<<

Is the 125 GeV Higgs the superpartner of a ?

Francesco Riva EPFL (Lausanne) and IFAE (Barcelona)

In collaboration with Pomarol, Biggio (arXiv:1211.4526) Can the Higgs be superpartner of a neutrino?

Yes: same quantum numbers ⌫ SUSY h0 L = =(1, 2)1/2 H = =(1, 2)1/2 l h ✓ L ◆ ✓ ◆

Fayet,’76; Pomarol,FR,Biggio’12 Can the Higgs be superpartner of a neutrino?

Yes: same quantum numbers ⌫ SUSY h0 L = =(1, 2)1/2 H = =(1, 2)1/2 l h ✓ L ◆ ✓ ◆

MSSM

Fayet,’76; Pomarol,FR,Biggio’12 Can the Higgs be superpartner of a neutrino?

Yes: same quantum numbers ⌫ SUSY h0 L = =(1, 2)1/2 H = =(1, 2)1/2 l h ✓ L ◆ ✓ ◆

Possibility here:

Higgs doublet

Fayet,’76; Pomarol,FR,Biggio’12 Can the Higgs be superpartner of a neutrino?

Yes: same quantum numbers ⌫ SUSY h0 L = =(1, 2)1/2 H = =(1, 2)1/2 l h ✓ L ◆ ✓ ◆

Possibility here:

Higgs doublet

Fayet,’76; Pomarol,FR,Biggio’12 Can the Higgs be superpartner of a neutrino?

Yes: same quantum numbers ⌫ SUSY h0 L = =(1, 2)1/2 H = =(1, 2)1/2 l h ✓ L ◆ ✓ ◆

Possibility here:

Higgs doublet

Fayet,’76; Pomarol,FR,Biggio’12 Can the Higgs be superpartner of a neutrino?

Yes: same quantum numbers ⌫ SUSY h0 L = =(1, 2)1/2 H = =(1, 2)1/2 l h ✓ L ◆ ✓ ◆

Possibility here:

Higgs doublet

Is the Higgs the first SUSY discovered?

Fayet,’76; Pomarol,FR,Biggio’12 What if Higgs is the superpartner of the neutrino?

⌫ SUSY h0 L = =(1, 2)1/2 H = =(1, 2)1/2 l h ✓ L ◆ ✓ ◆

Fayet,’76; Pomarol,FR,Biggio’12 Yukawa Couplings q H Can be supersymmetrized d q H† Cannot be supersymmetrized: u Yukawa Couplings q H 1 Can be supersymmetrized d q H2 Can be supersymmetrized u Yukawa Couplings q L H ⌘ Can be supersymmetrized d q L† H† ⌘ Cannot be supersymmetrized: u Yukawa Couplings q L H ⌘ Can be supersymmetrized d q L† H† ⌘ Cannot be supersymmetrized: Up-sector Yukawa must come from SUSY u (Can arise from Heavy MSSM-like Higgses, not accessible at LHC) Frugiuele,Gregoire,Kumar,Ponton,Bertuzzo’11-’12 Yukawa Couplings q L H ⌘ Can be supersymmetrized d q L† H† ⌘ Cannot be supersymmetrized: Up-sector Yukawa must come from SUSY u (Can arise from Heavy MSSM-like Higgses, not accessible at LHC) Frugiuele,Gregoire,Kumar,Ponton,Bertuzzo’11-’12

Surprisingly Higgs mass still protected at one-loop u H H† † q Yukawa Couplings q L H ⌘ Can be supersymmetrized d q L† H† ⌘ Cannot be supersymmetrized: Up-sector Yukawa must come from SUSY u (Can arise from Heavy MSSM-like Higgses, not accessible at LHC) Frugiuele,Gregoire,Kumar,Ponton,Bertuzzo’11-’12

Surprisingly Higgs mass still protected at one-loop u H H† † q Notice that a 125 GeV Higgs also needs a “quartic coupling” from SUSY breaking! 2 2 2 2 & (86GeV) (125GeV) . mZ + m MSSM: R-Parity

In the MSSM, we need an R-parity:

R=1 R=-1 MSSM: R-Parity

In the MSSM, we need an R-parity:

R=1 R=-1 g˜

... with important implications t˜ for phenomenology

h˜ MET

Higgs as slepton: R-parity?

Higgs

R=1 R=-1

Higgs as slepton: R-parity?

Higgs gravitino

R=1 R=-1 Higgs VEV breakes it! decay... Need a new version of R-parity! Higgs as slepton: R-Symmetry

Example:

Higgs gravitino

R-charge = 0 R-charge = 1 Higgs as slepton: R-Symmetry

Example:

Higgs gravitino

R-charge = 0 R-charge = 1

- must be charged Neutrino masses: - R must be a symmetry (not a parity) Higgs as slepton: R-Symmetry

Example:

Higgs gravitino

R-charge = 0 R-charge = 1

- must be charged Neutrino masses: - R must be a symmetry (not a parity) : Majorana masses forbidden, must get Dirac masses by marrying other states Implications

Gauginos have Dirac-type masses: different phenomenology (no same-sign dileptons) Implications

Gauginos have Dirac-type masses: different phenomenology (no same-sign dileptons)

⌫˜ h i - mixing, changes l couplings l W˜ LEP bounds: gaugino mass >TeV Implications

Gauginos have Dirac-type masses: different phenomenology (no same-sign dileptons)

⌫˜ h i lepton-gaugino mixing, changes l couplings l W˜ LEP bounds: gaugino mass >TeV

No trilinears: No LR-mixing in the squark sector 2 2 2 2 m˜ = m˜ mt + mb bL tL Implications No Typical Spectrum Gauginos have Dirac-type masses: different phenomenology ------Gauginos(no same-sign dileptons) ⌫˜ u˜R h i 1TeV˜ u˜L l W lepton-gauginod˜L mixing, changes couplings

LEP bounds:d˜R gaugino mass >TeV

˜bR ˜ No trinilears: No LR-mixing in the squarkt Lsector ˜ 2 2 2 2 bL m˜ = m˜ mt + mb bL tL t˜R

(Lighter for naturalness) Implications

Gauginos have Dirac-type masses: different phenomenology (no same-sign dileptons)

⌫˜ h i lepton-gaugino mixing, changes l couplings l W˜ LEP bounds: gaugino mass >TeV

No trinilears: No LR-mixing in the squark sector 2 2 2 2 m˜ = m˜ mt + mb bL tL

No ordinary R-parity: Squarks can decay to +lepton Higgs as slepton: R-Symmetry

Example:

Higgs gravitino

g˜ ... with important implications for phenomenology t˜

MET e h˜ Signatures: 3rd family squarks

Typical LHC signatures: No E T , but in final state! BR tL 1 é é SUSY signal t˜ tLô t G L ˜ é - G t ô b l 0.1 L b é ˜ tLô t n signal tL 0.01 e,¯ µ,¯ ⌧¯

400 500 600 700 800 900 1000 SUSY signal tR t˜L m˜ (GeV) (but different helicity) tL ⌫

Pomarol,FR,Biggio ’12 Signatures: 3rd family squarks

Typical LHC signatures: No E T , but leptons in final state!

BR 1 é - tLô b l é 0.1 tLô t n b Leptoquark signal t˜L 0.01 e,¯ µ,¯ ⌧¯

400 500 600 700 800 900 1000 SUSY signal tR t˜L m˜ (GeV) (but different helicity) tL ⌫

Pomarol,FR,Biggio ’12 Signatures: 3rd family squarks

Typical LHC signatures: No E T , but leptons in final state!

BR 1 é bR ô b n

é b ô t l- 0.1 R ˜ tL Leptoquark signal bR 0.01 e, µ, ⌧ SUSY signal b 400 500 600 700 800 900 1000 ˜bR m˜ (GeV) (but different helicity) bR ⌫

Pomarol,FR,Biggio ’12 Signatures: 3rd family squarks

Typical LHC signatures: No E T , but leptons in final state!

BR 0.1 mt˜R = 170GeV 1 0.08 ⌫ é tRô t n 0.06

dist 0.04 0.1 ˜ 0.02 G

80 100 120 140 160 180 0.01 mWb(GeV)

SUSY signal tL 400 500 600 700 800 900 1000 (but different helicity) t˜R mt˜R (GeV) t˜ Gt˜ ⌫ R ! R

Pomarol,FR,Biggio ’12 Pomarol,FR,Biggio ’12 Signatures: 1st/2nd family squarks e, µ, ⌧ 2-Body decays Yukawa suppressed: d˜R u Yd Pomarol,FR,Biggio ’12 Signatures: 1st/2nd family squarks e, µ, ⌧ 2-Body decays Yukawa suppressed: d˜R u Yd 1st family: 3-Body decays dominate u ¯ M 2TeV l, ⌫¯ W˜ & ˜ d˜ u˜L,R, dL,R u, d R W + h, Z, W h e, µ, ⌧ h i Pomarol,FR,Biggio ’12 Signatures: 1st/2nd family squarks e, µ, ⌧ 2-Body decays Yukawa suppressed: d˜R u Yd 1st family: 3-Body decays dominate u ¯ M 2TeV l, ⌫¯ W˜ & ˜ d˜ u˜L,R, dL,R u, d R W + h, Z, W h e, µ, ⌧ h i 2nd family: 3-Body decays can dominate e,¯ µ,¯ ⌧¯ e,¯ µ,¯ ⌧¯ c˜L s c˜L s Z ( m . 500 GeV ) ( m & 500 GeV ) Signatures: Higgs sector

Higgs sector: Invisible decay h ⌫ + G ˜ with BRinv . 10% !

c f =cV=1, cgg=cgg=cZg=0 10

3s 8

6 2 Dc 4 2s

2 1s 0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Brinv

Falkowski,FR,Urbano ’13 Conclusions

SUSY is a general framework with diverse realizations

Discovery of 125 GeV Higgs has changed perspective on SUSY: Hard breaking needed / MSSM unnatural Conclusions

SUSY is a general framework with diverse realizations

Discovery of 125 GeV Higgs has changed perspective on SUSY: Hard breaking needed / MSSM unnatural

Higgs could be the first SUSY partner discovered (same quantum numbers as sneutrino):

Squarks decay into quarks and leptons, or into 3-body If gravitino is light, small invisible Higgs BR expected

Dedicated study allows to distinguish from other models