Map of National and International River Basin Districts Version 29 October 2012

Total Page:16

File Type:pdf, Size:1020Kb

Map of National and International River Basin Districts Version 29 October 2012 Map of National and International River Basin Districts Version 29 October 2012 -30° W -20° W -10° W 0° 10° E 20° E 30° E 40° E 50° E 60° E Azores (PT) k ar FI nm in Teno, F RU Atlantic Ocean NO NO Naatamojoki, s 0 100 m FI Paatsjoki ro km T T or T R ne o i r ve n Madeira (PT) r i Madeira (PT) FI o K e m i j o k i WHITE n j SEA o RU k FI d i n a l Atlantic Ocean 60° N d r Bothnian Bay NORWEGIAN o 0 100 N SE Oulujoki SEA km NO FI a Canaries (ES) i Canaries (ES) N g 1. La Palma n a l 2. El Hierro NO h 1 7 Moere NO e t 4 60° N d 3. La Gomera A o A K 5 n G and r o B u K V u o k s i 4. Tenerife e B c k 6 h l o e f y 2 3 Romsdal f o i m r Bothnian t p m o FI 5. Gran Canaria E h T o e f i n a j l F o 6. Fuertaventura Atlantic Sea i a e f a i k g n n i RU l n o j l - 7. Lanzarote 0 100 Ocean o a C Sogn u S S k n km e e i- d and G a a Glomma SE - O Fjordane Guadeloupe (FR) NO d Guadeloupe (FR) NO lan in f F Hordaland f o ul Caribbean age West G ass C E Sea e P Bay t Aland a up k North West s lo a t de a Islands ua r g Baltic Estonia EE E G I r e s t e t t o 0 100 g Agder a EE n km a i T K k Gauja a Rogaland ak r S d LV er n Martinique (FR) Scotland ag K LV D RU Martinique (FR) k a a South LV RU N S V tt e LV a e Baltic Neagh g n u a SE t Lielupe g t a a North Bann BALTIC LT v Caribbean A NORTH SEA LT BY a Western IE Jutland SEA LT Sea Solway and N LT L Swieza UK UK North- Funen e Tweet d Zealand m 0 10 North s umbria RU u Western IE e Bornholm Jarft a km IE IE Vidaa-Krusaa ly n W RU T n Eastern o a o g PL Eastern h DK Schlei/Trave e s 50° N n t Humber Eider r FFreennchc Ghu iGanua i(aFRn)a (FR) IRISH SEA r P n DE BY a o Warnow/ PL A h South S N DE South Eastern Dee Peene Ucker Atlantic Western Western NL DE PL Ocean E BY 50° N Wales Severn Anglian m NL s Weser O d e r V i s t u l a CELTIC SEA Thames 0 100 NL DE DE km South West S NL PL PL outh East BE t DE l d UA RReuunnioino (nFR ()FR) English Channel FR e e E l b e h BE s Indian c eu DE PL S M D n i e s Ocean CZ CZ UA t SK e Sambre FR R h i n e CZ PL r S e FR UA i n SK e FR MD 0 20 DE FR km D a n u b e MD Loire Mayotte (FR) AT AT UA CH HU CH Bay of RO Biscay CH Eastern Mozambique CH SI Channel Alps SI HR e Po IT B L A C K n 0 10 o Adriatic S E A Galician Cantabrico Basin km Adour-Garonne h BA Cantab Oriental R IT Coast rico Oc Black ES cidenta FR RS BG M Cavado, l FR Northern Malta ed Sea it Ave and Minho ES BG er Serchio Appenines ra 40° N Leca PT A ME W East ne AD Northern d r a i a e n Appenines t s Aegean TR Se PT Do u ro Middle i c C t EL a ES S e A BG Vouga, Mondego, Ebro Appenines e nt e 40° N Internal a ra g Thrace Lis and West Rivers Corsica MK l M e Basins of AL a EL a 0 10 ES c n Eastern Catalonia Western EL ed km ES T Southern on Macedonia Ta g u s y r Macedonia ia PT r h Appenines ALE e n p EL Aegean Sea i a iru Sado Jucar ds Sardinia n s Thessalia Eastern lan S G u a d i a n a ES Is e Western and ric a EL Sterea ea Mira al Sterea Ellada PT B A Ellada e Guadalquivir ge Segura Northern a Algarve n Tinto, Is Basins M E D I Peloponnese Attica la s T E R n u Odiel Andalusia R d pr Sicily Western s Cy and Mediterranean Basins A Piedras N Peloponnese Cueta E Eastern Guadalete Melilla A Peloponnese and N Crete 0 100 200 300 400 Barbate S Malta E A km 0° 10° E 20° E 30° E National and International River Basin Districts International River Basin Districts National River Basin Districts Compiled from data reported to WISE by EU Member States Compiled from data reported to WISE by EU Member States Approximate extent of International River Basin Districts National River Basin Districts outside of the EU outside of the EU Compiled from data reported to WISE by NO Compiled from data reported to WISE by AD, CH, LI MC and NO, supplemented with CCM2 Seaoutlets and ICPDR data Coastal waters EU27 extent Country borders c Map produced by WRc plc on behalf of the European Commission , DG Environment, 2012 Footnotes 1) The boundaries of the National River Basin Districts are displayed using version 1.5 of 5) The international river catchments outside of the EU are displayed using data from a the Water Information System for Europe (WISE) River Basin Districts dataset available number of sources: from the European Environment Agency: - Data reported to WISE by Andorra, Switzerland, Liechtenstein, Monaco and Norway. http://www.eea.europa.eu/data-and-maps/data/wise-river-basin-districts-rbds-1. - Seaoutlets data from the Catchment Characterisation Modelling (CCM2) database This dataset is based on data reported to WISE by EU Member States, Andorra, developed by the Joint Research Centre to show the approximate extent of international Switzerland, Liechtenstein, Monaco and Norway. catchments in Belarus, Moldova, Russia, Ukraine, Macedonia, Albania and Turkey. - Data provided by the International Commission for the Protection of the Danube River 2) The boundary of the Mayotte RBD (France) is displayed using the country border to show the extent of the Danube International River Basin District in the Balkans. dataset. 3) The boundaries of the International River Basin Districts are derived from the WISE 6) Coastal waters are defined in the Water Framework Directive as extending 1 nautical River Basin Districts dataset. mile from the coastline. Some Member States included a larger part of their coastal waters within their River Basin District boundaries. 4) Country border data was provided by Eurostat and is derived from EGM at a scale of 1:3 million..
Recommended publications
  • A Modified Sverdrup Model of the Atlantic and Caribbean Circulation
    MARCH 2002 WAJSOWICZ 973 A Modi®ed Sverdrup Model of the Atlantic and Caribbean Circulation ROXANA C. WAJSOWICZ* Department of Meteorology, University of Maryland at College Park, College Park, Maryland (Manuscript received 9 October 2000, in ®nal form 6 August 2001) ABSTRACT An analytical model of the mean wind-driven circulation of the North Atlantic and Caribbean Sea is constructed based on linear dynamics and assumed existence of a level of no motion above all topography. The circulation around each island is calculated using the island rule, which is extended to describe an arbitrary length chain of overlapping islands. Frictional effects in the intervening straits are included by assuming a linear dependence on strait transport. Asymptotic expansions in the limit of strong and weak friction show that the transport streamfunction on an island boundary is dependent on wind stress over latitudes spanning the whole length of the island chain and spanning just immediately adjacent islands, respectively. The powerfulness of the method in enabling the wind stress bands, which determine a particular strait transport, to be readily identi®ed, is demonstrated by a brief explanation of transport similarities and differences in earlier numerical models forced by various climatological wind stress products. In the absence of frictional effects outside western boundary layers, some weaker strait transports are in the wrong direction (e.g., Santaren Channel) and others are too large (e.g., Old Bahama Channel). Also, there is no western boundary current to the east of Abaco Island. Including frictional effects in the straits enables many of these discrepancies to be resolved.
    [Show full text]
  • Cruise Report W-48 Scientific Activities Undertaken Aboard R/V Westward Woods Hole
    Cruise Report W-48 Scientific Activities Undertaken Aboard R/V Westward Woods Hole - St. Thomas 10 October - 21 November 1979 ff/lh Westward (R.Long) • Sea Education Association - Woods Hole, Massachusetts " CRUISE REPORT W-48 Scientific Activities Woods Hole - Antigua - St. Lucia - Bequia - St. Thomas 10 October 1979 - 21 November 1979 R/V Westward Sea Education Association ',,, Woods Hole, Massachusetts .. SHIPBOARD DRAFT .. ----------------------- - ( PREFACE This Cruise Report is written in an attempt to accomplish two objectives. Firstly, and more importantly, it presents a brief outline of the scientific research completed aboard R/V Westward during W-48. Reports of the status of on-going projects and of the traditional academic program are presented. In addition, abstracts from the research projects of each student are included. Secondly, for those of us that participated, it represents the product of our efforts and contains a record of other events that were an important part of the trip, in particular the activities during port stops. Once again, lowe special thanks to Abby Ames, who was in charge of the shipboard laboratory, and upon whom I was able to depend through­ out the cruise. Her effectiveness and perseverance under the difficult working conditions at sea, and her cheerful attitude and enthusiasm were greatly appreciated by us all. Rob Nawojchik, who participated as an Assistant Scientist, added a new field of interest to the cruise with his vast knowledge of ichthyology. The energy with which he pursued his interest and his enthusiasm for the subject, set an example for us all. Two visiting scholars participated in different legs of this cruise.
    [Show full text]
  • 595 VERIFICATION of an ARCHAIC AGE OCCUPATION on BARBADOS, SOUTHERN LESSER ANTILLES Scott M Fitzpatrick Some of the More Central
    RADIOCARBON, Vol 53, Nr 4, 2011, p 595–604 © 2011 by the Arizona Board of Regents on behalf of the University of Arizona VERIFICATION OF AN ARCHAIC AGE OCCUPATION ON BARBADOS, SOUTHERN LESSER ANTILLES Scott M Fitzpatrick Department of Sociology and Anthropology, NC State University, Raleigh, North Carolina, USA. Email: [email protected]. ABSTRACT. The Caribbean Archaic Age (about 3000–500 BC) is thought to represent the earliest migration of humans from South America into the Lesser Antilles. However, there is a conspicuous absence of these early sites on islands south of the Guadeloupe Passage. To date, only a single radiocarbon date derived from a Queen conch (Strombus [Eustrombus] gigas) shell at the Heywoods site on Barbados was indicative of an Archaic occupation in the southern Antilles apart from a scatter- ing of poorly reported (and mostly undated) sites. Given a number of issues associated with reliance on a single date to estab- lish a cultural horizon, along with other problems derived from possible carbonate cement contamination and dating marine shells of a longer-lived species such as Queen conch, 2 additional samples were taken from the same unit and context at Hey- woods to confirm whether the site is truly representative of an occupation during the Archaic Age. Results from a Queen conch shell adze in Context 7 dated to 2530–2200 BC (2 ) and overlaps with the only other Archaic date from the site dating to 2320–1750 cal BC, while a juvenile specimen of the same species from Context 8 at 3280–2940 BC (2 ) indicates that Barbados may have been settled even earlier.
    [Show full text]
  • Bothnian Bay Coastal Meadows Management Project
    EUROPEAN LANDSCAPE CONVENTION LANDSCAPE AWARD OF THE COUNCIL OF EUROPE 7th Session – 2020-2021 APPLICATION FORM Council of Europe – European Landscape Convention Presentation The European Landscape Convention aims to promote the protection, management and planning of landscapes and to bring together European co-operation in this field. It is the first international treaty exclusively devoted to all dimensions of European landscape. Taking into account the landscape, natural and cultural values of the territory, it contributes to promoting the quality of life and well-being of Europeans. The Resolution on the Rules governing the Landscape Award of the Council of Europe, adopted by the Committee of Ministers on 20 February 2008 at the 1018th meeting of the Ministers’ Deputies, draws attention to the fact that Article 11 of the Convention institutes the Landscape Award of the Council of Europe and that it is in keeping with the work carried out by the Council of Europe concerning human rights, democracy and sustainable development. It effectively promotes the territorial dimension of human rights and democracy by acknowledging the importance of measures taken to improve the landscape for people’s living conditions. Opened to the Parties to the Convention, the Award is intended to raise civil society’s awareness of the value of landscapes, of their role and of changes to them. Its objective is to reward exemplary practical initiatives aimed at successful landscape quality objectives on the territories of the Parties to the Convention. The Award is conferred every two years and the files presenting applications must reach the Secretariat General of the Council of Europe.
    [Show full text]
  • Changing Communities of Baltic Coastal Fish Executive Summary: Assessment of Coastal fi Sh in the Baltic Sea
    Baltic Sea Environment Proceedings No. 103 B Changing Communities of Baltic Coastal Fish Executive summary: Assessment of coastal fi sh in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Baltic Sea Environment Proceedings No. 103 B Changing Communities of Baltic Coastal Fish Executive summary: Assessment of coastal fi sh in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission Editor: Janet Pawlak Authors: Kaj Ådjers (Co-ordination Organ for Baltic Reference Areas) Jan Andersson (Swedish Board of Fisheries) Magnus Appelberg (Swedish Board of Fisheries) Redik Eschbaum (Estonian Marine Institute) Ronald Fricke (State Museum of Natural History, Stuttgart, Germany) Antti Lappalainen (Finnish Game and Fisheries Research Institute), Atis Minde (Latvian Fish Resources Agency) Henn Ojaveer (Estonian Marine Institute) Wojciech Pelczarski (Sea Fisheries Institute, Poland) Rimantas Repečka (Institute of Ecology, Lithuania). Photographers: Visa Hietalahti p. cover, 7 top, 8 bottom Johnny Jensen p. 3 top, 3 bottom, 4 middle, 4 bottom, 5 top, 8 top, 9 top, 9 bottom Lauri Urho p. 4 top, 5 bottom Juhani Vaittinen p. 7 bottom Markku Varjo / LKA p. 10 top For bibliographic purposes this document should be cited as: HELCOM, 2006 Changing Communities of Baltic Coastal Fish Executive summary: Assessment of coastal fi sh in the Baltic Sea Balt. Sea Environ. Proc. No. 103 B Information included in this publication or extracts thereof is free for citing on the condition that the complete reference of the publication is given as stated above Copyright 2006 by the Baltic Marine Environment Protection Commission - Helsinki Commission - Design and layout: Bitdesign, Vantaa, Finland Printed by: Erweko Painotuote Oy, Finland ISSN 0357-2994 Coastal fi sh – a combination of freshwater and marine species Coastal fish communities are important components of Baltic Sea ecosystems.
    [Show full text]
  • Seattle 2015
    Peripheries and Boundaries SEATTLE 2015 48th Annual Conference on Historical and Underwater Archaeology January 6-11, 2015 Seattle, Washington CONFERENCE ABSTRACTS (Our conference logo, "Peripheries and Boundaries," by Coast Salish artist lessLIE) TABLE OF CONTENTS Page 01 – Symposium Abstracts Page 13 – General Sessions Page 16 – Forum/Panel Abstracts Page 24 – Paper and Poster Abstracts (All listings include room and session time information) SYMPOSIUM ABSTRACTS [SYM-01] The Multicultural Caribbean and Its Overlooked Histories Chairs: Shea Henry (Simon Fraser University), Alexis K Ohman (College of William and Mary) Discussants: Krysta Ryzewski (Wayne State University) Many recent historical archaeological investigations in the Caribbean have explored the peoples and cultures that have been largely overlooked. The historical era of the Caribbean has seen the decline and introduction of various different and opposing cultures. Because of this, the cultural landscape of the Caribbean today is one of the most diverse in the world. However, some of these cultures have been more extensively explored archaeologically than others. A few of the areas of study that have begun to receive more attention in recent years are contact era interaction, indentured labor populations, historical environment and landscape, re-excavation of colonial sites with new discoveries and interpretations, and other aspects of daily life in the colonial Caribbean. This symposium seeks to explore new areas of overlooked peoples, cultures, and activities that have
    [Show full text]
  • Marine and Coastal Biodiversity: Draft Summary Report on the Description of Areas Meeting the Scientific Criteria for Ecological
    CBD Distr. GENERAL CBD/SBSTTA/22/7/Add.1 3 April 2018 ORIGINAL: ENGLISH SUBSIDIARY BODY ON SCIENTIFIC, TECHNICAL AND TECHNOLOGICAL ADVICE Twenty-second meeting Montreal, Canada, 2-7 July 2018 Item 8 of the provisional agenda* MARINE AND COASTAL BIODIVERSITY DRAFT SUMMARY REPORT ON THE DESCRIPTION OF AREAS MEETING THE SCIENTIFIC CRITERIA FOR ECOLOGICALLY OR BIOLOGICALLY SIGNIFICANT MARINE AREAS Note by the Executive Secretary Addendum BACKGROUND 1. Pursuant to decision X/29, paragraph 36, decision XI/17, paragraph 12, decision XII/22, paragraph 6 and decision XIII/12, paragraph 8, the following two additional regional workshops were convened by the Executive Secretary of the Convention on Biological Diversity: (a) Black Sea and Caspian Sea (Baku, 24 to 29 April 2017);1 (b) Baltic Sea (Helsinki, 19 to 24 February 2018).2 2. The description of marine areas meeting the criteria for ecologically or biologically significant marine areas does not imply the expression of any opinion whatsoever concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Nor does it have economic or legal implications; it is strictly a scientific and technical exercise. 3. Pursuant to decision XI/17, paragraph 12, summaries of the results of these regional workshops are provided in tables 1 and 2 below, respectively, while full descriptions of how the areas meet the criteria for ecologically or biologically significant marine areas (EBSAs) are provided in the annexes to the respective reports of the workshops. * CBD/SBSTTA/22/1/Add.1. 1 Report contained in CBD/EBSA/WS/2017/1/3.
    [Show full text]
  • International Council for the Exploration of the Sea FINLAND J. Lassig Institute of Marine Research C. H. 1982/L: L/Corr. Admini
    \ International Council for C. H. 1982/L: l/Corr. the Exploration of the Sea Administrative Report Addendum 'BiologicalOceanography Committee FINLAND 6/0 J. Lassig Institute of Marine Research Phytoplankton, primary production, chlorophyll a and related parameters were studied every second week (twice during the ice period) at one station in the western part of the Gulf of Finland and at 15 stations in the entire Baltic Sea as stipula­ ted in theBaltic Monitoring Programme (Helsinki:Commission). Zooplankton was sampled (Hensen net) three times a month (once during the ice period) at two coastal stations in the Gulf of Finland, one station in the Archipelago Sea and one in the Bothnian Bay. Zooplankton was sampled (WP-2 net) at 26 stations in the entire Baltic Sea according to the Baltic Monitoring Programme·, I Benthic macrofauna communities were studied in the deep areas of the Baltic Sea. The stations of the Baltic Monitoring Pr~gramme were included in the survey. The produciton and decomposition of organie matter in the pela­ gial were studied in the Gulf of Finland in eooperation with Tvärminne Zoologieal Station of the University of Helsinki. Institute of Radiation Proteetion, Helsinki Benthos studies were carried out in the vieinity of two nuclear power plants, one in the Gulf of Finland and one in the Bothnian Bay. SampIes have been taken twiee at 9 stations at each plant. Phytoplankton, .ehlorophyll a and primary produetion studies were performed onee or twiee a month during the ice-free period around both plants. National Board of Waters, Water Research Office, Helsinki The influence of industrial pollution on the composition of th~ benthic macrofauna was studied in 4 areas in the Gulf of Finland, in 4 areas in~ the Bothnian Sea and in 3 areas in the Bothnian Bay.
    [Show full text]
  • 20020011.Pdf
    Color profile: Generic CMYK printer profile Composite Default screen 1144 PERSPECTIVE Geological and evolutionary underpinnings for the success of Ponto-Caspian species invasions in the Baltic Sea and North American Great Lakes David F. Reid and Marina I. Orlova1 Abstract: Between 1985 and 2000, ~70% of new species that invaded the North American Great Lakes were endemic to the Ponto-Caspian (Caspian, Azov, and Black seas) basins of eastern Europe. Sixteen Ponto-Caspian species were also established in the Baltic Sea as of 2000. Many Ponto-Caspian endemic species are characterized by wide environmental tolerances and high phenotypic variability. Ponto-Caspian fauna evolved over millions of years in a series of large lakes and seas with widely varying salinities and water levels and alternating periods of isolation and open connections between the Caspian Sea and Black Sea depressions and between these basins and the Mediterranean Basin and the World Ocean. These conditions probably resulted in selection of Ponto-Caspian endemic species for the broad environmental tolerances and euryhalinity many exhibit. Both the Baltic Sea and the Great Lakes are geologi- cally young and present much lower levels of endemism. The high tolerance of Ponto-Caspian fauna to varying environmental conditions, their ability to survive exposure to a range of salinities, and the similarity in environmental conditions available in the Baltic Sea and Great Lakes probably contribute to the invasion success of these species. Human activities have dramatically increased the opportunities for transport and introduction and have played a cata- lytic role. Résumé : Entre 1985 et 2000, environ 70 % des espèces qui ont envahi pour la première fois les Grands-Lacs d’Amérique du Nord étaient endémiques aux bassins versants de la région pontocaspienne de l’Europe de l’Est, soit ceux de la mer Caspienne, de la mer d’Azov et de la mer Noire.
    [Show full text]
  • Coccolithophores and Calcite Saturation State in the Baltic and Black Seas
    Biogeosciences, 5, 485–494, 2008 www.biogeosciences.net/5/485/2008/ Biogeosciences © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Coccolithophores and calcite saturation state in the Baltic and Black Seas T. Tyrrell1, B. Schneider2, A. Charalampopoulou1, and U. Riebesell3 1National Oceanography Centre, Southampton University, European Way, Southampton SO14 3ZH, UK 2Institut fur¨ Ostseeforschung Warnemunde,¨ Seestrasse 15, 18119 Rostock, Germany 3Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Duesternbrooker Weg 20, 24105 Kiel, Germany Received: 25 September 2007 – Published in Biogeosciences Discuss.: 10 October 2007 Revised: 30 January 2008 – Accepted: 27 February 2008 – Published: 1 April 2008 Abstract. The Baltic and Black Seas are both brackish, that carbonate coccoliths (shells) (Merico et al., 2006). As far as is to say both have salinities intermediate between freshwa- inorganic precipitation and dissolution of calcium carbonate ter and seawater. The coccolithophore Emiliania huxleyi is are concerned, the tendency for these two processes to take abundant in one, the Black Sea, but absent from the other, place is governed by the saturation state: the Baltic Sea. Here we present summertime coccolithophore = [ 2−] [ 2+] measurements confirming this difference, as well as data on CO3 . Ca /Ksp (1) the calcium carbonate saturation state of the Baltic Sea. We find that the Baltic Sea becomes undersaturated (or nearly with inorganic precipitation increasingly likely and/or rapid so) in winter, with respect to both the aragonite and calcite as increases further above 1.0, and dissolution increasingly likely and/or rapid as decreases further below 1.0. mineral forms of CaCO3. Data for the Black Sea are more limited, but it appears to remain strongly supersaturated year- If biogenic calcification were to be controlled in the same round.
    [Show full text]
  • The Northern Bothnian Bay
    Template for Submission of Scientific Information to Describe Areas Meeting Scientific Criteria for Ecologically or Biologically Significant Marine Areas THE NORTHERN BOTHNIAN BAY Abstract The Bothnian Bay forms the northernmost part of the Baltic Sea. It is the most brackish part of the Baltic, greatly affected by the combined river discharge from most of the Finnish and Swedish Lapland. The sea area is shallow and the seabed consists mostly of sand. The area displays arctic conditions: in winter the whole area is covered with sea ice, which is important for the reproduction of the grey seal (Haliochoerus grypus) and a prerequisite nesting habitat for the ringed seal (Pusa hispida botnica). In summer the area is productive and due to the turbidity of the water the primary production is compressed to a narrow photic zone (between 1 to 5 meters). Due to the extreme brackish water the number of marine species is low, but at the same time the number of endemic and threatened species is high. It is an important reproduction area for coastal fish and an important gathering area for several anadromous fish species. River Tornionjoki, which discharges into the northern part of the area, is the most important spawning river for the Baltic population of the Atlantic salmon (Salmo salar), a vulnerable species in the Baltic Sea. Introduction The Northern Bothnian Bay is a large, shallow and tideless sea area with a seabed consisting mostly of sand and silt, forming the northernmost part of the Baltic Sea. The topography is a result of the last glaciation (10,000 BP) and the isostatic land uplift is still ongoing (ca.
    [Show full text]
  • Ventilation of the Northern Baltic Sea
    Ocean Sci., 16, 767–780, 2020 https://doi.org/10.5194/os-16-767-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Ventilation of the northern Baltic Sea Thomas Neumann1, Herbert Siegel1, Matthias Moros1, Monika Gerth1, Madline Kniebusch1, and Daniel Heydebreck1,ė 1Leibniz Institute for Baltic Sea Research Warnemünde, Rostock 18119 Warnemünde Seestr. 15, Germany ėpreviously published under the name Daniel Neumann Correspondence: Thomas Neumann ([email protected]) Received: 9 May 2019 – Discussion started: 17 July 2019 Revised: 14 May 2020 – Accepted: 19 May 2020 – Published: 3 July 2020 Abstract. The Baltic Sea is a semi-enclosed, brackish wa- Matthäus, 2008), and as a result, the surface salinity ranges ter sea in northern Europe. The deep basins of the central from 14 gkg−1 (south) to 2.5 gkg−1 (north). Due to its hy- Baltic Sea regularly show hypoxic conditions. In contrast, the drographic conditions, an estuarine-like circulation is estab- northern parts of the Baltic Sea, the Bothnian Sea and Both- lished and a strong and permanent vertical density stratifica- nian Bay, are well oxygenated. Lateral inflows or a ventila- tion occurs. These hydrographic conditions set the prerequi- tion due to convection are possible mechanisms for high oxy- sites for vulnerability to hypoxia and anoxia below the pyc- gen concentrations in the deep water of the northern Baltic nocline. In general, a ventilation is only possible by lateral Sea. intrusions of oxygenated water of a sufficiently high den- In March 2017, conductivity–temperature–depth (CTD) sity which allows this water to enter depths below the pyc- profiles and bottle samples, ice core samples, and brine were nocline.
    [Show full text]