Supplemental Material.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Material.Pdf Supplementary table 1. Significantly modulated genes by C1q in rat immature primary cortical neurons GenBank Accession number mRNA_assignment Log2 fold-change C1q p-value over untreated ENSRNOT00000040062 cdna:known chromosome:RGSC3.4:X:145746425:145862162:-1 3.2 6.29E-05 ENSRNOT00000004262 cdna:novel chromosome:RGSC3.4:X:123283542:123284430:1 3.01 1.73E-04 gene:ENSRNOG00000003194 NM_031124 syntaxin 3 (Stx3), mRNA. 3.01 1.19E-04 ENSRNOT00000053082 ncrna:snoRNA chromosome:RGSC3.4:11:45561199:45561336:1 2.84 1.28E-06 gene:ENSRNOG00000034959 ENSRNOT00000036156 similar to golgi-specific brefeldin A-resistance factor 1 2.81 2.39E-04 gene:ENSRNOG00000026048 ENSRNOT00000040039 similar to nucleoporin 62 gene:ENSRNOG00000030223 2.8 1.63E-04 ENSRNOT00000060755 similar to Glucosamine 6-phosphate N-acetyltransferase 2.78 2.52E-04 gene:ENSRNOG00000039626 ENSRNOT00000053003 ncrna:snRNA chromosome:RGSC3.4:12:21759559:21759663:-1 2.71 3.68E-05 gene:ENSRNOG00000034880 NM_053645 interleukin 5 receptor, alpha (Il5ra), mRNA. 2.66 2.62E-04 NM_001033896 transmembrane protein 79 (Tmem79), mRNA. 2.59 2.67E-04 NM_001009506 vomeronasal V1r-type receptor V1rf1 (V1rf1), mRNA. 2.59 2.14E-06 NM_022695.1 neurotensin receptor 2 (Ntsr2), mRNA 2.58 8.21E-06 GENSCAN00000065878 cdna:Genscan chromosome:RGSC3.4:10:108608582:108608884:-1 2.53 2.39E-04 NM_001024333 cell death-inducing DFFA-like effector c (Cidec), mRNA. 2.52 1.53E-04 ENSRNOT00000033017 cdna:novel chromosome:RGSC3.4:15:26865443:26869448:-1 2.48 3.15E-04 gene:ENSRNOG00000025868 ENSRNOT00000017834 similar to stearoyl-CoA desaturase 4 gene:ENSRNOG00000032554 2.48 8.12E-05 BC091230 neuropathy target esterase like 1, mRNA (cDNA clone MGC:108975 2.46 2.02E-04 IMAGE:7321805), complete cds. NM_001107620 ubiquitin associated and SH3 domain containing, A (predicted) 2.44 1.97E-04 (Ubash3a_predicted), mRNA. NM_001108814 Norrie disease homolog (Ndph), mRNA. 2.44 2.38E-04 NM_001025415 cholesterol 25-hydroxylase (Ch25h), mRNA. 2.43 4.90E-06 NM_022605 heparanase (Hpse), mRNA. 2.42 1.86E-04 ENSRNOT00000022475 cdna:novel chromosome:RGSC3.4:17:93278206:93348360:1 2.42 3.05E-04 gene:ENSRNOG00000016716 ENSRNOT00000020036 similar to emopamil binding related protein, delta8-delta7 sterol isomerase 2.39 1.84E-04 related protein gene:ENSRNOG00000014659 NM_013028 short stature homeobox 2 (Shox2), mRNA. 2.39 3.22E-05 ENSRNOT00000030167 cdna:novel chromosome:RGSC3.4:18:77151106:77151432:-1 2.37 2.17E-04 gene:ENSRNOG00000026317 ENSRNOT00000034522 cdna:novel chromosome:RGSC3.4:3:134559161:134597603:1 2.37 1.89E-04 gene:ENSRNOG00000026377 NM_001024351 apolipoprotein F (Apof), mRNA. 2.35 2.45E-04 NM_001108195 kelch repeat and BTB (POZ) domain containing 5 (predicted) 2.35 6.00E-05 (Kbtbd5_predicted), mRNA. rno-mir-28 MI0000861 miR-28 stem-loop 2.33 8.44E-05 NM_022396 guanine nucleotide binding protein (G protein), gamma 11 (Gng11), 2.33 1.71E-04 mRNA. ENSRNOT00000060447 cdna:novel chromosome:RGSC3.4:4:55012417:55014352:1 2.33 2.52E-04 gene:ENSRNOG00000039446 ENSRNOT00000059794 cdna:novel chromosome:RGSC3.4:16:26444081:26444302:1 2.3 6.97E-05 gene:ENSRNOG00000039096 NM_001035252 myosin, light polypeptide 2, regulatory, cardiac, slow (Myl2), mRNA. 2.25 1.14E-05 ENSRNOT00000030658 hypothetical protein gene:ENSRNOG00000025796 2.25 9.32E-06 XM_001081377 PREDICTED: hypothetical protein LOC692042 (LOC692042), mRNA. 2.24 1.90E-04 ENSRNOT00000037540 cdna:pseudogene chromosome:RGSC3.4:1:58871274:58872523:1 2.24 1.90E-04 gene:ENSRNOG00000030444 ENSRNOT00000037540 cdna:pseudogene chromosome:RGSC3.4:1:58871274:58872523:1 2.24 1.90E-04 gene:ENSRNOG00000030444 GENSCAN00000085492 cdna:Genscan chromosome:RGSC3.4:13:15794551:15801465:-1 2.24 1.90E-04 ENSRNOT00000041594 cdna:novel chromosome:RGSC3.4:4:43462118:43462585:-1 2.23 7.46E-05 gene:ENSRNOG00000030995 ENSRNOT00000022700 similar to transcription elongation regulator 1-like 2.22 2.47E-04 gene:ENSRNOG00000016737 NM_173312 glucosaminyl (N-acetyl) transferase 3, mucin type (Gcnt3), mRNA. 2.2 2.37E-04 ENSRNOT00000055308 cdna:pseudogene chromosome:RGSC3.4:3:145941387:145941635:-1 2.2 1.16E-04 gene:ENSRNOG00000036853 ENSRNOT00000010441 similar to Homeobox protein Hox-A13 gene:ENSRNOG00000007928 2.16 2.46E-04 BC083694 small nuclear ribonucleoprotein polypeptides B and B1, mRNA (cDNA 2.15 5.30E-05 clone IMAGE:7189534), complete cds. NM_001107253 potassium channel tetramerisation domain containing 6 (predicted) 2.14 2.83E-04 (Kctd6_predicted), mRNA. XM_001058175 PREDICTED: similar to N-formylpeptide receptor-like 2 (predicted) 2.13 1.13E-04 (RGD1566044_predicted), mRNA. NM_001001970 lymphocyte antigen 6 complex, locus G6D (Ly6g6d), mRNA. 2.09 2.81E-04 ENSRNOT00000025290 cdna:novel chromosome:RGSC3.4:1:201626472:201631260:-1 2.08 1.08E-04 gene:ENSRNOG00000018710 GENSCAN00000082163 cdna:Genscan chromosome:RGSC3.4:3:116835858:116876799:1 2.05 1.59E-04 ENSRNOT00000001147 cdna:pseudogene chromosome:RGSC3.4:X:143394456:143394930:-1 2.05 1.32E-04 gene:ENSRNOG00000000859 ENSRNOT00000043247 cdna:novel chromosome:RGSC3.4:4:70606277:70606676:1 1.99 8.89E-06 gene:ENSRNOG00000031483 NM_013062.1 kinase insert domain protein receptor (Kdr), mRNA 1.98 1.63E-04 NM_022524 sushi-repeat-containing protein (Srpx), mRNA. 1.95 1.34E-05 ENSRNOT00000034886 similar to glycerophosphodiester phosphodiesterase domain containing 4 1.94 2.37E-05 gene:ENSRNOG00000028470 ENSRNOT00000015349 cdna:novel chromosome:RGSC3.4:9:64828542:64830614:-1 1.94 2.50E-04 gene:ENSRNOG00000023290 NM_021696 serine (or cysteine) peptidase inhibitor, clade B, member 2 (Serpinb2), 1.93 1.32E-04 mRNA. ENSRNOT00000030332 hypothetical protein gene:ENSRNOG00000039141 1.93 7.07E-05 ENSRNOT00000045110 Ott protein (Fragment) gene:ENSRNOG00000000620 1.92 1.08E-04 NM_058213.1 ATPase, Ca++ transporting, cardiac muscle, fast twitch 1 (Atp2a1), 1.92 2.96E-04 mRNA ENSRNOT00000015113 similar to integrin alpha 9 gene:ENSRNOG00000029910 1.91 2.57E-04 GENSCAN00000046588 cdna:Genscan chromosome:RGSC3.4:11:81011385:81012192:1 1.9 1.69E-04 NM_001108945 tripartite motif-containing 59 (predicted) (Trim59_predicted), mRNA. 1.84 4.98E-05 NM_001013245 tubulin cofactor a (Tbca), mRNA. 1.78 1.72E-04 ENSRNOT00000029821 cdna:novel chromosome:RGSC3.4:9:59947827:60108665:-1 1.77 1.46E-04 gene:ENSRNOG00000024469 NM_031689.1 crystallin, beta A4 (Cryba4), mRNA 1.74 1.61E-04 ENSRNOT00000050013 similar to DnaJ (Hsp40) homolog, subfamily C, member 14 1.7 2.43E-04 gene:ENSRNOG00000030239 NM_001014162 similar to Aa2-174 (RGD1309578), mRNA. 1.69 1.64E-04 NM_053395 small muscle protein, X-linked (Smpx), mRNA. 1.68 9.07E-06 ENSRNOT00000016604 cdna:novel chromosome:RGSC3.4:13:31047506:31049268:-1 1.67 2.36E-05 gene:ENSRNOG00000012435 ENSRNOT00000049035 cdna:novel chromosome:RGSC3.4:16:72976875:73321943:1 1.65 3.03E-04 gene:ENSRNOG00000032766 ENSRNOT00000059884 similar to developmental pluripotency-associated 2 1.64 3.06E-04 gene:ENSRNOG00000039144 NM_013154.2 CCAAT/enhancer binding protein (C/EBP), delta (Cebpd), mRNA 1.63 1.11E-04 GENSCAN00000077289 cdna:Genscan chromosome:RGSC3.4:X:156998380:157005636:1 1.61 2.98E-04 ENSRNOT00000061944 similar to chromobox homolog 3 gene:ENSRNOG00000029143 1.56 1.59E-04 XM_001081771 PREDICTED: similar to chromosome 17 open reading frame 27 1.54 3.65E-05 (LOC688296), mRNA. ENSRNOT00000027344 similar to Interferon-inducible protein gene:ENSRNOG00000020164 1.54 5.73E-06 ENSRNOT00000041731 similar to testis expressed gene 11 gene:ENSRNOG00000025672 1.54 3.22E-05 NM_176856 septin 9 (Sept9), transcript variant 2, mRNA. 1.53 1.30E-04 ENSRNOT00000058671 cdna:pseudogene chromosome:RGSC3.4:14:73007051:73007402:1 1.52 3.54E-05 gene:ENSRNOG00000038494 ENSRNOT00000060121 similar to G protein-coupled receptor 31, D17Leh66c region 1.5 2.95E-04 gene:ENSRNOG00000039255 ENSRNOT00000001922 18 kDa protein gene:ENSRNOG00000001418 1.5 2.97E-04 NM_001106007 phosphoglucomutase 2 (Pgm2), mRNA. 1.47 1.92E-04 ENSRNOT00000041051 hypothetical protein gene:ENSRNOG00000026588 1.46 6.27E-05 NM_021576 5' nucleotidase, ecto (Nt5e), mRNA. 1.44 2.82E-04 NM_001009527 vomeronasal V1r-type receptor V1rc42 (V1rc42), mRNA. 1.44 2.08E-04 XM_001067609 PREDICTED: similar to interleukin 23 receptor (LOC683816), mRNA. 1.42 1.84E-04 NM_001109126 similar to RIKEN cDNA 1700065I17 (predicted) 1.38 1.52E-05 (RGD1561039_predicted), mRNA. NM_001107829 fibrinogen C domain containing 1 (predicted) (Fibcd1_predicted), mRNA. 1.38 2.97E-04 NM_001099486 similar to vomeronasal 2, receptor, 1 (LOC689670), mRNA. 1.37 1.29E-04 NM_001099477 similar to putative pheromone receptor (predicted) 1.37 1.29E-04 (RGD1562647_predicted), mRNA. NM_001099486 similar to vomeronasal 2, receptor, 1 (LOC689670), mRNA. 1.37 1.29E-04 NM_001099517 similar to vomeronasal 2, receptor, 1 (LOC689072), mRNA. 1.37 1.29E-04 NM_001099477 similar to putative pheromone receptor (predicted) 1.37 1.29E-04 (RGD1562647_predicted), mRNA. NM_001099517 similar to vomeronasal 2, receptor, 1 (LOC689072), mRNA. 1.37 1.29E-04 NM_001008821 keratin 40 (Krt40), mRNA. 1.37 1.30E-04 ENSRNOT00000060751 cdna:known chromosome:RGSC3.4:16:12063956:12065311:1 1.35 5.08E-05 gene:ENSRNOG00000039624 ENSRNOT00000028442 similar to U2(RNU2) small nuclear RNA auxiliary factor 1-like 4 1.35 1.83E-04 gene:ENSRNOG00000020957 NM_001012217 slingshot homolog 3 (Drosophila) (Ssh3), mRNA. 1.32 2.47E-04 GENSCAN00000042355 cdna:Genscan chromosome:RGSC3.4:8:41109476:41109833:1 1.32 1.48E-04 ENSRNOT00000042447 similar to CD200 cell surface glycoprotein receptor 1.31 2.86E-04 gene:ENSRNOG00000002046 NM_022606 integrin-linked kinase-associated serine/threonine phosphatase 2C (Ilkap), 1.31
Recommended publications
  • Apc11 (ANAPC11) (NM 001002245) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC223841L4 Apc11 (ANAPC11) (NM_001002245) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Apc11 (ANAPC11) (NM_001002245) Human Tagged ORF Clone Tag: mGFP Symbol: ANAPC11 Synonyms: APC11; Apc11p; HSPC214 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC223841). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_001002245 ORF Size: 252 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Apc11 (ANAPC11) (NM_001002245) Human Tagged ORF Clone – RC223841L4 OTI Disclaimer: Due to the inherent nature of this plasmid, standard methods to replicate additional amounts of DNA in E. coli are highly likely to result in mutations and/or rearrangements. Therefore, OriGene does not guarantee the capability to replicate this plasmid DNA. Additional amounts of DNA can be purchased from OriGene with batch-specific, full-sequence verification at a reduced cost. Please contact our customer care team at [email protected] or by calling 301.340.3188 option 3 for pricing and delivery. The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g.
    [Show full text]
  • Supplemental Material
    Supplemental Table B ARGs in alphabetical order Symbol Title 3 months 6 months 9 months 12 months 23 months ANOVA Direction Category 38597 septin 2 1557 ± 44 1555 ± 44 1579 ± 56 1655 ± 26 1691 ± 31 0.05219 up Intermediate 0610031j06rik kidney predominant protein NCU-G1 491 ± 6 504 ± 14 503 ± 11 527 ± 13 534 ± 12 0.04747 up Early Adult 1G5 vesicle-associated calmodulin-binding protein 662 ± 23 675 ± 17 629 ± 16 617 ± 20 583 ± 26 0.03129 down Intermediate A2m alpha-2-macroglobulin 262 ± 7 272 ± 8 244 ± 6 290 ± 7 353 ± 16 0.00000 up Midlife Aadat aminoadipate aminotransferase (synonym Kat2) 180 ± 5 201 ± 12 223 ± 7 244 ± 14 275 ± 7 0.00000 up Early Adult Abca2 ATP-binding cassette, sub-family A (ABC1), member 2 958 ± 28 1052 ± 58 1086 ± 36 1071 ± 44 1141 ± 41 0.05371 up Early Adult Abcb1a ATP-binding cassette, sub-family B (MDR/TAP), member 1A 136 ± 8 147 ± 6 147 ± 13 155 ± 9 185 ± 13 0.01272 up Midlife Acadl acetyl-Coenzyme A dehydrogenase, long-chain 423 ± 7 456 ± 11 478 ± 14 486 ± 13 512 ± 11 0.00003 up Early Adult Acadvl acyl-Coenzyme A dehydrogenase, very long chain 426 ± 14 414 ± 10 404 ± 13 411 ± 15 461 ± 10 0.01017 up Late Accn1 amiloride-sensitive cation channel 1, neuronal (degenerin) 242 ± 10 250 ± 9 237 ± 11 247 ± 14 212 ± 8 0.04972 down Late Actb actin, beta 12965 ± 310 13382 ± 170 13145 ± 273 13739 ± 303 14187 ± 269 0.01195 up Midlife Acvrinp1 activin receptor interacting protein 1 304 ± 18 285 ± 21 274 ± 13 297 ± 21 341 ± 14 0.03610 up Late Adk adenosine kinase 1828 ± 43 1920 ± 38 1922 ± 22 2048 ± 30 1949 ± 44 0.00797 up Early
    [Show full text]
  • Download on 20
    bioRxiv preprint doi: https://doi.org/10.1101/850776; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Intramembrane protease RHBDL4 cleaves oligosaccharyltransferase subunits to target them for ER-associated degradation Julia D. Knopf1, Nina Landscheidt1, Cassandra L. Pegg2, Benjamin L. Schulz2, Nathalie Kühnle1, Chao-Wei Chao1, Simon Huck1 and Marius K. Lemberg1, # 1Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany. 2School of Chemistry and Molecular Biosciences, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia QLD 4072, Australia. #Corresponding author: [email protected] Running title: RHBDL4 triggers ERAD of OST subunits Key words: Rhomboid serine protease, Rhbdd1, ubiquitin-dependent proteolysis, post- translational protein abundance control, N-linked glycosylation. Abbreviations ERAD, ER-associated degradation; OST, oligosacharyltransferase; TM, transmembrane; UIM, ubiquitin-interacting motif. Abstract The Endoplasmic Reticulum (ER)-resident intramembrane rhomboid protease RHBDL4 generates metastable protein fragments and together with the ER-associated degradation (ERAD) machinery provides a clearance mechanism for aberrant and surplus proteins. However, the endogenous substrate spectrum and with that the role of RHBDL4 in physiological ERAD is mainly unknown. Here, we use a substrate trapping approach in combination with quantitative proteomics to identify physiological RHBDL4 substrates. This revealed oligosacharyltransferase (OST) complex subunits such as the catalytic active subunit STT3A as substrates for the RHBDL4-dependent ERAD pathway. RHBDL4-catalyzed cleavage inactivates OST subunits by triggering dislocation into the cytoplasm and subsequent proteasomal degradation.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Expression Analysis of an in Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets
    Journal of Personalized Medicine Article Protein Expression Analysis of an In Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets Hisham F. Bahmad 1,2,3 , Wenjing Peng 4, Rui Zhu 4, Farah Ballout 1, Alissar Monzer 1, 1,5 6, , 1, , 4, , Mohamad K. Elajami , Firas Kobeissy * y , Wassim Abou-Kheir * y and Yehia Mechref * y 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; [email protected] (H.F.B.); [email protected] (F.B.); [email protected] (A.M.); [email protected] (M.K.E.) 2 Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 3 Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA 4 Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; [email protected] (W.P.); [email protected] (R.Z.) 5 Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 6 Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon * Correspondence: [email protected] (F.K.); [email protected] (W.A.-K.); [email protected] (Y.M.); Tel.: +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 4778) (W.A.K.); +1-806-834-8246 (Y.M.); Fax: +1-806-742-1289 (Y.M.); 961-1-744464 (W.A.K.) These authors have contributed equally to this work as joint senior authors.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals
    animals Review Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals Mohammadreza Mohammadabadi 1 , Farhad Bordbar 1,* , Just Jensen 2 , Min Du 3 and Wei Guo 4 1 Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 77951, Iran; [email protected] 2 Center for Quantitative Genetics and Genomics, Aarhus University, 8210 Aarhus, Denmark; [email protected] 3 Washington Center for Muscle Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; [email protected] 4 Muscle Biology and Animal Biologics, Animal and Dairy Science, University of Wisconsin-Madison, Madison, WI 53558, USA; [email protected] * Correspondence: [email protected] Simple Summary: Skeletal muscle mass is an important economic trait, and muscle development and growth is a crucial factor to supply enough meat for human consumption. Thus, understanding (candidate) genes regulating skeletal muscle development is crucial for understanding molecular genetic regulation of muscle growth and can be benefit the meat industry toward the goal of in- creasing meat yields. During the past years, significant progress has been made for understanding these mechanisms, and thus, we decided to write a comprehensive review covering regulators and (candidate) genes crucial for muscle development and growth in farm animals. Detection of these genes and factors increases our understanding of muscle growth and development and is a great help for breeders to satisfy demands for meat production on a global scale. Citation: Mohammadabadi, M.; Abstract: Farm-animal species play crucial roles in satisfying demands for meat on a global scale, Bordbar, F.; Jensen, J.; Du, M.; Guo, W.
    [Show full text]
  • Chloride Channels Regulate Differentiation and Barrier Functions
    RESEARCH ARTICLE Chloride channels regulate differentiation and barrier functions of the mammalian airway Mu He1†*, Bing Wu2†, Wenlei Ye1, Daniel D Le2, Adriane W Sinclair3,4, Valeria Padovano5, Yuzhang Chen6, Ke-Xin Li1, Rene Sit2, Michelle Tan2, Michael J Caplan5, Norma Neff2, Yuh Nung Jan1,7,8, Spyros Darmanis2*, Lily Yeh Jan1,7,8* 1Department of Physiology, University of California, San Francisco, San Francisco, United States; 2Chan Zuckerberg Biohub, San Francisco, United States; 3Department of Urology, University of California, San Francisco, San Francisco, United States; 4Division of Pediatric Urology, University of California, San Francisco, Benioff Children’s Hospital, San Francisco, United States; 5Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Heaven, United States; 6Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, United States; 7Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; 8Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States *For correspondence: Abstract The conducting airway forms a protective mucosal barrier and is the primary target of [email protected] (MH); [email protected] airway disorders. The molecular events required for the formation and function of the airway (SD); mucosal barrier, as well as the mechanisms by which barrier dysfunction leads to early onset airway [email protected] (LYJ) diseases,
    [Show full text]
  • A Gene-Anchored Map Position of the Rat Warfarin-Resistance Locus, Rw, and Its Orthologs in Mice and Humans
    Brief report A gene-anchored map position of the rat warfarin-resistance locus, Rw, and its orthologs in mice and humans Michael H. Kohn and Hans-Joachim Pelz The locus underlying hereditary resis- the markers Myl2 (zero recombinants) chromosome 7 at about 60 to 63 cM tance to the anticoagulant warfarin (sym- and Itgam, Il4r, and Fgf2r (one recombi- and onto one of the human chromo- bol in the rat, Rw) was placed in relation nant each) during linkage analysis in a somes 10q25.3-26, 12q23-q24.3, and to 8 positionally mapped gene-anchored congenic warfarin- and bromadiolone- 16p13.1-p11. (Blood. 2000;96:1996-1998) microsatellite loci whose positions were resistant laboratory strain of rats. Com- known in the genome maps of the rat, parative ortholog mapping between rat, mouse, and human. Rw segregated with mouse, and human placed Rw onto mouse © 2000 by The American Society of Hematology Introduction Warfarin, or 3-(␣-acetonylbenzyl)-4-hydroxycoumarin, and its 8 genes whose locations were known in the genomic maps of the structural relatives are tied to human health and economics. rat, mouse, and human.8 We also use the recently published Hereditary resistance to warfarin (locus symbol, Rw), and to radiation hybrid map of the rat to delineate regions of homology several of its related compounds, has been observed in humans and with the mouse and human.9 rodents, foremost Rattus norvegicus, R rattus, and Mus spp.1,2 The mechanism of warfarin resistance in humans, rats, and mice is thought to have orthologous genetic underpinnings; that is, in all Study design species mutations within the same enzyme complex (presumably a vitamin K epoxide reductase) mediate resistance.3 Origin of rats and resistance tests Resistance is a concern both in human medicine and rodent A previously described laboratory strain was used that was derived from a control.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Diagnosis of Metastatic Melanoma and Monitoring Indicators of Immunosuppression Through Blood Leukocyte Microarray Analysis
    (19) TZZ __T (11) EP 2 579 174 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 10.04.2013 Bulletin 2013/15 G06F 19/00 (2011.01) (21) Application number: 12196231.0 (22) Date of filing: 03.11.2007 (84) Designated Contracting States: • Banchereau, Jacques F. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Montclair, NJ 07042 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE • Chaussabel, Damien SI SK TR Bainbridge Island, WA 98110 (US) (30) Priority: 03.11.2006 US 856406 P (74) Representative: Sonn & Partner Patentanwälte Riemergasse 14 (62) Document number(s) of the earlier application(s) in 1010 Wien (AT) accordance with Art. 76 EPC: 07871360.9 / 2 080 140 Remarks: This application was filed on 10-12-2012 as a (71) Applicant: Baylor Research Institute divisional application to the application mentioned Dallas, TX 75204 (US) under INID code 62. (72) Inventors: • Palucka, Anna Karolina Dallas, TX 75204 (US) (54) Diagnosis of metastatic melanoma and monitoring indicators of immunosuppression through blood leukocyte microarray analysis (57) The present invention includes compositions, or more expression vectors from the expression of one systems and methods for the early detection and con- or more genes. sistent determination of metastatic melanoma and/or im- munosuppression using microarrays by calculating one EP 2 579 174 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 579 174 A1 Description TECHNICAL FIELD OF THE INVENTION 5 [0001] The presentinvention relates in generalto the field of diagnostic for monitoring indicatorsof metastatic melanoma and/or immunosuppression, and more particularly, to a system, method and apparatus for the diagnosis, prognosis and tracking of metastatic melanoma and monitoring indicators of immunosuppression associated with transplant recipients (e.g., liver).
    [Show full text]