For Peer Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VOCATIONAL AGRICULTURE News and Notes
UNIVERSITY OF ILLINOIS LIBRARY WURBANA-CHAMPAIGN ACES 3«SB WJ6 N TVjRtUW^ N&«^ Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/vocationalagricu1997univ \K&> y.yX-'-'-'-v"¥*>Yr:'?->>r^ VOCATIONAL AGRICULTURE SEP | 5 1997 try - I ihnr News and Notes Volume 56, Number 1 September, 1997 Vocational Agriculture Service ACES Information Technology and Communication Services College of Agricultural, Consumer and Environmental Sciences College of Agricultural University of Illinois at Urbana-Champaign Consumer or>d 1401 S. Maryland Drive, Urbana, IL 61801 Environmental Sconces (217) 333-3871 FAX (217) 333-0005 VOCATIONAL AGRICULTURE DATES TO REMEMBER 1997 September 1 Labor Day—University of Illinois holiday 16 ILCAE Meeting—IDOA Building, Springfield 20 State Horse Judging CDE—Blackhawk East CC, Kewanee 23-25 Farm Progress Show—Seneca, IL 29 Illinois FFA Board of Directors Meeting—Illinois FFA Center, Roanoke October 2 Moorman Mfg., Inc. /FFA Leadership Conference—Quincy (Tentative) 2-3 IACCAI Conference—Illinois Central College, East Peoria 10-11 Beginning FFA Advisors Workshop—Site TBA 11 IAVAT Board of Directors Meeting—Site TBA November 13-15 National FFA Convention—Kansas City, MO 27-28 Thanksgiving—University of Illinois holiday December 6 State Crops & Dairy Products CDE's—University of Illinois 10-14 NVATA/AVA Convention—Las Vegas, NV 24-26 Christmas—University of Illinois holiday 1998 January 1-2 New Years Break—University of Illinois holiday 9 IAVAT Board -
Evolution and Sustainability of the Olive Production Systems
Evolution and sustainability of the olive production systems Fernandez Escobar R., de la Rosa R., Leon L., Gomez J.A., Testi F., Orgaz M., Gil-Ribes J.A., Quesada-Moraga E., Trapero A. in Arcas N. (ed.), Arroyo López F.N. (ed.), Caballero J. (ed.), D'Andria R. (ed.), Fernández M. (ed.), Fernandez Escobar R. (ed.), Garrido A. (ed.), López-Miranda J. (ed.), Msallem M. (ed.), Parras M. (ed.), Rallo L. (ed.), Zanoli R. (ed.). Present and future of the Mediterranean olive sector Zaragoza: CIHEAM / IOC Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 106 2013 pages 11-42 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=6803 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Fernandez Escobar R., de la Rosa R., Leon L., Gomez J.A., Testi F., Orgaz M., Gil-Ribes J.A., Q uesada- Moraga E., Trapero A. Evolution and sustainability of the olive production systems. In : Arcas N. (ed.), Arroyo López F.N. (ed.), Caballero J. (ed.), D'Andria R. (ed.), Fernández M. (ed.), Fernandez -
Sinningia Speciosa Sinningia Speciosa (Buell "Gloxinia") Hybrid (1952 Cover Image from the GLOXINIAN)
GESNERIADS The Journal for Gesneriad Growers Vol. 61, No. 3 Third Quarter 2011 Sinningia speciosa Sinningia speciosa (Buell "Gloxinia") hybrid (1952 cover image from THE GLOXINIAN) ADVERTISERS DIRECTORY Arcadia Glasshouse ................................49 Lyndon Lyon Greenhouses, Inc.............34 Belisle's Violet House ............................45 Mrs Strep Streps.....................................45 Dave's Violets.........................................45 Out of Africa..........................................45 Green Thumb Press ................................39 Pat's Pets ................................................45 Kartuz Greenhouses ...............................52 Violet Barn.............................................33 Lauray of Salisbury ................................34 6GESNERIADS 61(3) Once Upon a Gloxinia … Suzie Larouche, Historian <[email protected]> Sixty years ago, a boy fell in love with a Gloxinia. He loved it so much that he started a group, complete with a small journal, that he called the American Gloxinia Society. The Society lived on, thrived, acquired more members, studied the Gloxinia and its relatives, gesneriads. After a while, the name of the society changed to the American Gloxinia and Gesneriad Society. The journal, THE GLOXINIAN, grew thicker and glossier. More study and research were conducted on the family, more members and chapters came in, and the name was changed again – this time to The Gesneriad Society. Nowadays, a boy who falls in love with the same plant would have to call it Sinningia speciosa. To be honest, the American Sinningia Speciosa Society does not have the same ring. So in order to talk "Gloxinia," the boy would have to talk about Gloxinia perennis, still a gesneriad, but a totally different plant. Unless, of course, he went for the common name of the spec- tacular Sinningia and decided to found The American Florist Gloxinia Society. -
Starmaya: the First Arabica F1 Coffee Hybrid Produced Using Genetic Male Sterility
METHODS published: 22 October 2019 doi: 10.3389/fpls.2019.01344 Starmaya: The First Arabica F1 Coffee Hybrid Produced Using Genetic Male Sterility Frédéric Georget 1,2*, Lison Marie 1,2, Edgardo Alpizar 3, Philippe Courtel 3, Mélanie Bordeaux 4, Jose Martin Hidalgo 4, Pierre Marraccini 1,2, Jean-christophe Breitler 1,2, Eveline Déchamp 1,2, Clément Poncon 3, Hervé Etienne 1,2 and Benoit Bertrand 1,2 1 CIRAD, UMR IPME, Montpellier, France, 2 IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France, 3 Plant material, ECOM, Exportadora Atlantic, Managua, Nicaragua, 4 FONDATION NICAFRANCE, Managua, Nicaragua In the present paper, we evaluated the implementation of a seed production system based on the exploitation of male sterility on coffee. We studied specifically the combination between CIR-SM01 and Marsellesa® (a Sarchimor line), which provides a hybrid population called Starmaya. We demonstrated that the establishment of seed garden under natural pollination is possible and produces a sufficient amount of hybrid seeds to be multiplied efficiently and economically. As expected for F1 hybrid, the performances of Starmaya are highly superior to conventional cultivars. However, we observed some heterogeneity on Starmaya cultivar Edited by: in the field. We confirmed by genetic marker analysis that the off-types were partly related to Marcelino Perez De La Vega, Universidad de León, Spain the heterozygosity of the CIR-SM01 clone and could not be modified. Regarding the level Reviewed by: of rust resistance of Starmaya cv., we saw that it could be improved if Marsellesa was more Aaron P. Davis, fully fixed genetically. If so, we should be able to decrease significantly the percentage of rust Royal Botanic Gardens, Kew, United Kingdom incidence of Starmaya from 15 to 5%, which would be quite acceptable at a commercial Eveline Teixeira Caixeta, level. -
Olea Europaea L.) by Conventional and in Vitro Biotechnology Methods
Biotechnology Advances 34 (2016) 687–696 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods E. Rugini ⁎, V. Cristofori, C. Silvestri Department of Agricultural and Forestry Science (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy article info abstract Article history: In olive (Olea europaea L.) traditional methods of genetic improvement have up to now produced limited results. Received 22 September 2015 Intensification of olive growing requires appropriate new cultivars for fully mechanized groves, but among the Received in revised form 1 March 2016 large number of the traditional varieties very few are suitable. High-density and super high-density hedge row Accepted 7 March 2016 orchards require genotypes with reduced size, reduced apical dominance, a semi-erect growth habit, easy to Available online 10 March 2016 propagate, resistant to abiotic and biotic stresses, with reliably high productivity and quality of both fruits and Keywords: oil. Innovative strategies supported by molecular and biotechnological techniques are required to speed up Olea europaea novel hybridisation methods. Among traditional approaches the Gene Pool Method seems a reasonable option, Intensive cultivation but it requires availability of widely diverse germplasm from both cultivated and wild genotypes, supported by Rootstocks a detailed knowledge of their genetic relationships. The practice of “gene therapy” for the most important Gene pool hybridization method existing cultivars, combined with conventional methods, could accelerate achievement of the main goals, but ef- In vitro techniques forts to overcome some technical and ideological obstacles are needed. -
The European Garden Flora Flowering Plants Volume 5: Angiospermae – Dicotyledons, 2Nd Edition Edited by James Cullen , Sabina G
Cambridge University Press 978-0-521-76164-2 — The European Garden Flora Flowering Plants Volume 5: Angiospermae – Dicotyledons, 2nd Edition Edited by James Cullen , Sabina G. Knees , H. Suzanne Cubey Frontmatter More Information THE EUROPEAN GARDEN FLORA The European Garden Flora is the definitive manual for the accurate identification of cultivated ornamental flowering plants. Designed to meet the highest scientific standards, the vocabulary has nevertheless been kept as uncomplicated as possible so that the work is fully accessible to the informed gardener as well as to the professional botanist. This new edition has been thoroughly reorganised and revised, bringing it into line with modern taxonomic knowledge. Although European in name, the Flora covers plants cultivated in most areas of the United States and Canada as well as in non- tropical parts of Asia and Australasia. Volume V completes the series, and includes many important ornamental families, such as Labiatae, Solanaceae, Scrophulariaceae, Acanthaceae, Campanulaceae, and the largest family of Dicotyledons, the Compositae. James Cullen has been a professional plant taxonomist for over 50 years, working particularly on the classification and identification of plants in cultivation (especially Rhododendron) at Liverpool and Edinburgh Universities, at the Royal Botanic Garden Edinburgh, and in Cambridge. With the late Dr S. M. Walters, he was the initiator of the first edition of The European Garden Flora and is responsible for two spin-offs, The Orchid Book (1992) and Manual of North European Garden Plants (2001). Sabina Knees is a taxonomist at the Royal Botanic Garden Edinburgh and although now working on plants of the Middle East, particularly the Flora of the Arabian Peninsula and Socotra, she spent over 20 years working as a horticultural taxonomist for the Royal Horticultural Society and the Royal Botanic Garden Edinburgh and is a founder member of the Horticultural Taxonomy Group (HORTAX). -
Evaluation of Pomological Traits and Classification of Some Olive Cultivars in Zanjan Province
”ﻣﺠﻠﻪ ﺑﻪﻧﮋادي ﻧﻬﺎل و ﺑﺬر” ﺟﻠﺪ 1-28، ﺷﻤﺎره 1، ﺳﺎل 1391ت ﻣﺠﻠﻪ ﺑﻪﻧﮋادي ﻧﻬﺎل و ﺑﺬر ﺟﻠﺪ 1-29 ، ﺷﻤﺎره 4، ﺳﺎل 1392 ارزﻳﺎﺑﻲ ﺧﺼﻮﺻﻴﺎت ﭘﻮﻣﻮﻟﻮژﻳﻜﻲ و ﮔﺮوهﺑﻨﺪي ﺑﺮﺧﻲ ارﻗﺎم زﻳﺘﻮن در اﺳﺘﺎن زﻧﺠﺎن Evaluation of Pomological Traits and Classification of some Olive Cultivars in Zanjan Province اﻟﻬﺎم ﭘﻮراﺳﻜﻨﺪري1، ﻋﻠﻲ ﺳﻠﻴﻤﺎﻧﻲ2، ﺟﻼل ﺻﺒﺎ3 و ﻣﻬﺪي ﻃﺎﻫﺮي4 1، 2 و 3- ﺑﻪ ﺗﺮﺗﻴﺐ داﻧﺸﺠﻮي ﺳﺎﺑﻖ ﻛﺎرﺷﻨﺎﺳﻲ ارﺷﺪ ﻋﻠﻮم ﺑﺎﻏﺒﺎﻧﻲ، اﺳﺘﺎدﻳﺎر و داﻧﺸﻴﺎر، داﻧﺸﻜﺪه ﻛﺸﺎورزي، داﻧﺸﮕﺎه زﻧﺠﺎن 4- ﻣﺮﺑﻲ، ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎت ﻛﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ زﻧﺠﺎن ﺗﺎرﻳﺦ درﻳﺎﻓﺖ: 6/6/1391 ﺗﺎرﻳﺦ ﭘﺬﻳﺮش: 1391/12/10 ﭼﻜﻴﺪه ﭘﻮراﺳﻜﻨﺪري، ا .، ﺳﻠﻴﻤﺎﻧﻲ، ع .، ﺻﺒﺎ، ج . و ﻃﺎﻫﺮي، م. 1392. ارزﻳﺎﺑﻲ ﺧﺼﻮﺻﻴﺎت ﭘﻮﻣﻮﻟﻮژﻳﻜﻲ و ﮔﺮوهﺑﻨﺪي ﺑﺮﺧﻲ ارﻗـﺎم زﻳﺘـﻮن در اﺳـﺘﺎن زﻧﺠـﺎن . ﻣﺠﻠـﻪ ﺑﻪﻧﮋادي ﻧﻬﺎل و ﺑﺬر 29-1: 636 - 623. ﺑﺮاي ﺑﺮرﺳﻲ ﺧﺼﻮﺻﻴﺎت ﻣﻴﻮه و ﮔﺮوه ﺑﻨﺪي ارﻗﺎم زﻳﺘﻮن، آزﻣﺎﻳـﺸﻲ روي ﺑﻴـﺴﺖ رﻗـﻢ زﻳﺘـﻮن ﻃـﻲ دو ﺳـﺎ ل (1390-1389) در اﻳﺴﺘﮕﺎه ﺗﺤﻘﻴﻘﺎت زﻳﺘﻮن ﮔﻴﻠﻮان (زﻧﺠﺎن) اﻧﺠﺎم ﺷﺪ . آزﻣﺎﻳﺶ در ﻗﺎﻟﺐ ﻃـﺮح اﺳـﭙﻠﻴﺖ ﭘـﻼت در زﻣﺎن ﺑﺎ ﻃﺮح ﭘﺎﻳﻪ ﻛﺎﻣﻼً ﺗﺼﺎدﻓﻲ ﺑﺎ ﺳﻪ ﺗﻜﺮار اﺟﺮا ﺷﺪ . ﮔﺮوهﺑﻨﺪي ارﻗﺎم ﺑﺮ اﺳﺎس ﺻـﻔﺎت وزن ﺗـﺮ و ﺧـﺸﻚ ﻣﻴـﻮه، ﻧﺴﺒﺖ ﮔﻮﺷﺖ ﺑﻪ ﻫﺴﺘﻪ و درﺻﺪ روﻏﻦ ﺑﺎ اﺳﺘﻔﺎده از ﺗﺠﺰﻳﻪ ﺧﻮﺷﻪ اي و ﺗﺠﺰﻳﻪ ﺑﻪ ﻣﺆﻟﻔﻪﻫﺎي اﺻﻠﻲ اﻧﺠﺎم ﺷـﺪ . ﻧﺘـﺎﻳﺞ ﺗﺠﺰﻳﻪ وارﻳﺎﻧﺲ ﺗﻔﺎوت ﻣﻌﻨﻲ داري ﻣﻴﺎن رﻗﻢ، ﺳﺎل و اﺛﺮ ﻣﺘﻘﺎﺑﻞ ﺑﺮاي اﻛﺜﺮ ﺻﻔﺎت ﻧﺸﺎن داد . ﺑﺮ اﺳﺎس ﻧﺘـﺎﻳﺞ ﺗﺠﺰﻳـﻪ ﺧﻮﺷﻪ اي و ﺗﺠﺰﻳﻪ ﺑﻪ ﻣﺆﻟﻔﻪ ﻫﺎي اﺻﻠﻲ، ارﻗﺎم از ﻧﻈﺮ ﺻﻔﺎت ارزﻳﺎﺑﻲ ﺷﺪه ﺑﻪ ﺧﻮﺑﻲ از ﻳﻚ دﻳﮕﺮ ﺗﻔﻜﻴﻚ ﺷـﺪﻧﺪ . ﺑـﺮ اﻳﻦ اﺳﺎس، ارﻗ ﺎم ﻛﺎرﻳﺪوﻟﻴﺎ، ﭘﻴﻜﻮآل، وﻟﻴﻮﺗﻴﻜﻲ و ﻛﺎﻳﺴﻲ ﺑﻴﺸﺘﺮﻳﻦ وزن ﻣﻴﻮه و ﻧﺴﺒﺖ ﮔﻮﺷﺖ ﺑﻪ ﻫﺴﺘﻪ را داﺷـﺘﻨﺪ و ﺑﻪ ﻋﻨﻮان ارﻗﺎم ﻣﻨﺎﺳﺐ ﻛﻨﺴﺮوي وSID ارﻗﺎم ﻛﺎﻳﻠﺘﻪ، of ﻛﺮوﻧﺎﺋﻴﻜﻲ، آرﺑﻜﻴﻦ، ﻟﭽﻴﻨﻮ، ﺑﻠﻴﺪي و ﻧﺒﺎﻟﻲ ﺑﺎ Archiveدرﺻﺪ ﺑﺎﻻي روﻏﻦ ﺑﻪ ﻋﻨﻮان ارﻗﺎم روﻏﻨﻲ ﺷﻨﺎﺳﺎﺋﻲ ﺷﺪﻧﺪ . -
Unveiling a Unique Genetic Diversity of Cultivated Coffea Arabica L. in Its Main Domestication Center: Yemen
Genet Resour Crop Evol https://doi.org/10.1007/s10722-021-01139-y (0123456789().,-volV)( 0123456789().,-volV) RESEARCH ARTICLE Unveiling a unique genetic diversity of cultivated Coffea arabica L. in its main domestication center: Yemen C. Montagnon . A. Mahyoub . W. Solano . F. Sheibani Received: 21 July 2020 / Accepted: 15 January 2021 Ó The Author(s) 2021 Abstract Whilst it is established that almost all varieties and included no Yemen samples. Two other cultivated coffee (Coffea arabica L.) varieties origi- clusters were made up of worldwide varieties and nated in Yemen after some coffee seeds were intro- Yemen samples. We named these the Yemen Typica- duced into Yemen from neighboring Ethiopia, the Bourbon cluster and the Yemen SL-34 cluster. Finally, actual coffee genetic diversity in Yemen and its we observed one cluster that was unique to Yemen and significance to the coffee world had never been was not related to any known cultivated varieties and explored. We observed five genetic clusters. The first not even to any known Ethiopian accession: we name cluster, which we named the Ethiopian-Only (EO) this cluster the New-Yemen cluster. We discuss the cluster, was made up exclusively of the Ethiopian consequences of these findings and their potential to accessions. This cluster was clearly separated from the pave the way for further comprehensive genetic Yemen and cultivated varieties clusters, hence con- improvement projects for the identification of major firming the genetic distance between wild Ethiopian resilience/adaptation and cup quality genes that have accessions and coffee cultivated varieties around the been shaped through the domestication process of C. -
Recognition and Management of Diseases of Woody Ornamentals in the Landscape
Dr. Sharon M. Douglas The Connecticut Agricultural Experiment Station 123 Huntington Street P. O. Box 1106 New Haven, CT 06504 Phone: (203)974-8601 Fax: (203)974-8502 Email: [email protected] RECOGNITION AND MANAGEMENT OF DISEASES OF WOODY ORNAMENTALS IN THE LANDSCAPE While problems of woody ornamentals are frequently associated with living factors, problems attributed to cultural and environmental factors are also common and are becoming increasingly more prevalent given the weather extremes of the past few years and as populations increase and urbanization continues. In many cases there is little that can be done about these problems once they are observed so prevention is usually the best approach. I. STEPS FOR DISEASE PREVENTION AND CONTROL: A. Diagnosis- knowing what you're trying to control; accurate diagnosis is critical for successful disease control; B. Assessing the Severity of the Problem- 1. Nature of pest problem- type of disease, i.e., root vs. foliar, systemic vs. localized 2. Level of disease- loss threshold, i.e., amount of disease, number of years with problem; number of trees affected C. Control Options- 1. Culture: this includes cultural methods that modify the plant's growing conditions; maintaining optimum plant vigor by proper site selection, proper watering and fertilizing; avoiding mechanical injuries and soil compaction; appropriately timed pruning and transplanting, adequate spacing between plants, improving tilth and pH of the soil; 2. Sanitation: this involves the use of vigorous, healthy, disease-free cuttings or plants, pruning of affected plant parts; raking and removing affected plant parts such as fallen leaves; disinfesting tools such as pruning shears and spades; 3. -
Pdf 266.47 K
DOI: http://dx.doi.org/10.22092/cbj.2012.100455 Genetic and morphological variation in Iranian olive (Olea europaea L.) germplasm E. Dastkara*, A. Soleimanib, H. Jafaryc, and M. R. Naghavid a,cAgricultural and Natural Resources Research Center of Zanjan Province, Zanjan, Iran bFaculty of Agriculture, University of Zanjan, Zanjan, Iran. dAgricultural and Natural Resources Campus, University of Tehran, Karaj, Iran *Corresponding author’s E-mail address: [email protected] Received: March 2013 Accepted: October 2013 ABSTRACT Dastkar, E., Soleimani, A., Jafary, H., and Naghavi, M. R. 2013. Genetic and morphological variation in Iranian olive (Olea europaea L.) germplasm. Crop Breeding Journal 3(2):99-106. Olive cultivars with specific characteristics have been developed thanks to Iran’s particular climatic conditions and long-term olive cultivation. The genetic variation and relationships among 40 olive cultivars, as well as 17 unknown genotypes from the national olive collection orchard at Tarom Research Station, Zanjan, Iran, were evaluated using SSR markers. Using 10 microsatellite primer pairs, 43 polymorphic bands were obtained on 57 olive genotypes. In addition to molecular markers, 14 morphological traits were measured in all olive genotypes. Based on discriminant and cluster analysis, the group of Iranian genotypes showed the greatest genetic distance from Spanish, Greek, Syrian, Italian and French groups. Based on cluster analysis using molecular and morphological data, most of the unknown genotypes showed high genetic similarity with genotypes from Spain and Syria. Despite the high genetic variation among cultivars in each group, geographical origin had significant impact on observed variability using Shannon’s information index and polymorphism information of olive accessions. -
100 Years of Breeding
100 years of breeding CEREAL FIBER FORAGE FRUIT GERMPLASM NUTS OILSEED ORNAMENTAL VEGETABLE PLANT BREEDING ACADEMY RESEARCH AND InfORMATION CENTERS Plant Breeding Program COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES Office of the Dean COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES AOffice ofnote the Dean from the editor ummarizing 100 years of history not only California, but the United Sin plant breeding at UC Davis is States and in many cases the world, a formidable task. As a land-grant to enjoy fresh produce throughout university, UC Davis has played the year. This publication captures a major role in developing and the impact that UC Davis has had managing many of the more than on developing crops through plant 350 plant commodities now grown breeding over the last century and in California. The diversity of crops just as importantly, highlights the ranges across vegetables, fruits, nuts, people who have made this possible. grains, forages, ornamentals and turf. ! In the early 1900s the focus was on a few grain crops, and has expanded considerably since that time. The application of plant breeding and training of breeders at UC Davis ALLEN VAN DEYNZE focused on the unique and diverse (530) 754-6444 California environment, allowing [email protected] Table of contents Peach, processing 20 VEGETABLE Strawberry 22 Artichoke 36 Dean’s address 3 Prune and plum 24 Carrot 37 Celery 38 CEREAL GERMPLASM Garlic 39 Oat 4 Foundation Seed Program 25 Grain legumes 40 Other Triticeae 5 Foundation Plant Services 26 Lettuce 42 Rice -
Kentucky Bluegrass, Poa Pratensis L. Tom Cook Oregon State University
Kentucky Bluegrass, Poa pratensis L. Tom Cook Oregon State University Introduction: Kentucky bluegrass has long been the most important cool season grass planted as turf. It has been used for lawns, athletic fields, golf course fairways, tees, and rough, and been widely planted for pastures in regions where it thrives. Kentucky bluegrass is the grass that made sod production possible in northern climates. In most peoples mind this is the grass that is turf. Because it is adapted to such a wide range climates, you might think it is a native species, but like many of our other grasses Kentucky bluegrass arrived in North America along with traders and settlers from Europe. Botanical Characteristics and Identification: Kentucky bluegrass is a sod forming rhizomatous cool season (C-3) grass that is adapted to climates with warm summers and cold winters. It has a so called perennial root system in which maximum root system development occurs after one to two years from planting. While there is an annual flush of new roots in spring many of last years roots remain alive and functioning. Because many roots live through the winter, it is not unusual to dig up a patch of healthy bluegrass and observe that most of the roots appear brown. Genetically Kentucky bluegrass is quite variable with chromosome numbers ranging from 2n=28 to 154. It does hybridize but generally produces seed apomictically. Apomixis is a form of asexual reproduction where seed forms from cells in the ovary wall of the flowers so the progeny are identical to the parent plant.