Supersymmetry

Total Page:16

File Type:pdf, Size:1020Kb

Supersymmetry Supersymmetry The predictions for the proton lifetime and the weak mixing angle, discussed in the previous lecture on grand unified theories, can be Incorporated in a proposed symmetry between bosons and fermions called supersymmetry. According to the supersymmetry, every known elementary particle has a supersymmetric partner (called a superpartner), which is has the same quantum numbers, except for its spin, and same interactions. Spin-1/2 fermions, leptons and quarks have spin-0 superpartners, while spin-1 bosons, like photons, have spin-1/2 superpartners. The supersymmetric partners of fermions are named by adding a prefix ‘s’ to the name of the fermion, while the supersymmetric partners of the bosons are named by adding the ending ‘ino’ to the root of the normal name. This is illustrated in Table 12.1 on the next slide, where we list the various fermions and gauge bosons of the standard model, together with their superpartners. The superpartners are collectively called superparticles, or sparticles for short. Supersymmetry (2) Supersymmetry (3) The situation for the Higgs boson in Supersymmetry is more complicated, since if one simply associates a superpartner with the standard model Higgs boson, it can be shown that the theory becomes inconsistent, so supersymmetry requires additional spin-0 Higgs bosons, as well as their spin-1/2 superpartners, called Higgsinos. The simplest version of supersymmetry is called the minimal supersymmetric standard model (MSSM) because it contains the minimum number of new particles that are required for a consistent theory. There are other, more complicated version of the supersymmetric theories, so supersymmetry is not a well defined theory: it is rather a concept or a framework for many different theories. MSSM which we discuss here has 5 Higgs bosons: three neutral and two charged spin-0 Higgs bosons, together with two neutral and two charged Higgsinos Supersymmetry (4) The photino, zino and the neutral Higgsinos and are all spin-1/2 particles that interact by electroweak forces only. They are expected to mix together in the same way as neutrinos, to form four new particles, called neutralinos. In similar way, the charged Higgsinos can mix with the winos to form four particles, called charginos. A useful way to characterize particles in Supersymmery as particles or superparticles is to introduce a new quantum number, called R parity, defined as R ≡ (−1)3(B−L)+2S (12.13) where B is the baryon number, L is the lepton number and S is the spin. One can verify that all the particles of the standard model have R = +1, while the sparticles have R = −1. R parity can be introduced in different versions of supersymmetric theory (not just in MSSM), and this quantum number also may be conserved or not in some supersymmetric theories. Supersymmetry (5) If supersymmetry were exact, a particle and its supersymmetric partner would have exactly the same mass. This is not realized in nature since superparticles would have been detected long ago. The masses of the predicted superparticles are unknown. A very rough limit on the degree of symmetry breaking is suggested by the so-called hierarchy problem. From the theory of radiative corrections, theorists expect that the large quantum contributions to the square of the Higgs boson mass would make the Higgs mass huge, comparable to the scale at which new physics appears, unless there is a cancellation (called fine-tuning) between the quadratic radiative corrections and the bare Higgs mass. Supersymmetry provides an explanation on how a tiny Higgs mass can be protected from quantum corrections, since it removes the power-law divergences of the radiative corrections to the Higgs mass as long as the supersymmetric particles are light (see diagrams providing cancellations on the next slide). Unfortunately from such calculations, we get only an estimate on the masses of supersymmetric particles: and they are roughlexpected be of the order of 1 Tev. Many versions of the supersymmetric theories are is still in agreement with the LHC experiments. Supersymmetry (6) Supersymmetry (7) Supersymmetry theories have several other attractive features, such theories may provide us also with natural explanations for other needed BSM extensions related to cosmology. One of the arguments for the supersymmetry was that it may improve the trend of running constants of interactions so that they can cross in one point, see e.g. the schematical Figures below. It has been also shown that the lightest (and stable) supersymmetric particle may be a natural candidate for the dark matter. Supersymmetry also may provide us with more of the needed and still missing value of the CP asymmetry. The last two questions will be discussed in more details in the next lecture. Strings Supersymmetry is an important component in even more ambitious schemes to unify gravity with the other forces of nature at superunification scale where gravitational interactions are comparable in strength with those of the grand unified strong and electroweak interactions. The problems here are mathematically formidable, not the least of them being that the divergences encountered in trying to quantize gravity are far more severe than those in either QCD or the electroweak theory, and there is at present no successful ‘stand alone’ quantum theory of gravity analogous to the former two. In order to resolve this problem, the theories that have been proposed invariably replace the idea of point-like elementary particles with tiny quantised one-dimensional strings, and for reasons of mathematical consistency are formulated in many more dimensions (usually 10, including one time dimension) than we observe in nature. Such theories have a single free parameter – the string tension. However, we live in a four-dimensional world and one possibility to explain this is that the extra dimensions are ‘compactified’, that is reduced to an unobservably small size, so we are interested in the low energy limit of such theories. Strings (2) Unfortunately the low energy limit which can be compared with experiments is not unique. String theorists have discovered that there are more than 104 possible low-energy theories that could be a low energy limit of the string theories, each corresponding to a universe with a different set of fundamental particles, interactions and parameters. Unless there is a method of choosing between the vast possibilities offered by this ‘landscape’, string theories have been criticized for having little or no real predictive power. Still they have generated a lively philosophical debate. One controversial philosophical approach to the question of choice has been to invoke the so-called ‘anthropic principle’. There are various forms of this, but essentially it states that what we can expect to observe must be restricted by the conditions necessary for our presence as observers. In other words, the world is observed to be the way it is because that is the only way that humans could ever be here to consider such questions Strings (3) The self-consistency of string theories in 10 dimensions lead to the the existence of higher- dimensional objects called branes (short for membranes). Using branes it is possible to construct an even more fundamental theory in 11 dimensions in which the supersymmetric string theories are unified. This theory has a name – M theory, but again despite mathematical beauty, and unfortunately again there seems to be no way to test experimentally the predictions. The string theories seem to be relevant to energies defined by the so-called Planck mass MP , constructed from the known physics constants: At this energy gravity is expected to become strong. This energy is so large that it is difficult to think of a way that the theories could be tested at currently accessible energies. The appeal of string theories at present is mainly the mathematical beauty and ‘naturalness’. There are many connections though, accessible or even confirmed experimentally, between the particle physics and cosmology, which includes the current theory of gravity (general relativity). These connections will be discussed in the next lecture. .
Recommended publications
  • Arxiv:Astro-Ph/0010112 V2 10 Apr 2001
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server NYU-TH-00/09/05 Preprint typeset using LATEX style emulateapj v. 14/09/00 NEUTRON STARS WITH A STABLE, LIGHT SUPERSYMMETRIC BARYON SHMUEL BALBERG1,GLENNYS R. FARRAR2 AND TSVI PIRAN3 NYU-TH-00/09/05 ABSTRACT ¼ If a light gluino exists, the lightest gluino-containing baryon, the Ë , is a possible candidate for self-interacting ¼ ª =ª 6 ½¼ Ñ dÑ b dark matter. In this scenario, the simplest explanation for the observed ratio is that Ë ¼ ¾ Ë 9¼¼ MeVc ; this is not at present excluded by particle physics. Such an could be present in neutron stars, with hyperon formation serving as an intermediate stage. We calculate equilibrium compositions and equation of ¼ state for high density matter with the Ë , and find that for a wide range of parameters the properties of neutron ¼ stars with the Ë are consistent with observations. In particular, the maximum mass of a nonrotating star is ¼ ½:7 ½:8 Å Ë ¬ , and the presence of the is helpful in reconciling observed cooling rates with hyperon formation. Subject headings: dark matter–dense matter–elementary particles–equation of state–stars: neutron 1. INTRODUCTION also Farrar & Gabadadze (2000) and references therein. The lightest supersymmetric “Ê-hadrons” are the spin-1/2 The interiors of neutron stars offer a unique meeting point ¼ gg Ê ~ bound state ( or glueballino) and the spin-0 baryon between astrophysics on one hand and nuclear and particle ¼ ¼ g~ Ë Ë Ùd× bound state, the .The is thus a boson with baryon physics on the other.
    [Show full text]
  • Introduction to Supersymmetry
    Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .
    [Show full text]
  • Beyond the Standard Model
    Beyond the Standard Model Mihoko M. Nojiri Theory Center, IPNS, KEK, Tsukuba, Japan, and Kavli IPMU, The University of Tokyo, Kashiwa, Japan Abstract A Brief review on the physics beyond the Standard Model. 1 Quest of BSM Although the standard model of elementary particles(SM) describes the high energy phenomena very well, particle physicists have been attracted by the physics beyond the Standard Model (BSM). There are very good reasons about this; 1. The SM Higgs sector is not natural. 2. There is no dark matter candidate in the SM. 3. Origin of three gauge interactions is not understood in the SM. 4. Cosmological observations suggest an inflation period in the early universe. The non-zero baryon number of our universe is not consistent with the inflation picture unless a new interaction is introduced. The Higgs boson candidate was discovered recently. The study of the Higgs boson nature is extremely important for the BSM study. The Higgs boson is a spin 0 particle, and the structure of the radiative correction is quite different from those of fermions and gauge bosons. The correction of the Higgs boson mass is proportional to the cut-off scale, called “quadratic divergence". If the cut-off scale is high, the correction becomes unacceptably large compared with the on-shell mass of the Higgs boson. This is often called a “fine turning problem". Note that such quadratic divergence does not appear in the radiative correction to the fermion and gauge boson masses. They are protected by the chiral and gauge symmetries, respectively. The problem can be solved if there are an intermediate scale where new particles appears, and the radiative correction from the new particles compensates the SM radiative correction.
    [Show full text]
  • Supersymmetry: What? Why? When?
    Contemporary Physics, 2000, volume41, number6, pages359± 367 Supersymmetry:what? why? when? GORDON L. KANE This article is acolloquium-level review of the idea of supersymmetry and why so many physicists expect it to soon be amajor discovery in particle physics. Supersymmetry is the hypothesis, for which there is indirect evidence, that the underlying laws of nature are symmetric between matter particles (fermions) such as electrons and quarks, and force particles (bosons) such as photons and gluons. 1. Introduction (B) In addition, there are anumber of questions we The Standard Model of particle physics [1] is aremarkably hope will be answered: successful description of the basic constituents of matter (i) Can the forces of nature be uni® ed and (quarks and leptons), and of the interactions (weak, simpli® ed so wedo not have four indepen- electromagnetic, and strong) that lead to the structure dent ones? and complexity of our world (when combined with gravity). (ii) Why is the symmetry group of the Standard It is afull relativistic quantum ®eld theory. It is now very Model SU(3) ´SU(2) ´U(1)? well tested and established. Many experiments con® rmits (iii) Why are there three families of quarks and predictions and none disagree with them. leptons? Nevertheless, weexpect the Standard Model to be (iv) Why do the quarks and leptons have the extendedÐ not wrong, but extended, much as Maxwell’s masses they do? equation are extended to be apart of the Standard Model. (v) Can wehave aquantum theory of gravity? There are two sorts of reasons why weexpect the Standard (vi) Why is the cosmological constant much Model to be extended.
    [Show full text]
  • Supersymmetry Min Raj Lamsal Department of Physics, Prithvi Narayan Campus, Pokhara Min [email protected]
    Supersymmetry Min Raj Lamsal Department of Physics, Prithvi Narayan Campus, Pokhara [email protected] Abstract : This article deals with the introduction of supersymmetry as the latest and most emerging burning issue for the explanation of nature including elementary particles as well as the universe. Supersymmetry is a conjectured symmetry of space and time. It has been a very popular idea among theoretical physicists. It is nearly an article of faith among elementary-particle physicists that the four fundamental physical forces in nature ultimately derive from a single force. For years scientists have tried to construct a Grand Unified Theory showing this basic unity. Physicists have already unified the electron-magnetic and weak forces in an 'electroweak' theory, and recent work has focused on trying to include the strong force. Gravity is much harder to handle, but work continues on that, as well. In the world of everyday experience, the strengths of the forces are very different, leading physicists to conclude that their convergence could occur only at very high energies, such as those existing in the earliest moments of the universe, just after the Big Bang. Keywords: standard model, grand unified theories, theory of everything, superpartner, higgs boson, neutrino oscillation. 1. INTRODUCTION unifies the weak and electromagnetic forces. The What is the world made of? What are the most basic idea is that the mass difference between photons fundamental constituents of matter? We still do not having zero mass and the weak bosons makes the have anything that could be a final answer, but we electromagnetic and weak interactions behave quite have come a long way.
    [Show full text]
  • Super Symmetry
    MILESTONES DOI: 10.1038/nphys868 M iles Tone 1 3 Super symmetry The way that spin is woven into the in 1015. However, a form of symmetry very fabric of the Universe is writ between fermions and bosons called large in the standard model of supersymmetry offers a much more particle physics. In this model, which elegant solution because the took shape in the 1970s and can quantum fluctuations caused by explain the results of all particle- bosons are naturally cancelled physics experiments to date, matter out by those caused by fermions and (and antimatter) is made of three vice versa. families of quarks and leptons, which Symmetry plays a central role in are all fermions, whereas the physics. The fact that the laws of electromagnetic, strong physics are, for instance, symmetric in and weak forces that act on these time (that is, they do not change with particles are carried by other time) leads to the conservation of particles, such as photons and gluons, energy. These laws are also symmetric The ATLAS experiment under construction at the which are all bosons. with respect to space, rotation and Large Hadron Collider. Image courtesy of CERN. Despite its success, the standard relative motion. Initially explored in model is unsatisfactory for a number the early 1970s, supersymmetry is a of reasons. First, although the less obvious kind of symmetry, which, graviton. Searching for electromagnetic and weak forces if it exists in nature, would mean that supersymmetric particles will be a have been unified into a single force, the laws of physics do not change priority when the Large Hadron a ‘grand unified theory’ that brings when bosons are replaced by Collider comes into operation at the strong interaction into the fold fermions, and fermions are replaced CERN, the European particle-physics remains elusive.
    [Show full text]
  • Quantum Universe
    QUANTUM UNIVERSE THE REVOLUTION IN 21ST CENTURY PARTICLE PHYSICS DOE / NSF HIGH ENERGY PHYSICS ADVISORY PANEL QUANTUM UNIVERSE COMMITTEE QUANTUM UNIVERSE THE REVOLUTION IN 21ST CENTURY PARTICLE PHYSICS What does “Quantum Universe” mean? To discover what the universe is made of and how it works is the challenge of particle physics. Quantum Universe presents the quest to explain the universe in terms of quantum physics, which governs the behavior of the microscopic, subatomic world. It describes a revolution in particle physics and a quantum leap in our understanding of the mystery and beauty of the universe. DOE / NSF HIGH ENERGY PHYSICS ADVISORY PANEL QUANTUM UNIVERSE COMMITTEE QUANTUM UNIVERSE CONTENTS COMMITTEE MEMBERS ANDREAS ALBRECHT EDWARD KOLB CONTENTS University of California at Davis Fermilab University of Chicago SAMUEL ARONSON Brookhaven National Laboratory JOSEPH LYKKEN Fermilab iii EXECUTIVE SUMMARY KEITH BAKER Hampton University HITOSHI MURAYAMA 1 I INTRODUCTION Thomas Jefferson National Accelerator Facility Institute for Advanced Study, Princeton University of California, Berkeley 2 II THE FUNDAMENTAL NATURE OF JONATHAN BAGGER MATTER, ENERGY, SPACE AND TIME Johns Hopkins University HAMISH ROBERTSON University of Washington 4 EINSTEIN’S DREAM OF UNIFIED FORCES NEIL CALDER Stanford Linear Accelerator Center JAMES SIEGRIST 10 THE PARTICLE WORLD Stanford University Lawrence Berkeley National Laboratory University of California, Berkeley 15 THE BIRTH OF THE UNIVERSE PERSIS DRELL, CHAIR Stanford Linear Accelerator Center SIMON
    [Show full text]
  • The Quantum Vacuum and the Cosmological Constant Problem
    The Quantum Vacuum and the Cosmological Constant Problem S.E. Rugh∗and H. Zinkernagely To appear in Studies in History and Philosophy of Modern Physics Abstract - The cosmological constant problem arises at the intersection be- tween general relativity and quantum field theory, and is regarded as a fun- damental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically dis- cuss how the problem rests on the notion of physically real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order to make the problem well-defined. 1. Introduction Is empty space really empty? In the quantum field theories (QFT’s) which underlie modern particle physics, the notion of empty space has been replaced with that of a vacuum state, defined to be the ground (lowest energy density) state of a collection of quantum fields. A peculiar and truly quantum mechanical feature of the quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise ‘empty’ (i.e. devoid of matter and radiation). These zero-point fluctuations of the quantum fields, as well as other ‘vacuum phenomena’ of quantum field theory, give rise to an enormous vacuum energy density ρvac. As we shall see, this vacuum energy density is believed to act as a contribution to the cosmological constant Λ appearing in Einstein’s field equations from 1917, 1 8πG R g R Λg = T (1) µν − 2 µν − µν c4 µν where Rµν and R refer to the curvature of spacetime, gµν is the metric, Tµν the energy-momentum tensor, G the gravitational constant, and c the speed of light.
    [Show full text]
  • Supersymmetry
    Supersymmetry Physics Colloquium University of Virginia January 28, 2011 Stephen P. Martin Northern Illinois University 1 The Standard Model of particle physics • The “Hierarchy Problem”: why is the Higgs mass so • small? Supersymmetry as a solution • New particles predicted by supersymmetry • Supersymmetry is spontaneously broken • How to find supersymmetry • 2 The Standard Model of Particle Physics Quarks (spin=1/2): Name: down up strange charm bottom top − 1 2 − 1 2 − 1 2 Charge: 3 3 3 3 3 3 Mass: 0.005 0.002 0.1 1.5 5 173.1 Leptons (spin=1/2): − − − Name: e νe µ νµ τ ντ Charge: −1 0 −1 0 −1 0 Mass: 0.000511 ∼ 0 0.106 ∼ 0 1.777 ∼ 0 Gauge bosons (spin=1): ± 0 Name: photon (γ) W Z gluon (g) Charge: 0 ±1 0 0 Mass: 0 80.4 91.2 0 All masses in GeV. (Proton mass = 0.938 GeV.) Not shown: antiparticles of quarks, leptons. 3 There is a last remaining undiscovered fundamental particle in the Standard Model: the Higgs boson. What we know about it: Charge: 0 Spin: 0 Mass: Greaterthan 114 GeV, and not between 158 and 175 GeV ( in most simple versions) Less than about 215 GeV ( indirect, very fuzzy, simplest model only) Fine print: There might be more than one Higgs boson. Or, it might be a composite particle, made of other more basic objects. Or, it might be an “effective” phenomenon, described more fundamentally by other unknown physics. But it must exist in some form, because... 4 The Higgs boson is the source of all mass.
    [Show full text]
  • Arxiv:1302.6587V2 [Hep-Ph] 13 May 2013
    UCI-TR-2013-01 Naturalness and the Status of Supersymmetry Jonathan L. Feng Department of Physics and Astronomy University of California, Irvine, CA 92697, USA Abstract For decades, the unnaturalness of the weak scale has been the dominant problem motivating new particle physics, and weak-scale supersymmetry has been the dominant proposed solution. This paradigm is now being challenged by a wealth of experimental data. In this review, we begin by recalling the theoretical motivations for weak-scale supersymmetry, including the gauge hierar- chy problem, grand unification, and WIMP dark matter, and their implications for superpartner masses. These are set against the leading constraints on supersymmetry from collider searches, the Higgs boson mass, and low-energy constraints on flavor and CP violation. We then critically examine attempts to quantify naturalness in supersymmetry, stressing the many subjective choices that impact the results both quantitatively and qualitatively. Finally, we survey various proposals for natural supersymmetric models, including effective supersymmetry, focus point supersymme- try, compressed supersymmetry, and R-parity-violating supersymmetry, and summarize their key features, current status, and implications for future experiments. Keywords: gauge hierarchy problem, grand unification, dark matter, Higgs boson, particle colliders arXiv:1302.6587v2 [hep-ph] 13 May 2013 1 Contents I. INTRODUCTION 3 II. THEORETICAL MOTIVATIONS 4 A. The Gauge Hierarchy Problem 4 1. The Basic Idea 4 2. First Implications 5 B. Grand Unification 6 C. Dark Matter 7 III. EXPERIMENTAL CONSTRAINTS 8 A. Superpartner Searches at Colliders 8 1. Gluinos and Squarks 8 2. Top and Bottom Squarks 9 3. R-Parity Violation 9 4. Sleptons, Charginos, and Neutralinos 10 B.
    [Show full text]
  • Supersymmetry and Its Breaking
    Supersymmetry and its breaking Nathan Seiberg IAS The LHC is around the corner 2 What will the LHC find? • We do not know. • Perhaps nothing Is the standard model wrong? • Only the Higgs particle Most boring. Unnatural. Is the Universe Anthropic? • Additional particles without new concepts Unnatural. Is the Universe Anthropic? • Natural Universe – Technicolor (extra dimensions) – Supersymmetry (SUSY) – new fermionic dimensions • Something we have not thought of 3 I view supersymmetry as the most conservative and most conventional possibility. In the rest of this talk we will describe supersymmetry, will motivate this claim, and will discuss some of the recent developments in this field. 4 Three presentations of supersymmetry • Supersymmetry pairs bosons and fermions – integer spin particles and half integer spin particles. • Supersymmetry is an extension of the Poincare symmetry. • Supersymmetry is an extension of space and time. It describes additional dimensions which are intrinsically quantum mechanical (fermionic). 5 Supersymmetry as an extension of the Poincare symmetry • The Poincare symmetry includes four translations . • One way to present supersymmetry is through adding fermionic symmetries which satisfy Note, these are anti-commutation relations – no obvious classical analog. 6 The spectrum • Normally, translations relate a particle at one point to a particle at a nearby point. • Because of the larger symmetry there must be more particles. relates one particle to another. Every particle has a superpartner. • The symmetry pairs bosons and fermions – integer spin particles and half integer spin particles: 7 Supersymmetry as new quantum fermionic dimensions (more abstract) • In addition to the four classical (bosonic) coordinates , we introduce four fermionic coordinates with spin 1/2.
    [Show full text]
  • ELEMENTARY PARTICLES in PHYSICS 1 Elementary Particles in Physics S
    ELEMENTARY PARTICLES IN PHYSICS 1 Elementary Particles in Physics S. Gasiorowicz and P. Langacker Elementary-particle physics deals with the fundamental constituents of mat- ter and their interactions. In the past several decades an enormous amount of experimental information has been accumulated, and many patterns and sys- tematic features have been observed. Highly successful mathematical theories of the electromagnetic, weak, and strong interactions have been devised and tested. These theories, which are collectively known as the standard model, are almost certainly the correct description of Nature, to first approximation, down to a distance scale 1/1000th the size of the atomic nucleus. There are also spec- ulative but encouraging developments in the attempt to unify these interactions into a simple underlying framework, and even to incorporate quantum gravity in a parameter-free “theory of everything.” In this article we shall attempt to highlight the ways in which information has been organized, and to sketch the outlines of the standard model and its possible extensions. Classification of Particles The particles that have been identified in high-energy experiments fall into dis- tinct classes. There are the leptons (see Electron, Leptons, Neutrino, Muonium), 1 all of which have spin 2 . They may be charged or neutral. The charged lep- tons have electromagnetic as well as weak interactions; the neutral ones only interact weakly. There are three well-defined lepton pairs, the electron (e−) and − the electron neutrino (νe), the muon (µ ) and the muon neutrino (νµ), and the (much heavier) charged lepton, the tau (τ), and its tau neutrino (ντ ). These particles all have antiparticles, in accordance with the predictions of relativistic quantum mechanics (see CPT Theorem).
    [Show full text]