V VNV VNNVNVNVNNV VNNV V S10045 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Ehd1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Marker Mochibijin Mochihikari Mochiminori Morinokumasan Mutsuhomare Mutsukaori Nakateshinsenbon Nanatsuboshi Natsuhikari Nipponbare Nishihomare Notohikari Norin22 Norin48 Okiniiri Omachi Omachikane Ooseto Oragamochi Oyamanishiki Reiho Saga1 Sagaurara Saikai134 Sainokagayaki Sainokirabiyaka Saiwaimochi Sakitamahime Sasanishiki Satonouta Sawanohana Senbonnishiki Shigahabutaemochi Shinhabutaemochi Shinriki Shintaishoumochi Shirakabanishiki Shirayamamochi Snow pearl Surugamochi Takaneminori Takanenishiki Takasagomochi Takayamamochi R2382 NNNNVNNVNNV V VNVNNVNNVNV V V V VNVNNNNNNNNVNNNNNV S3010 N VNNVNNV VNNVNNNVNNNVNVNNNNNNNNNVNNNNVNVNVNNN C30024 V VNNV VNNNNNNNVNNNNV VNNNNNNNNVNVNV VNNVNNNVNNN S13781 N N N VNNNNNNNNNV VNVNNNNV VNNVNNV VNNNNNNNNNNVNNN NK10 V VNVNNNV VNNVNNV V VNVNNVNVNNNNNV V V V VNNNNNV V VNV S10045 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNV NNNNNNNN Ehd1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNV N

Marker Takitate Tamasakae Tanchomochi Tatsukomochi Tenshinouta Tentakaku Todorokiwase Tomichikara Toyonishiki Tsugaruroman Tsukimimochi Tsukinohikari Tsukushihomare Tsukushiroman Tsukushiwase Wakamizu Wasejiman Wataboushi Yamabiko Yamadanishiki Yamafukumochi Yamahikari Yamahoushi Yashiromochi Yawarakomachi Yukigesho Yukihikari Yukimaru Yukinosei Yumeakari Yumegokochi Yumehikari Yumehitachi Yumeminori Yumemizuho Yumemusubi Yumenokaori Yumeoumi Yumesayaka Yumeshinano Yumeshizuku Yumetsukushi R2382 VNNNNVNNV VNNV VNNVNVNNNNNV VNNNVNNNVNNNNVNNN S3010 V VNVNV VNV VNNNNNVNVNVNVNNNV V V V V V VNNV VNNNVNV C30024 N N N VNNVNV VNNNNNNNVNNNNNNNVNNNNNNNNNNNNNNNN S13781 VNNNNV VNV VNNNNNNNNNNNNNNNVNVNV V VNV VNNNNNNN NK10 VNVNV V V VNNNNNV V V V VNV V VNNNNV V V V V V VNV V VNV V V V S10045 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN Ehd1 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN N and V represent the genotype for Nipponbare type and Variant type, respectively. Cultivars written in bold can be identified from others by the genotypes given in bold, which were detected by the markers listed on the left.

Literature Cited parison of efficiency of detecting polymorphism among japonica varieties in rice using RFLP, RAPD, AFLP and SSR markers. Akagi, H. (2000) DNA fingerprinting and variety identification in . Res. 2: 197–203. . Breed. Res. 2: 89–96. Kozlowski, P. and W.J. Krzyzosiak (2001) Combined SSCP/duplex Gonen, D., J. Veenstra-VanderWeele, Z. Yang, B.L. Leventhal and analysis by capillary electrophoresis for more efficient mutation E.H.Cook Jr. (1999) High throughput fluorescent CE-SSCP SNP detection. Nucleic Acids Res. 29: e71. genotyping. Mol. Psychiatry 4: 339–343. Kwok, P.Y., C. Carlson, T.D. Yager, W. Ankener and D.A. Nickerson Haff, L.A. and I.P. Smirnov (1997) Single-nucleotide polymorphism (1994) Comparative analysis of human DNA variations by identification assays using a thermostable DNA polymerase and fluorescence-based sequencing of PCR products. Genomics 23: delayed extraction MALDI-TOF mass spectrometry. Genome Res. 138–144. 7: 378–388. Latorra, D., K. Campbell, A. Wolter and J.M. Hurley (2003) Enhanced Kono, I., Y. Takeuchi, T. Shimano, T. Sasaki and M. Yano (2000) Com- allele-specific PCR discrimination in SNP genotyping using 3′ Rice identification by dot-blot-SNP analysis 453

locked nucleic acid (LNA) primers. Hum. Mutat. 22: 79–85. age by single-strand specific nucleases. Nucleic Acids Res. 32: Michaels, S.D. and R.M. Amasino (1998) A robust method for detect- 2632–2641. ing single-nucleotide changes as polymorphic markers by PCR. Tahira, T., A. Suzuki, Y. Kukita and K. Hayashi (2002) SNP detection Plant J. 14: 381–385. and allele frequency determination by SSCP. Methods in Molecu- Ogasawara, H. and S. Takahashi (2000) Identification of important rice lar Biology 212: 37–46. cultivars in Akita prefecture with one grain by STS-PCR method. Wang, H.Y., M. Luo, I.V. Tereshchenko, D.M. Frikker, X. Cui, J.Y. Li, Japanese Society for Food Science and Technology 47: 632–637. G. Hu, Y. Chu, M.A. Azaro, Y. Lin et al. (2005) A genotyping sys- Shinmura, K., H. Kanagawa, T. Mikami and T. Fukumori (2005) Devel- tem capable of simultaneously analyzing >1000 single nucleotide opment of multiplex PCR primer sets for the identification of rice polymorphisms in a haploid genome. Genome Res. 15: 276–283. varieties. Breed. Res. 7: 87–94. Wenz, H.M., J.M. Robertson, S. Menchen, F. Oaks, D.M. Demorest, Shiokai, S., K. Shirasawa, Y. Sato and T. Nishio (2010) Improvement of D.Scheibler, B.B. Rosenblum, C. Wike, D.A. Gilbert and J.W. the dot-blot-SNP technique for efficient and cost-effective geno- Efcavitch (1998) High-precision genotyping by denaturing capillary typing. Mol. Breed. 25: 179–185. electrophoresis. Genome Res. 8: 69–80. Shirasawa, K., S. Shiokai, M. Yamaguchi, S. Kishitani and T. Nishio Yamamoto, T., H. Nagasaki, J. Yonemaru, K. Ebana, M. Nakajima, T. (2006) Dot-blot-SNP analysis for practical and cul- Shibaya and M. Yano (2010) Fine definition of the pedigree haplo- tivar identification in rice. Theor. Appl. Genet. 113: 147–155. types of closely related rice cultivars by means of genome-wide Thomson, D. and R. Henry (1995) Single-step protocol for preparation discovery of single-nucleotide polymorphisms. BMC Genomics of plant tissue for analysis by PCR. BioTechniques 19: 394–400. 11: 267. Till, B.J., C. Burtner, L. Comai and S. Henikoff (2004) Mismatch cleav-