For Peer Review

Total Page:16

File Type:pdf, Size:1020Kb

For Peer Review Journal of the Science of Food and Agriculture Impact assessment of mechanical harvest on fruit physiology and consequences on oil physicochemical and sensorial quality from ‘Manzanilla de Sevilla’ and ‘Manzanilla Cacereña’ super-high density hedgerows. A For Peerpreliminary Review study Journal: Journal of the Science of Food and Agriculture Manuscript ID: JSFA-14-1781.R1 Wiley - Manuscript type: Research Article Date Submitted by the Author: 15-Oct-2014 Complete List of Authors: Morales-Sillero, Ana; Universidad de Sevilla, Departamento de Ciencias Agroforestales Garcia, Jose; Instituto de la Grasa, Fisiología y Tecnología de Productos Vegetales Olea europaea L, SHD orchards, grape straddle harvester, ethylene Key Words: production, oxidative stability, phenols [email protected] Page 1 of 30 Journal of the Science of Food and Agriculture 1 2 3 Impact assessment of mechanical harvest on fruit physiology and consequences on 4 5 oil physicochemical and sensorial quality from ‘Manzanilla de Sevilla’ and 6 7 ‘Manzanilla Cacereña’ super-high density hedgerows. A preliminary study 8 9 10 11 12 Running title: Impact of grape harvester on fruit physiology and oil quality from 13 14 SHD olive hedgerows 15 16 17 18 Ana Morales-Sillero,Fora José MªPeer García b* Review 19 20 * b 21 Correspondence to: José Mª García Dpto. Fisiología y Tecnología de Productos 22 23 Vegetales. Instituto de la Grasa (CSIC). Avda. Padre García Tejero 4, 41012 Sevilla, 24 25 Spain. E-mai:l [email protected] 26 27 28 29 a 30 Dpto. Ciencias Agroforestales, ETSIA, Universidad de Sevilla, Carretera de Utrera, 31 32 km 1, 41013 Sevilla, Spain. 33 34 b Dpto. Fisiología y Tecnología de Productos Vegetales. Instituto de la Grasa (CSIC). 35 36 Avda. Padre García Tejero 4, 41012 Sevilla, Spain. 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 1 [email protected] Journal of the Science of Food and Agriculture Page 2 of 30 1 2 3 ABSTRACT 4 5 6 7 BACKGROUND: Super-intensive cultivation facilitates olive mechanized 8 9 10 harvesting, determining a substantial savings in the production cost of virgin olive 11 12 oil (VOO). However, the number of varieties adapted to this type of cultivation is 13 14 reduced. This paper explores the impact that harvest with grape straddle 15 16 harvester of 'Manzanilla de Sevilla' and 'Manzanilla Cacereña' olives, grown in a 17 18 super-intensiveFor cultivation, Peer has on the physiology Review of the fruit and the quality of the 19 20 21 oil, subsequently extracted. 22 23 24 25 RESULTS: In both cultivars, the fruits mechanically harvested presented higher 26 27 respiration and ethylene production and a lower firmness than the ones harvested 28 29 30 by hand. Their oils exhibited lower phenol contents, oxidative stability and lower 31 32 presence of positive sensory attributes. However, in these oils the values of 33 34 parameters used to assess the level of quality of the VOO were kept within the 35 36 limits required for the best commercial category. 37 38 39 40 41 CONCLUSION: Mechanical harvesting of ‘Manzanilla de Sevilla’ and 42 43 ‘Manzanilla Cacereña’ super-high density hedgerows induced physiological 44 45 alterations in the fruits and a reduction in the contents of natural antioxidants and 46 47 flavour components in the oils, although it did not determine a loss of the “Extra” 48 49 50 level of quality 51 52 53 54 Keywords: Olea europaea L., SHD orchards, grape straddle harvester, ethylene 55 56 production, oxidative stability, phenols 57 58 59 60 2 [email protected] Page 3 of 30 Journal of the Science of Food and Agriculture 1 2 3 INTRODUCTION 4 5 Super-high density (SHD) hedgerows, with ca. 1500-2000 trees ha -1, are nowadays the 6 7 most common designs in new olive ( Olea europaea L.) orchards for oil production, in 8 9 10 particular in non-traditional olive producing countries. Main advantages are early yield 11 12 after planting and minimization of the costs of harvest by using of adapted grape 13 14 straddle harvesters which allow a dramatic decrease in the both labour costs and time 15 16 employed 1. Furthermore, if the harvest is well synchronized with the extraction 17 18 process, mechanicalFor harvesting Peer allows producers Review to minimize the time between 19 20 2 21 harvesting and pressing of olives, which has a very positive impact on oil quality. 22 23 Cultivars must be of early-bearing, consistent annual yields and also of low-vigour to 24 25 allow the harvesters to pass over the hedgerows and to ensure the illumination of the 26 27 canopies in the long-term.3 These are the reasons by which most olive SHD orchards are 28 29 30 cultivated with the cultivar ‘Arbequina’, and in less extent with ‘Arbosana’ and 31 32 ‘Koroneiki’ cv. New cultivars obtained in breeding programs have also recently been 33 34 introduced to the market for SHD, such as ‘Sikitita’, ‘Askal’, ‘Fs-17’, ‘Oliana’, and 35 36 ‘Tosca 07’.3-5 Although ‘Arbequina’ olive oil is otherwise highly demanded by 37 38 international market due to its sensorial quality, it must be extracted at an early maturity 39 40 41 stage of fruits and during a short period of time because of the loss of intensity in its 42 43 positive attributes (fruity odour, bitter taste and green-yellow colour) and of the drastic 44 45 decrease in phenolic compounds and pigment composition (chlrophylls and 46 47 carotenoids). 6 This decrease, together with that of the reduced 48 49 50 monounsaturated/polyunsaturated fatty acids ratio, affects negatively to stability to 51 7-8 52 oxidation of the ‘Arbequina’ oil, which in fact it is low compared with other cultivars 53 54 55 56 57 58 59 60 3 [email protected] Journal of the Science of Food and Agriculture Page 4 of 30 1 2 3 The adapted grape straddle harvesters use rods to shake the canopy. They contact 4 5 directly with the fruit so they can cause damage which seems to increase as firmness 6 7 decreases during maturation. 9 However, studies about the impact of these machines on 8 9 10 the oil quality from ‘Arbequina’ hedgerows orchards are really scarce. It’s known that, 11 12 although the harvester may favour the physical oil extraction, it may decrease the oil 13 14 stability to oxidation in relation to the oil from fruits manually harvested. This decrease 15 16 is caused by the reduction of both the tocopherol and phenol contents. Moreover, higher 17 18 values of peroxidesFor and also Peerof K are also foundReview in the oils from mechanical 19 232 20 21 harvested fruits, which indicates that mechanical harvesting by the grape straddle 22 10 23 harvester led to an increase of the primary steps of the oxidation process. These 24 25 findings are in part similar to those reported in a ‘Souri’ traditional orchard (with trees 26 27 at 10 x 10 m) and mechanically harvested by hand-vibrating combs fruits;11 in 28 29 30 particular, a slight increase in peroxide level and a decrease of the total phenol content 31 32 was also found in the oils from mechanically harvested trees. An increase of the free 33 34 acidity content was also reported in these oils. 35 36 Therefore, regardless the type of harvester employed in an olive oil orchard, internal 37 38 fruit injures seems to cause the loss of oil quality from mechanical harvested fruits. The 39 40 41 selection of the harvesting method must look for the best possible conservation of the 42 43 fruit integrity, in order to obtain a VOO of high quality. If a particular method causes 44 45 bruises on the fruit surface as a result of its mechanical impact or compression, olive 46 47 respiration and the susceptibility to decay at a faster rate, in comparison to undamaged 48 49 12 50 fruit, seems to increase. The oil extracted from these damaged olives can be high in 51 52 acidity, low in stability and poor in polyphenols and might develop off-flavors due to 53 54 the enzymatic activities favored by the breakdown of the cells and the contact between 55 56 enzymes and substrates that were initially compartmented differently.13 In the light of 57 58 59 60 4 [email protected] Page 5 of 30 Journal of the Science of Food and Agriculture 1 2 3 these considerations, hand picking appears to be the best method for preventing fruit 4 5 damage,14 yet, unfortunately, olive manual harvest is quite expensive, so it is 6 7 fundamental to assess the impact of mechanical harvest on fruit physiology and 8 9 10 consequences on oil physicochemical and sensorial quality applied to the different olive 11 12 varieties. 13 14 The scarcity of suitable olive cultivars is, therefore, an important disadvantage of 15 16 SHD orchards. Olive breeding is necessary to produce new cultivars adapted to these 17 18 orchards with hedgerowFor management. Peer Furthermore, Review it is necessary the study of the 19 20 21 suitability of traditional olive cultivars not only to be grown in SHD orchards but also to 22 23 produce oil with better quality than the current ones. In this sense, Morales-Sillero et 24 25 al .15 have recently showed that ‘Manzanilla de Sevilla and ‘Manzanilla Cacereña’ trees 26 27 are high-yield and may be mechanically harvester by a grape straddle harvester when 28 29 30 grown under SHD hedgerows. The work also highlights the efficiency of mechanical 31 32 harvesting to remove green fruits from both cultivars (98%) and the short time required 33 34 for harvesting (< 1.7 h).
Recommended publications
  • VOCATIONAL AGRICULTURE News and Notes
    UNIVERSITY OF ILLINOIS LIBRARY WURBANA-CHAMPAIGN ACES 3«SB WJ6 N TVjRtUW^ N&«^ Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/vocationalagricu1997univ \K&> y.yX-'-'-'-v"¥*>Yr:'?->>r^ VOCATIONAL AGRICULTURE SEP | 5 1997 try - I ihnr News and Notes Volume 56, Number 1 September, 1997 Vocational Agriculture Service ACES Information Technology and Communication Services College of Agricultural, Consumer and Environmental Sciences College of Agricultural University of Illinois at Urbana-Champaign Consumer or>d 1401 S. Maryland Drive, Urbana, IL 61801 Environmental Sconces (217) 333-3871 FAX (217) 333-0005 VOCATIONAL AGRICULTURE DATES TO REMEMBER 1997 September 1 Labor Day—University of Illinois holiday 16 ILCAE Meeting—IDOA Building, Springfield 20 State Horse Judging CDE—Blackhawk East CC, Kewanee 23-25 Farm Progress Show—Seneca, IL 29 Illinois FFA Board of Directors Meeting—Illinois FFA Center, Roanoke October 2 Moorman Mfg., Inc. /FFA Leadership Conference—Quincy (Tentative) 2-3 IACCAI Conference—Illinois Central College, East Peoria 10-11 Beginning FFA Advisors Workshop—Site TBA 11 IAVAT Board of Directors Meeting—Site TBA November 13-15 National FFA Convention—Kansas City, MO 27-28 Thanksgiving—University of Illinois holiday December 6 State Crops & Dairy Products CDE's—University of Illinois 10-14 NVATA/AVA Convention—Las Vegas, NV 24-26 Christmas—University of Illinois holiday 1998 January 1-2 New Years Break—University of Illinois holiday 9 IAVAT Board
    [Show full text]
  • Evolution and Sustainability of the Olive Production Systems
    Evolution and sustainability of the olive production systems Fernandez Escobar R., de la Rosa R., Leon L., Gomez J.A., Testi F., Orgaz M., Gil-Ribes J.A., Quesada-Moraga E., Trapero A. in Arcas N. (ed.), Arroyo López F.N. (ed.), Caballero J. (ed.), D'Andria R. (ed.), Fernández M. (ed.), Fernandez Escobar R. (ed.), Garrido A. (ed.), López-Miranda J. (ed.), Msallem M. (ed.), Parras M. (ed.), Rallo L. (ed.), Zanoli R. (ed.). Present and future of the Mediterranean olive sector Zaragoza: CIHEAM / IOC Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 106 2013 pages 11-42 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=6803 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Fernandez Escobar R., de la Rosa R., Leon L., Gomez J.A., Testi F., Orgaz M., Gil-Ribes J.A., Q uesada- Moraga E., Trapero A. Evolution and sustainability of the olive production systems. In : Arcas N. (ed.), Arroyo López F.N. (ed.), Caballero J. (ed.), D'Andria R. (ed.), Fernández M. (ed.), Fernandez
    [Show full text]
  • Sinningia Speciosa Sinningia Speciosa (Buell "Gloxinia") Hybrid (1952 Cover Image from the GLOXINIAN)
    GESNERIADS The Journal for Gesneriad Growers Vol. 61, No. 3 Third Quarter 2011 Sinningia speciosa Sinningia speciosa (Buell "Gloxinia") hybrid (1952 cover image from THE GLOXINIAN) ADVERTISERS DIRECTORY Arcadia Glasshouse ................................49 Lyndon Lyon Greenhouses, Inc.............34 Belisle's Violet House ............................45 Mrs Strep Streps.....................................45 Dave's Violets.........................................45 Out of Africa..........................................45 Green Thumb Press ................................39 Pat's Pets ................................................45 Kartuz Greenhouses ...............................52 Violet Barn.............................................33 Lauray of Salisbury ................................34 6GESNERIADS 61(3) Once Upon a Gloxinia … Suzie Larouche, Historian <[email protected]> Sixty years ago, a boy fell in love with a Gloxinia. He loved it so much that he started a group, complete with a small journal, that he called the American Gloxinia Society. The Society lived on, thrived, acquired more members, studied the Gloxinia and its relatives, gesneriads. After a while, the name of the society changed to the American Gloxinia and Gesneriad Society. The journal, THE GLOXINIAN, grew thicker and glossier. More study and research were conducted on the family, more members and chapters came in, and the name was changed again – this time to The Gesneriad Society. Nowadays, a boy who falls in love with the same plant would have to call it Sinningia speciosa. To be honest, the American Sinningia Speciosa Society does not have the same ring. So in order to talk "Gloxinia," the boy would have to talk about Gloxinia perennis, still a gesneriad, but a totally different plant. Unless, of course, he went for the common name of the spec- tacular Sinningia and decided to found The American Florist Gloxinia Society.
    [Show full text]
  • Starmaya: the First Arabica F1 Coffee Hybrid Produced Using Genetic Male Sterility
    METHODS published: 22 October 2019 doi: 10.3389/fpls.2019.01344 Starmaya: The First Arabica F1 Coffee Hybrid Produced Using Genetic Male Sterility Frédéric Georget 1,2*, Lison Marie 1,2, Edgardo Alpizar 3, Philippe Courtel 3, Mélanie Bordeaux 4, Jose Martin Hidalgo 4, Pierre Marraccini 1,2, Jean-christophe Breitler 1,2, Eveline Déchamp 1,2, Clément Poncon 3, Hervé Etienne 1,2 and Benoit Bertrand 1,2 1 CIRAD, UMR IPME, Montpellier, France, 2 IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France, 3 Plant material, ECOM, Exportadora Atlantic, Managua, Nicaragua, 4 FONDATION NICAFRANCE, Managua, Nicaragua In the present paper, we evaluated the implementation of a seed production system based on the exploitation of male sterility on coffee. We studied specifically the combination between CIR-SM01 and Marsellesa® (a Sarchimor line), which provides a hybrid population called Starmaya. We demonstrated that the establishment of seed garden under natural pollination is possible and produces a sufficient amount of hybrid seeds to be multiplied efficiently and economically. As expected for F1 hybrid, the performances of Starmaya are highly superior to conventional cultivars. However, we observed some heterogeneity on Starmaya cultivar Edited by: in the field. We confirmed by genetic marker analysis that the off-types were partly related to Marcelino Perez De La Vega, Universidad de León, Spain the heterozygosity of the CIR-SM01 clone and could not be modified. Regarding the level Reviewed by: of rust resistance of Starmaya cv., we saw that it could be improved if Marsellesa was more Aaron P. Davis, fully fixed genetically. If so, we should be able to decrease significantly the percentage of rust Royal Botanic Gardens, Kew, United Kingdom incidence of Starmaya from 15 to 5%, which would be quite acceptable at a commercial Eveline Teixeira Caixeta, level.
    [Show full text]
  • Olea Europaea L.) by Conventional and in Vitro Biotechnology Methods
    Biotechnology Advances 34 (2016) 687–696 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods E. Rugini ⁎, V. Cristofori, C. Silvestri Department of Agricultural and Forestry Science (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy article info abstract Article history: In olive (Olea europaea L.) traditional methods of genetic improvement have up to now produced limited results. Received 22 September 2015 Intensification of olive growing requires appropriate new cultivars for fully mechanized groves, but among the Received in revised form 1 March 2016 large number of the traditional varieties very few are suitable. High-density and super high-density hedge row Accepted 7 March 2016 orchards require genotypes with reduced size, reduced apical dominance, a semi-erect growth habit, easy to Available online 10 March 2016 propagate, resistant to abiotic and biotic stresses, with reliably high productivity and quality of both fruits and Keywords: oil. Innovative strategies supported by molecular and biotechnological techniques are required to speed up Olea europaea novel hybridisation methods. Among traditional approaches the Gene Pool Method seems a reasonable option, Intensive cultivation but it requires availability of widely diverse germplasm from both cultivated and wild genotypes, supported by Rootstocks a detailed knowledge of their genetic relationships. The practice of “gene therapy” for the most important Gene pool hybridization method existing cultivars, combined with conventional methods, could accelerate achievement of the main goals, but ef- In vitro techniques forts to overcome some technical and ideological obstacles are needed.
    [Show full text]
  • The European Garden Flora Flowering Plants Volume 5: Angiospermae – Dicotyledons, 2Nd Edition Edited by James Cullen , Sabina G
    Cambridge University Press 978-0-521-76164-2 — The European Garden Flora Flowering Plants Volume 5: Angiospermae – Dicotyledons, 2nd Edition Edited by James Cullen , Sabina G. Knees , H. Suzanne Cubey Frontmatter More Information THE EUROPEAN GARDEN FLORA The European Garden Flora is the definitive manual for the accurate identification of cultivated ornamental flowering plants. Designed to meet the highest scientific standards, the vocabulary has nevertheless been kept as uncomplicated as possible so that the work is fully accessible to the informed gardener as well as to the professional botanist. This new edition has been thoroughly reorganised and revised, bringing it into line with modern taxonomic knowledge. Although European in name, the Flora covers plants cultivated in most areas of the United States and Canada as well as in non- tropical parts of Asia and Australasia. Volume V completes the series, and includes many important ornamental families, such as Labiatae, Solanaceae, Scrophulariaceae, Acanthaceae, Campanulaceae, and the largest family of Dicotyledons, the Compositae. James Cullen has been a professional plant taxonomist for over 50 years, working particularly on the classification and identification of plants in cultivation (especially Rhododendron) at Liverpool and Edinburgh Universities, at the Royal Botanic Garden Edinburgh, and in Cambridge. With the late Dr S. M. Walters, he was the initiator of the first edition of The European Garden Flora and is responsible for two spin-offs, The Orchid Book (1992) and Manual of North European Garden Plants (2001). Sabina Knees is a taxonomist at the Royal Botanic Garden Edinburgh and although now working on plants of the Middle East, particularly the Flora of the Arabian Peninsula and Socotra, she spent over 20 years working as a horticultural taxonomist for the Royal Horticultural Society and the Royal Botanic Garden Edinburgh and is a founder member of the Horticultural Taxonomy Group (HORTAX).
    [Show full text]
  • Evaluation of Pomological Traits and Classification of Some Olive Cultivars in Zanjan Province
    ”ﻣﺠﻠﻪ ﺑﻪﻧﮋادي ﻧﻬﺎل و ﺑﺬر” ﺟﻠﺪ 1-28، ﺷﻤﺎره 1، ﺳﺎل 1391ت ﻣﺠﻠﻪ ﺑﻪﻧﮋادي ﻧﻬﺎل و ﺑﺬر ﺟﻠﺪ 1-29 ، ﺷﻤﺎره 4، ﺳﺎل 1392 ارزﻳﺎﺑﻲ ﺧﺼﻮﺻﻴﺎت ﭘﻮﻣﻮﻟﻮژﻳﻜﻲ و ﮔﺮوهﺑﻨﺪي ﺑﺮﺧﻲ ارﻗﺎم زﻳﺘﻮن در اﺳﺘﺎن زﻧﺠﺎن Evaluation of Pomological Traits and Classification of some Olive Cultivars in Zanjan Province اﻟﻬﺎم ﭘﻮراﺳﻜﻨﺪري1، ﻋﻠﻲ ﺳﻠﻴﻤﺎﻧﻲ2، ﺟﻼل ﺻﺒﺎ3 و ﻣﻬﺪي ﻃﺎﻫﺮي4 1، 2 و 3- ﺑﻪ ﺗﺮﺗﻴﺐ داﻧﺸﺠﻮي ﺳﺎﺑﻖ ﻛﺎرﺷﻨﺎﺳﻲ ارﺷﺪ ﻋﻠﻮم ﺑﺎﻏﺒﺎﻧﻲ، اﺳﺘﺎدﻳﺎر و داﻧﺸﻴﺎر، داﻧﺸﻜﺪه ﻛﺸﺎورزي، داﻧﺸﮕﺎه زﻧﺠﺎن 4- ﻣﺮﺑﻲ، ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎت ﻛﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ زﻧﺠﺎن ﺗﺎرﻳﺦ درﻳﺎﻓﺖ: 6/6/1391 ﺗﺎرﻳﺦ ﭘﺬﻳﺮش: 1391/12/10 ﭼﻜﻴﺪه ﭘﻮراﺳﻜﻨﺪري، ا .، ﺳﻠﻴﻤﺎﻧﻲ، ع .، ﺻﺒﺎ، ج . و ﻃﺎﻫﺮي، م. 1392. ارزﻳﺎﺑﻲ ﺧﺼﻮﺻﻴﺎت ﭘﻮﻣﻮﻟﻮژﻳﻜﻲ و ﮔﺮوهﺑﻨﺪي ﺑﺮﺧﻲ ارﻗـﺎم زﻳﺘـﻮن در اﺳـﺘﺎن زﻧﺠـﺎن . ﻣﺠﻠـﻪ ﺑﻪﻧﮋادي ﻧﻬﺎل و ﺑﺬر 29-1: 636 - 623. ﺑﺮاي ﺑﺮرﺳﻲ ﺧﺼﻮﺻﻴﺎت ﻣﻴﻮه و ﮔﺮوه ﺑﻨﺪي ارﻗﺎم زﻳﺘﻮن، آزﻣﺎﻳـﺸﻲ روي ﺑﻴـﺴﺖ رﻗـﻢ زﻳﺘـﻮن ﻃـﻲ دو ﺳـﺎ ل (1390-1389) در اﻳﺴﺘﮕﺎه ﺗﺤﻘﻴﻘﺎت زﻳﺘﻮن ﮔﻴﻠﻮان (زﻧﺠﺎن) اﻧﺠﺎم ﺷﺪ . آزﻣﺎﻳﺶ در ﻗﺎﻟﺐ ﻃـﺮح اﺳـﭙﻠﻴﺖ ﭘـﻼت در زﻣﺎن ﺑﺎ ﻃﺮح ﭘﺎﻳﻪ ﻛﺎﻣﻼً ﺗﺼﺎدﻓﻲ ﺑﺎ ﺳﻪ ﺗﻜﺮار اﺟﺮا ﺷﺪ . ﮔﺮوهﺑﻨﺪي ارﻗﺎم ﺑﺮ اﺳﺎس ﺻـﻔﺎت وزن ﺗـﺮ و ﺧـﺸﻚ ﻣﻴـﻮه، ﻧﺴﺒﺖ ﮔﻮﺷﺖ ﺑﻪ ﻫﺴﺘﻪ و درﺻﺪ روﻏﻦ ﺑﺎ اﺳﺘﻔﺎده از ﺗﺠﺰﻳﻪ ﺧﻮﺷﻪ اي و ﺗﺠﺰﻳﻪ ﺑﻪ ﻣﺆﻟﻔﻪﻫﺎي اﺻﻠﻲ اﻧﺠﺎم ﺷـﺪ . ﻧﺘـﺎﻳﺞ ﺗﺠﺰﻳﻪ وارﻳﺎﻧﺲ ﺗﻔﺎوت ﻣﻌﻨﻲ داري ﻣﻴﺎن رﻗﻢ، ﺳﺎل و اﺛﺮ ﻣﺘﻘﺎﺑﻞ ﺑﺮاي اﻛﺜﺮ ﺻﻔﺎت ﻧﺸﺎن داد . ﺑﺮ اﺳﺎس ﻧﺘـﺎﻳﺞ ﺗﺠﺰﻳـﻪ ﺧﻮﺷﻪ اي و ﺗﺠﺰﻳﻪ ﺑﻪ ﻣﺆﻟﻔﻪ ﻫﺎي اﺻﻠﻲ، ارﻗﺎم از ﻧﻈﺮ ﺻﻔﺎت ارزﻳﺎﺑﻲ ﺷﺪه ﺑﻪ ﺧﻮﺑﻲ از ﻳﻚ دﻳﮕﺮ ﺗﻔﻜﻴﻚ ﺷـﺪﻧﺪ . ﺑـﺮ اﻳﻦ اﺳﺎس، ارﻗ ﺎم ﻛﺎرﻳﺪوﻟﻴﺎ، ﭘﻴﻜﻮآل، وﻟﻴﻮﺗﻴﻜﻲ و ﻛﺎﻳﺴﻲ ﺑﻴﺸﺘﺮﻳﻦ وزن ﻣﻴﻮه و ﻧﺴﺒﺖ ﮔﻮﺷﺖ ﺑﻪ ﻫﺴﺘﻪ را داﺷـﺘﻨﺪ و ﺑﻪ ﻋﻨﻮان ارﻗﺎم ﻣﻨﺎﺳﺐ ﻛﻨﺴﺮوي وSID ارﻗﺎم ﻛﺎﻳﻠﺘﻪ، of ﻛﺮوﻧﺎﺋﻴﻜﻲ، آرﺑﻜﻴﻦ، ﻟﭽﻴﻨﻮ، ﺑﻠﻴﺪي و ﻧﺒﺎﻟﻲ ﺑﺎ Archiveدرﺻﺪ ﺑﺎﻻي روﻏﻦ ﺑﻪ ﻋﻨﻮان ارﻗﺎم روﻏﻨﻲ ﺷﻨﺎﺳﺎﺋﻲ ﺷﺪﻧﺪ .
    [Show full text]
  • Unveiling a Unique Genetic Diversity of Cultivated Coffea Arabica L. in Its Main Domestication Center: Yemen
    Genet Resour Crop Evol https://doi.org/10.1007/s10722-021-01139-y (0123456789().,-volV)( 0123456789().,-volV) RESEARCH ARTICLE Unveiling a unique genetic diversity of cultivated Coffea arabica L. in its main domestication center: Yemen C. Montagnon . A. Mahyoub . W. Solano . F. Sheibani Received: 21 July 2020 / Accepted: 15 January 2021 Ó The Author(s) 2021 Abstract Whilst it is established that almost all varieties and included no Yemen samples. Two other cultivated coffee (Coffea arabica L.) varieties origi- clusters were made up of worldwide varieties and nated in Yemen after some coffee seeds were intro- Yemen samples. We named these the Yemen Typica- duced into Yemen from neighboring Ethiopia, the Bourbon cluster and the Yemen SL-34 cluster. Finally, actual coffee genetic diversity in Yemen and its we observed one cluster that was unique to Yemen and significance to the coffee world had never been was not related to any known cultivated varieties and explored. We observed five genetic clusters. The first not even to any known Ethiopian accession: we name cluster, which we named the Ethiopian-Only (EO) this cluster the New-Yemen cluster. We discuss the cluster, was made up exclusively of the Ethiopian consequences of these findings and their potential to accessions. This cluster was clearly separated from the pave the way for further comprehensive genetic Yemen and cultivated varieties clusters, hence con- improvement projects for the identification of major firming the genetic distance between wild Ethiopian resilience/adaptation and cup quality genes that have accessions and coffee cultivated varieties around the been shaped through the domestication process of C.
    [Show full text]
  • Recognition and Management of Diseases of Woody Ornamentals in the Landscape
    Dr. Sharon M. Douglas The Connecticut Agricultural Experiment Station 123 Huntington Street P. O. Box 1106 New Haven, CT 06504 Phone: (203)974-8601 Fax: (203)974-8502 Email: [email protected] RECOGNITION AND MANAGEMENT OF DISEASES OF WOODY ORNAMENTALS IN THE LANDSCAPE While problems of woody ornamentals are frequently associated with living factors, problems attributed to cultural and environmental factors are also common and are becoming increasingly more prevalent given the weather extremes of the past few years and as populations increase and urbanization continues. In many cases there is little that can be done about these problems once they are observed so prevention is usually the best approach. I. STEPS FOR DISEASE PREVENTION AND CONTROL: A. Diagnosis- knowing what you're trying to control; accurate diagnosis is critical for successful disease control; B. Assessing the Severity of the Problem- 1. Nature of pest problem- type of disease, i.e., root vs. foliar, systemic vs. localized 2. Level of disease- loss threshold, i.e., amount of disease, number of years with problem; number of trees affected C. Control Options- 1. Culture: this includes cultural methods that modify the plant's growing conditions; maintaining optimum plant vigor by proper site selection, proper watering and fertilizing; avoiding mechanical injuries and soil compaction; appropriately timed pruning and transplanting, adequate spacing between plants, improving tilth and pH of the soil; 2. Sanitation: this involves the use of vigorous, healthy, disease-free cuttings or plants, pruning of affected plant parts; raking and removing affected plant parts such as fallen leaves; disinfesting tools such as pruning shears and spades; 3.
    [Show full text]
  • Pdf 266.47 K
    DOI: http://dx.doi.org/10.22092/cbj.2012.100455 Genetic and morphological variation in Iranian olive (Olea europaea L.) germplasm E. Dastkara*, A. Soleimanib, H. Jafaryc, and M. R. Naghavid a,cAgricultural and Natural Resources Research Center of Zanjan Province, Zanjan, Iran bFaculty of Agriculture, University of Zanjan, Zanjan, Iran. dAgricultural and Natural Resources Campus, University of Tehran, Karaj, Iran *Corresponding author’s E-mail address: [email protected] Received: March 2013 Accepted: October 2013 ABSTRACT Dastkar, E., Soleimani, A., Jafary, H., and Naghavi, M. R. 2013. Genetic and morphological variation in Iranian olive (Olea europaea L.) germplasm. Crop Breeding Journal 3(2):99-106. Olive cultivars with specific characteristics have been developed thanks to Iran’s particular climatic conditions and long-term olive cultivation. The genetic variation and relationships among 40 olive cultivars, as well as 17 unknown genotypes from the national olive collection orchard at Tarom Research Station, Zanjan, Iran, were evaluated using SSR markers. Using 10 microsatellite primer pairs, 43 polymorphic bands were obtained on 57 olive genotypes. In addition to molecular markers, 14 morphological traits were measured in all olive genotypes. Based on discriminant and cluster analysis, the group of Iranian genotypes showed the greatest genetic distance from Spanish, Greek, Syrian, Italian and French groups. Based on cluster analysis using molecular and morphological data, most of the unknown genotypes showed high genetic similarity with genotypes from Spain and Syria. Despite the high genetic variation among cultivars in each group, geographical origin had significant impact on observed variability using Shannon’s information index and polymorphism information of olive accessions.
    [Show full text]
  • 100 Years of Breeding
    100 years of breeding CEREAL FIBER FORAGE FRUIT GERMPLASM NUTS OILSEED ORNAMENTAL VEGETABLE PLANT BREEDING ACADEMY RESEARCH AND InfORMATION CENTERS Plant Breeding Program COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES Office of the Dean COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES AOffice ofnote the Dean from the editor ummarizing 100 years of history not only California, but the United Sin plant breeding at UC Davis is States and in many cases the world, a formidable task. As a land-grant to enjoy fresh produce throughout university, UC Davis has played the year. This publication captures a major role in developing and the impact that UC Davis has had managing many of the more than on developing crops through plant 350 plant commodities now grown breeding over the last century and in California. The diversity of crops just as importantly, highlights the ranges across vegetables, fruits, nuts, people who have made this possible. grains, forages, ornamentals and turf. ! In the early 1900s the focus was on a few grain crops, and has expanded considerably since that time. The application of plant breeding and training of breeders at UC Davis ALLEN VAN DEYNZE focused on the unique and diverse (530) 754-6444 California environment, allowing [email protected] Table of contents Peach, processing 20 VEGETABLE Strawberry 22 Artichoke 36 Dean’s address 3 Prune and plum 24 Carrot 37 Celery 38 CEREAL GERMPLASM Garlic 39 Oat 4 Foundation Seed Program 25 Grain legumes 40 Other Triticeae 5 Foundation Plant Services 26 Lettuce 42 Rice
    [Show full text]
  • Kentucky Bluegrass, Poa Pratensis L. Tom Cook Oregon State University
    Kentucky Bluegrass, Poa pratensis L. Tom Cook Oregon State University Introduction: Kentucky bluegrass has long been the most important cool season grass planted as turf. It has been used for lawns, athletic fields, golf course fairways, tees, and rough, and been widely planted for pastures in regions where it thrives. Kentucky bluegrass is the grass that made sod production possible in northern climates. In most peoples mind this is the grass that is turf. Because it is adapted to such a wide range climates, you might think it is a native species, but like many of our other grasses Kentucky bluegrass arrived in North America along with traders and settlers from Europe. Botanical Characteristics and Identification: Kentucky bluegrass is a sod forming rhizomatous cool season (C-3) grass that is adapted to climates with warm summers and cold winters. It has a so called perennial root system in which maximum root system development occurs after one to two years from planting. While there is an annual flush of new roots in spring many of last years roots remain alive and functioning. Because many roots live through the winter, it is not unusual to dig up a patch of healthy bluegrass and observe that most of the roots appear brown. Genetically Kentucky bluegrass is quite variable with chromosome numbers ranging from 2n=28 to 154. It does hybridize but generally produces seed apomictically. Apomixis is a form of asexual reproduction where seed forms from cells in the ovary wall of the flowers so the progeny are identical to the parent plant.
    [Show full text]