DNA Barcoding Wind Turbines on Bats

Total Page:16

File Type:pdf, Size:1020Kb

DNA Barcoding Wind Turbines on Bats Mar 2016 Vol.7, Issue 1 DNA Barcoding Uncovers the True Toll of Wind Turbines on Bats Policy Research Access and Colour Benefit-sharing Patterns Considerations in Arctic for Barcoders Bumblebees Image credit: Amanda Hale News Briefs By creating an international network of researchers, water managers, politicians, and other stakeholders, a recently funded EU COST Action will support the development of novel genomic tools for biodiversity assessments in European water bodies. This EU COST Action will involve a number elcome to our March 2016 issue of the Barcode Bulletin. W of iBOL researchers and will allow for a concerted effort in the This issue once again features a wide assortment of protection of aquatic ecosystems. articles on DNA barcoding research and applications, For more information about this with topics ranging from high-level school projects to project, click here. applications in conservation, freshwater assessment, and saffron identification. Add exciting research and some important advice on access and benefit-sharing The sixth offering of the DNA and you have yet another diverse issue of our quarterly Metabarcoding Spring School newsletter. will be held in Kunming, China from August 22 to 26, 2016. It is co-organized by the Enjoy reading. metabarcoding.org team and the Kunming Institute of Zoology, Dirk Steinke with support from the Chinese Editor-in-chief Academy of Sciences, Yunnan. The course is divided into two parts, starting with two days of lectures with no limit on the Table of Contents number of participants, and followed by three days of practical training with participation limited Feature: Bat Fatalities at Wind Farms 2 to 24. For more information and to apply, click here. Earthworm Biodiversity in French Guiana 4 ABS for DNA Barcoders 6 From April 4 to 5, 2016, the Museum DNA Barcoding in the Big City 8 of Natural History in Geneva, Switzerland will host a workshop Assessing Stream Quality with Mayflies 10 on the application of genomic tools Barcoding, Taxonomy, and Nomenclature 12 for the biomonitoring of marine environments. The workshop will Lichens and Air Pollution in Central Park 14 highlight ecological, legal, and Mini-barcodes Uncover Saffron Adulteration 16 socio-economic perspectives, and participants will learn about Colour Patterns in Arctic Bumblebees 18 the advantages and challenges of Exotic Molluscs at Maritime Ports 20 the eDNA method. The workshop is free and open to everyone. For Optimal Sample Sizes for Fish Barcoding 22 more information, click here. Feature Barcoding’s Role in Bat Fatality Monitoring at Wind Farms Written by: Dean Williams, Jennifer Korstian, Victoria Bennett, and Amanda Hale (Texas Christian University, United States) Bats are killed in large numbers In this study, we wanted to by wind turbines each year, The incorrect determine the reliability of and yet, we do not have a DNA barcoding to identify all full understanding of which identification of bats 47 known bat species in the factors are contributing to bats killed by wind turbines United States and Canada, coming into contact with wind and to assess whether it can turbines. Data collected from “...can have potentially improve the identification of fatality searches can be used serious implications bat carcasses salvaged at wind to determine the vulnerability farms. Using barcode sequences of different species, sexes, when threatened and from GenBank and sequences and ages. Nevertheless, we generated ourselves, we this depends upon reliable endangered species found that 80% (N = 38) of bat identification of carcasses are involved...” species had distinct barcodes. based on morphology, and The remaining 20% (N = 9) of this method may not be possible for partial these species belonged to two Myotis species remains or badly decomposed carcasses. complexes. The species within these complexes Incorrect identification decreases the amount have traditionally been difficult to separate using of useable data and can have potentially serious only mtDNA sequence data, which suggests that implications when threatened and endangered these species have either recently diverged or species are involved (e.g. the Indiana bat, Myotis represent a single phenotypically variable species. sodalist, the northern long-eared bat, Myotis The use of an additional nuclear DNA locus or, septentrionalis, and the Hawaiian hoary bat, in some cases, geography could help to identify Lasiurus cinereus semotus). these nine species. 2 Feature We then applied DNA barcoding to samples taken from 892 bats salvaged from wind farms across four states. We identified six species, with the three migratory tree bat species comprising the majority of samples (722 specimens of L. borealis, L. cinereus, and Nycticeius humeralis). We were able to identify 14 carcasses to species that could not be identified in the field due to extensive decomposition and scavenging, and determined that another 18 carcasses had been misidentified in the field. Bat identification based on DNA barcodes indicated that uncommon species (e.g. Lasionycteris noctivagans) can easily be misidentified in the field, as well as species with Above: Wing membrane samples. similar body size Below: Fresh and partially decomposed bat carcasses. “We found that and coloration (e.g. species identification N. humeralis and Perimyotis subflavus, based on morphology small-bodied bats in the field is most with similar pelage). reliable for fresh We found that species carcasses...” but “daily identification based on morphology in the fatality monitoring field is most reliable is economically for fresh carcasses (i.e. bats ≤1 day old), with unfeasible.” a higher likelihood of degradation in carcasses left for longer periods. This is particularly relevant as daily fatality monitoring is economically unfeasible, and so searches often occur at intervals of four or more days. Our study therefore indicates that DNA barcoding has practical applications for bat conservation, such as identifying remains from wind turbine collisions, remains from hibernacula, and fecal samples. For more information on the results discussed in this article, see DOIs: 10.1007/s12686-015-0509-4, 10.1007/ s12686-015-0488-5, 10.1111/1755-0998.12118 Images by Victoria Bennett and Amanda Hale. 3 Landscape of inselbergs in the Tumuk Humak Research massif, extreme south of French Guiana. Image credit: T. Decaëns Highlighting Earthworm Biodiversity Hotspots in French Guiana Written by: Thibaud Decaëns, David Porco (CEFE, University of Montpellier, France), Samuel W. James (University of Iowa, United States), Elodie Da Silva (EMBRAPA Florestas, Brazil), Lise Dupont, Virginie Roy (IEES, Université Paris Est Créteil, France), Emmanuel Lapied (NIBIO, Norwegian University of Life Sciences, Norway), and Rodolphe Rougerie (ISYEB, Muséum national d’Histoire naturelle, France) Earthworms usually represent a significant, the number and composition of which was further if not the dominant, part of the soil biomass. used to describe species richness and community They are involved in a number of soil processes patterns at different spatial scales. During the of vital importance for terrestrial ecosystems following six years, the same approach was used at and play a major role in agroecosystems, six additional study sites (DIADEMA project of the where they improve soil fertility and plant Labex CEBA), resulting in the production of 2826 growth. In different parts of the world, several additional DNA barcodes representing 166 MOTUs earthworm species have become invasive, with within 5 families. This represents an unprecedented significant impact on their new environment. sampling effort, and a great improvement of our Nevertheless, earthworm taxonomy remains knowledge of regional diversity, when compared largely unresolved, and the nearly 6000 species to the 22 species that were reported for French currently recognized worldwide probably Guiana in a recent checklist. represent, at best, half of the actual biodiversity of the group. This taxonomic deficit is particularly Beta-diversity among sites was high, with up to critical in the tropics, resulting in questionable 70% of the MOTUs only found in a single study site. species identifications and a lack of ecological While part of this variability could be attributed to studies of earthworm communities. the high proportion of singletons in our dataset, another part certainly results from the high rate In 2010, we conducted a first survey of the of micro-endemism expected in low-dispersing earthworm communities at two sites of the organisms such as earthworms. As a consequence, Nouragues’ natural reserve in French Guiana the number of species accumulates steadily with (supported by a CNRS grant). A rapid screening of the number of study sites sampled, and a rough earthworm communities in a selection of habitats estimate suggests that at least 400 species can was achieved by using a standardized protocol be found in French Guiana. This region of the based on the systematic harvesting of specimens Amazonian forests could therefore represent one in all types of microhabitats available in a 1 ha area. of the richest hotspots of earthworm diversity, DNA barcodes obtained for a selection of specimens and additional research is critically needed to sorted by morphospecies were clustered to delimit progress toward documenting the actual number molecular operational taxonomic units (MOTUs), of species in this region. 4 Research “Moreover, our Despite the restricted results offer a distribution of
Recommended publications
  • Two New Species of Entomophthoraceae (Zygomycetes, Entomophthorales) Linking the Genera Entomophaga and Eryniopsis
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1993 Band/Volume: 45 Autor(en)/Author(s): Keller Siegfried, Eilenberg Jorgen Artikel/Article: Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. 264- 274 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis S. Keller1 & J. Eilenberg2 •Federal Research Station for Agronomy, Reckenholzstr. 191, CH-8046 Zürich, Switzerland 2The Royal Veterinary and Agricultural University, Department of Ecology and Molecular Biology, Bülowsvej 13, DK 1870 Frederiksberg C, Copenhagen, Denmark Keller, S. & Eilenberg, J. (1993). Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. - Sydowia 45 (2): 264-274. Two new species of the genus Eryniopsis from nematoceran Diptera are descri- bed; E. ptychopterae from Ptychoptera contaminala and E. transitans from Limonia tripunctata. Both produce primary conidia and two types of secondary conidia. The primary conidia of E. ptychopterae are 36-39 x 23-26 urn and those of E. transitans 32-43 x 22-29 um. The two species are very similar but differ mainly in the shape of the conidia and number of nuclei they contain. Both species closely resemble mem- bers of the Entomophaga grilly group and probably form the missing link between Eryniopsis and Entomophaga. Keywords: Insect pathogenic fungi, taxonomy, Diptera, Limoniidae, Ptychop- teridae. The Entomophthoraceae consists of mostly insect pathogenic fun- gi whose taxonomy has not been lully resolved. One controversial genus is Eryniopsis which is characterized by unitunicate, plurinucleate and elongate primary conidia usually produced on un- branched conidiophores and discharged by papillar eversion (Hum- ber, 1984).
    [Show full text]
  • ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
    ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al.
    [Show full text]
  • Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 37–46Checklist (2014) of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae... 37 doi: 10.3897/zookeys.441.7532 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) of Finland Jukka Salmela1, Lauri Paasivirta2, Gunnar M. Kvifte3 1 Metsähallitus, Natural Heritage Services, P.O. Box 8016, FI-96101 Rovaniemi, Finland 2 Ruuhikosken- katu 17 B 5, 24240 Salo, Finland 3 Department of Limnology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel-Oberzwehren, Germany Corresponding author: Jukka Salmela ([email protected]) Academic editor: J. Kahanpää | Received 17 March 2014 | Accepted 22 May 2014 | Published 19 September 2014 http://zoobank.org/87CA3FF8-F041-48E7-8981-40A10BACC998 Citation: Salmela J, Paasivirta L, Kvifte GM (2014) Checklist of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 37–46. doi: 10.3897/zookeys.441.7532 Abstract A checklist of the families Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) recorded from Finland is given. Four species, Dixella dyari Garret, 1924 (Dixidae), Threticus tridactilis (Kincaid, 1899), Panimerus albifacies (Tonnoir, 1919) and P. przhiboroi Wagner, 2005 (Psychodidae) are reported for the first time from Finland. Keywords Finland, Diptera, species list, biodiversity, faunistics Introduction Psychodidae or moth flies are an intermediately diverse family of nematocerous flies, comprising over 3000 species world-wide (Pape et al. 2011). Its taxonomy is still very unstable, and multiple conflicting classifications exist (Duckhouse 1987, Vaillant 1990, Ježek and van Harten 2005).
    [Show full text]
  • The Diptera of Lancashire and Cheshire: Craneflies and Winter Gnats
    The Diptera of Lancashire and Cheshire: Craneflies and Winter Gnats by Phil Brighton 32, Wadeson Way, Croft, Warrington WA3 7JS [email protected] Version 1.1 26 November 2017 1 Summary This document provides a new checklist for the craneflies and winter gnats (Tipuloidea, Ptychopteridae and Trichoceridae) to extend the lists of the diptera of Lancashire and Cheshire first published by Kidd and Bindle in 1959. Overall statistics on recording activity are given by decade and hectad. Checklists are presented for each of the three Watsonian vice-counties 58, 59, and 60 detailing for each species the number of records, year of earliest and most recent record, and the number of hectads with records. A combined checklist showing distribution by the three vice-counties is also included, covering a total of 264 species, amounting to 75% of the current British checklist. Introduction This report is the third in a series to update and extend the partial checklist of the diptera of Lancashire and Cheshire published in 1959 by Leonard Kidd and Alan Brindle1. There were two previous updates, in 19642 and 19713. The previous reports in this series cover the soldierflies and allies4 and the Sepsidae5, the latter family not having been covered in Ref 1. The reader is referred to the first two reports for the background and rationale of these checklists, as well as the history of diptera recording and available data sources. The description of methodology is also kept to a minimum in the present report: only significant differences from the previous publications will be outlined.
    [Show full text]
  • BREAK-OUT SESSIONS at a GLANCE THURSDAY, 24 JULY, Afternoon Sessions
    2008 Joint Meeting (JMIH), Montreal, Canada BREAK-OUT SESSIONS AT A GLANCE THURSDAY, 24 JULY, Afternoon Sessions ROOM Salon Drummond West & Center Salons A&B Salons 6&7 SESSION/ Fish Ecology I Herp Behavior Fish Morphology & Histology I SYMPOSIUM MODERATOR J Knouft M Whiting M Dean 1:30 PM M Whiting M Dean Can She-male Flat Lizards (Platysaurus broadleyi) use Micro-mechanics and material properties of the Multiple Signals to Deceive Male Rivals? tessellated skeleton of cartilaginous fishes 1:45 PM J Webb M Paulissen K Conway - GDM The interopercular-preopercular articulation: a novel Is prey detection mediated by the widened lateral line Variation In Spatial Learning Within And Between Two feature suggesting a close relationship between canal system in the Lake Malawi cichlid, Aulonocara Species Of North American Skinks Psilorhynchus and labeonin cyprinids (Ostariophysi: hansbaenchi? Cypriniformes) 2:00 PM I Dolinsek M Venesky D Adriaens Homing And Straying Following Experimental Effects of Batrachochytrium dendrobatidis infections on Biting for Blood: A Novel Jaw Mechanism in Translocation Of PIT Tagged Fishes larval foraging performance Haematophagous Candirú Catfish (Vandellia sp.) 2:15 PM Z Benzaken K Summers J Bagley - GDM Taxonomy, population genetics, and body shape The tale of the two shoals: How individual experience A Key Ecological Trait Drives the Evolution of Monogamy variation of Alabama spotted bass Micropterus influences shoal behaviour in a Peruvian Poison Frog punctulatus henshalli 2:30 PM M Pyron K Parris L Chapman
    [Show full text]
  • Courtney CV 2020
    Gregory W. Courtney Professor Department of Entomology Iowa State University Ames, IA 50011 EDUCATION Ph.D. Entomology University of Alberta 1989 B.S. Zoology Oregon State University 1982 B.S. Entomology Oregon State University 1982 MAJOR RESEARCH INTERESTS Insect systematics and aquatic entomology, with emphasis on aquatic flies (Diptera); Diptera phylogeny; systematics and ecology of aquatic insects, especially aquatic midges and crane flies; stream ecology. EMPLOYMENT HISTORY Professor, 2007-present Dept of Entomology, Iowa State University Associate Professor, 2001-2007 Department of Entomology, Iowa State University Assistant Professor, 1997-2001 Dept of Entomology, Iowa State University Assistant Professor, 1995-1997 Dept of Biology, Grand Valley State University Postdoctoral Fellow (2 fellowships), 1990-1994 Dept of Entomology, Smithsonian Institution Postdoctoral Fellow, 1989 Dept of Entomology, University of Missouri – Columbia OTHER PROFESSIONAL APPOINTMENTS Adjunct Professor, 2006-present Dept of Ecology, Evolution, and Organismal Biology, ISU Research Associate, 2005-present Entomology Division, Natural History Museum of Los Angeles County Research Associate, 1994-present Departmentt of Entomology, Smithsonian Institution Chair, 2006-2009 Ecology & Evolutionary Biology Graduate Program, ISU Adjunct Professor, 2001-2006 Department of Biology, Chiang Mai University (Thailand) Adjunct Professor, 2001-2006 Department of Entomology, Kasetsart University (Thailand) RECENT AWARDS: Regent’s Award for Faculty Excellence; Iowa State University, 2015 Courtney 2 CURRENT DUTIES Primary responsibilities are in insect systematics, aquatic entomology, and insect biodiversity. Research interests include the systematics and phylogeny of Diptera and the morphology, phylogeny, biogeography, and ecology of aquatic insects. Major teaching responsibilities include field-based courses in Systematic Entomology and Aquatic Insects, and various offerings in Entomology and the Ecology and Evolutionary Biology interdepartmental program (EEB).
    [Show full text]
  • Comparative Growth, Reproduction, Habitat and Food Utilization Of
    Conservation Biology Research Grant Program Nongame Wildlife Program Division of Ecological Services Minnesota Department of Natural Resources COMPARATIVE GROWTH, REPRODUCTION, HABITAT AND FOOD UTILIZATION 0F DARTERS Of THE ST. CROIX RIVER DRAINAGE FINAL REPORT Submitted to: Lee Ann Pfannmuller Nongame Wildlife Program Minnesota Department of Natural Resources Box 7, 500 Lafayette Road St. Paul, Minnesota 55146 Submitted by: Jay T. Hatch, Ph.D. Division of Science, Business, and Mathematics General College University of Minnesota 216 Pillsbury Dr. SE Minneapolis, MN 55455 February 24, 1986 Introduction One of the most abundant and ubiquitous groups of nongame fishes found in Minnesota is the darter group (Percidae: Etheostomatini). These lively and colorful fishes inhabit nearly all of our streams and rivers and many of our lakes (Eddy and Underhill, 1974). We know in general that darters play an important role in the trophic structure of stream ecosystems (Cummins 1980), and we know that some species are important indicators of general water quality (Gerking 1945; Smith 1971; Pflieger 1975; Burr 1980; Karr 1981). Yet, we know very little about the specific life histories of the darters of our state, and we know even less about how their resource utilization patterns change with changes in habitat and community structure. To date, only three life history studies have been cared out on Minnesota darter populations. Erickson (1977) studied the banded darter (Etheostoma zonale) in the Cannon River; Coon (1982) studied several aspects of the comparative ecology of the rainbow (E. coeruleum), fantail (E. flabellare) and Johnny (E. nigrum) darters in the Root River; and Hatch (1982, 1986) studied the gilt darter (Percina evides) in the St.
    [Show full text]
  • Structure of the Coxa and Homeosis of Legs in Nematocera (Insecta: Diptera)
    Acta Zoologica (Stockholm) 85: 131–148 (April 2004) StructureBlackwell Publishing, Ltd. of the coxa and homeosis of legs in Nematocera (Insecta: Diptera) Leonid Frantsevich Abstract Schmalhausen-Institute of Zoology, Frantsevich L. 2004. Structure of the coxa and homeosis of legs in Nematocera Kiev-30, Ukraine 01601 (Insecta: Diptera). — Acta Zoologica (Stockholm) 85: 131–148 Construction of the middle and hind coxae was investigated in 95 species of Keywords: 30 nematoceran families. As a rule, the middle coxa contains a separate coxite, Insect locomotion – Homeotic mutations the mediocoxite, articulated to the sternal process. In most families, this coxite – Diptera – Nematocera is movably articulated to the eucoxite and to the distocoxite area; the coxa is Accepted for publication: radially split twice. Some groups are characterized by a single split. 1 July 2004 The coxa in flies is restricted in its rotation owing to a partial junction either between the meron and the pleurite or between the eucoxite and the meropleurite. Hence the coxa is fastened to the thorax not only by two pivots (to the pleural ridge and the sternal process), but at the junction named above. Rotation is impossible without deformations; the role of hinges between coxites is to absorb deformations. This adaptive principle is confirmed by physical modelling. Middle coxae of limoniid tribes Eriopterini and Molophilini are compact, constructed by the template of hind coxae. On the contrary, hind coxae in all families of Mycetophiloidea and in Psychodidae s.l. are constructed like middle ones, with the separate mediocoxite, centrally suspended at the sternal process. These cases are considered as homeotic mutations, substituting one structure with a no less efficient one.
    [Show full text]
  • Proceedings of the Helminthological Society of Washington 38(2) 1971
    i~rl&'-->¥J:,'\±" •• • :•> ' .- fec?^VIS3; Volufrie/r38 '$ .4,^ July--! 97.1' Number 2 The Helmintholog^ ri ' ^V seibionjpua/ /ourriq/ of research devoted fo 1 ^' {HelminiholQQy arid all branches, of Parasitol&gy in :; i~ ^ ; g / Brdytpn H.. Ransom Memorial /Trust Fjund x ; ;;, '' ''''•'".''.''/ .'.^'rv'"^.' 7'' ';';< • ''-,."' •.! :."•"'•'-- ^. ! •• - , '• ';;/- - '*.-. ' • •' ' '//Y'- •' ; ;' -'/V.- " y, ? Subscription $9.00 a ,VpIurne; Fpreign, $9.50 '^ ^ / ' ; \ ^ ;> v £ ^','ilfnl ''$$** ^ CONTENTS;V ^v^^,;^;--.^- ;, '••1,J,>; V- ALI, S, MEHDI, M. V. SuRYAWANSHi, AND K. ZAkitrDDiN GHISTY. ^Rogertis rosae , r/ sp..ri.\(Nematoda: jGylindrolaimiriae ) from Marathwada, India .-.-.-,-.,.lr... 193 BECKERDlTE, FRED W., GROV^R' C. 'IVllLliER, AND REINARD HAR«3EMA. ; Obser- •*"— '••,'' vatioris on "the Life Cycle ofi Pharyngostomoides !spp. and the Description ' ;pf P. adenp'eeplidla sp. -ri.' (Strigeoidea: DijilostOmatidae ) -from 'the ,Rac-,'x • >:'' .coon, Proctjon lotor (L. ) ______ ^-_-_L^-J..-^-—r.— ,-.l.^--^^_L.^.,-^ _____-,.^.lj.^: ; ;149 CQLGLAZIER, 'M. L., .K. Q. KATES, A^D ,F.. D. ENZIE. ( Activity , of LevamisoleP i" "Pyrantel rTartrate., and :Rafoxanide Against T\vo 'Tiiiahendazole-tolerant Iso- ^ ,'Jate s 6i'<H,aeinbnclws /contortus, and 'T\v'o Species of 'Ti'ichdstrorigylus^m DOUVRES, FRANK W. AND FKANCIS G. TROMBA. Comparative , Development of ^ " \ ' . Ascpris$w,iin in Rabbits, Guinea "Pigs,' Mice;, arid Swine in I'l "Days •-. ,.-_— ^\ 246 , JQHN V.,<G. TRUMAN FINCHER, AND : 'T, BONNER STEWART. \Eimeria ' •, 'pat/neisp.n.J, Protozoa:' Eimeriidae) rfrom tiie Gopher ^Tortoise, 'Gflphenis > Polyphemus J__^^-l_r-..r-_-l-__J^:l.u--— _. _____ L_ rrl— ~- ..— -—.-----^--- - l-----A---i---^-t:. '- ..'223 !:,, JACOB H, AND J.,D. THOMAS. - Some Hemiuricl Trematodes of Marine Fishes^from Ghana ._.-1::...^.._-JJ— 1..L _____:.„;... ^:l..-:-.^-.^.:-lL_-_.
    [Show full text]
  • An Assessment of the Invertebrates of Several Shropshire Quarries – Boardman P.J, Cheeseborough I.P
    An assessment of the invertebrates of several Shropshire quarries 2007 By P. J. Boardman, I.P. Cheeseborough & N. P. Jones CONTENTS Summary …………………………………………………………………….. ii Introduction ….. …………………………………………………………….. 3 Methodology …………………………………………………….. 3 Results ………….. …………………………………………………………….. 3 Quarry Assessments Alberbury …………………………………………………………….. 4 Clee Hill …………………………………………………………….. 5 Cound …………………………………………………………………… 5 Dhustone …………………………………………………………….. 6 Dolgoch …………………………………………………………….. 6 Eardington Plant …………………………………………………….. 7 Harton Hollow ………………………………………………………….. 8 Hilton Sandpit …………………………………………………………….. 8 Llynclys Common …………………………………………………….. 8 Llynclys Quarry …………………………………………………….. 9 Maddox Coppice …………………………………………………….. 10 Morville …………………………………………………………….. 10 Nils Hill …………………………………………………………….. 11 Poles Coppice …………………………………………………………….. 12 Roman Bank …………………………………………………………….. 12 Shadwell …………………………………………………………….. 12 Titterstone Clee ………………………………………………………….. 12 Treen Pits …………………………………………………………….. 12 Treflach …………………………………………………………….. 13 Underhill …………………………………………………………….. 13 Wern-ddu …………………………………………………………….. 14 Species Descriptions Aranae …………………………………………………………………… 14 Coleoptera …………………………………………………………….. 14 Diptera …………………………………………………………….. ……. 15 Hemiptera …………………………………………………………….. 32 Hymenoptera – aculeates …………………………………………….. 33 Hymenoptera – Sawflies …………………………………………….. 41 Isopoda ………………………………………………………………….. 41 Lepidoptera – butterflies …………………………………………….. 42 Lepidoptera – moths …………………………………………………….. 43 Mollusca
    [Show full text]
  • Determining the Effects of Thermal Increases on Stream Fishes of the Ouachita Mountain Ecoregion
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by SHAREOK repository DETERMINING THE EFFECTS OF THERMAL INCREASES ON STREAM FISHES OF THE OUACHITA MOUNTAIN ECOREGION By JUSTIN R. ALEXANDER Bachelor of Science in Zoology Oklahoma State University Stillwater, OK 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2017 DETERMINING THE EFFECTS OF THERMAL INCREASES ON STREAM FISHES OF THE OUACHITA MOUNTAIN ECOREGION Thesis Approved: Dr. Shannon Brewer Thesis Adviser Dr. Garey Fox Dr. Carla Goad ii ACKNOWLEDGEMENTS Thank God for his mighty power and divine timing, grace, and wisdom. Thank God for the people in my life. I owe a debt of gratitude to so many. Throughout my time as a master’s student, I have relied on friends, mentors, and family for encouragement and guidance. Despite many struggles, my wife, Heather, has reassured me that I was capable. My family has reminded me of my life-long goals. My friends have encouraged me and given me rest. My mentors have given me guidance through difficult circumstances. My colleagues have been sounding boards and counselors through research and writing. Help has come in the form of keeping my car on the road, hugs and pats on the back, phone calls, edits, field and lab work, threats and promises, and food. Among those who provided such things are the following: Heather, Josiah, Ronda, David, Jeremy, and Sara Alexander, Mark and Karen Schemet, Kaylyn and Spencer Davis, Chris Genske, Lee Perry, Steve Greiner, Desiree Moore, and members of the Brewer lab past and present.
    [Show full text]
  • Leicestershire Entomological Society
    LEICESTERSHIRE ENTOMOLOGICAL SOCIETY The status of Diptera in VC55 Families with up to 10 species Ray Morris [email protected] LESOPS 40 (August 2021) ISSN 0957 - 1019 LESOPS 40 (2021): Small families 2 Introduction A preliminary assessment of the status of flies (Diptera) in Leicestershire & Rutland (VC55) was produced in 2019 (Morris, 2019). Summaries of the number of species in families known to be in VC55 at that time were presented with the intention that fuller status assessments would be made in due course. The known records of flies to the end of 2020 are now being collated, checked, validated and plotted in order to produce a sequence of status reports as part of the Leicestershire Entomological Society Occasional Publication Series (LESOPS). Reviews of the Conopidae and Tephritidae have already appeared (Morris, 2021a, b) and are now followed by consideration of records from the fly families with a maximum of 10 species (Table 1). Table 1: Families with up to 10 species (based on Dipterists Forum listing January 2021). Acartophthalmidae (2) Campichoetidae (2) Helcomyzidae (1) Pseudopomyzidae (1) Acroceridae (3) Chaoboridae (6) Heterocheilidae (1) Ptychopteridae (7) Anisopodidae (4) Chiropteromyzidae (1) Lonchopteridae (7) Rhiniidae (1) Asteiidae (8) Clusidae (10) Meganerinidae (1) Rhinophoridae (8) Atelestidae (2) Cnemospathidae (1) Micropezidae (10) Scenopinidae (2) Athericidae (3) Coelopidae (3) Mycetobiidae (3) Stenomicridae (3) Aulacigastridae (1) Cryptochetidae (1) Nycteribiidae (3) Strongylophthalmyiidae (1) Bombylidae
    [Show full text]