Diversity of Seed Plants and Their Systematics

Total Page:16

File Type:pdf, Size:1020Kb

Diversity of Seed Plants and Their Systematics Diversity of Seed Plants and their Systematics Gymnosperms I Geological Time Scale Dr. NUPUR BHOWMIK Department of Botany University of Allahabad Senate Hall Allahabad – 211002 [email protected] Date of submission: 27/06/2006 Keywords - Evolution, sedimentary, radiometric, isotopes, compression, half-life, Cryptozoic, Phanerozoic, Archaeopterid, Rhyniophytes. The crust of the earth is defined as those rocks that overlie the mantle. After the formation of the earth's core and driving off much of earth's volatile elements particularly gases, partial melting of the entire mantle resulted. The solid crust of the earth was formed only when sufficient cooling by radiation at the surface had taken place. And geological evolution began after a solid skin, the earth's crust was formed. The earth we live has changed through geologic times and prehistoric life inhabiting the earth in the geological past have been preserved in the rock records as fossils. Study of these plant fossils reveals the nature of the plants that inhabited the earth throughout the geological time. A vast majority of fossil plants are preserved in sedimentary rocks. The sedimentary rock was built by constant deposition of sand and silt carried by moving water. Conversion of the sediments into rock involved removal of water followed by varying degrees of compaction and cementation. Presumably deposition of sediments had been going on in this way since the earth's crust became solid. In such a case there would have been a continuous sequence of strata from the beginning to the present with the oldest strata at the bottom and youngest strata on the top. Often plant parts like leaves, twigs, seeds etc. are also carried by the stream and if not decayed were incorporated into the sediments and were finally included in the rock. These plant parts are preserved as compressions in sedimentary rock if there is abundance of particles of sedimentary material as silt, clay or fine sand available in the environment. As the plant parts accumulate in the body of water, they become covered with the sediment and entombed in the subsequently formed rocks. The strata of rocks deposited thus, form a geological column (see chart 1 and 4). Fossil plants from one part of the geological column differ in size, shape, level of complexity and abundance from those from another part of the column, because there are changes in the types of plants through geologic time. A study of the geological record of fossil plants reveals the possible time at which various major groups originated, the time each group reached its maximum development and in case of certain groups also the time they became extinct (see Chart 2). Dating of fossil plants is important in order to know when the various groups of fossil plants inhabited the earth in the geologic past. A number of methods were used to date the various rocks but the most common method to "age dating" is that involving radioactive decay. However, there are other processes like using tree-rings of dating archeological wood (Dendrochronology) etc. 1 2 Radiometric Dating : Decay at atomic level is the basis for dating technique. Dating of the rocks is determined by the rate at which the radioactive minerals found in some rocks lose particles. Certain mineral elements have radioactive isotopes that are sometimes referred to as geologic clocks. These isotopes lose particles (decay) at a known uniform rate, breaking down ultimately to a stable (non-radioactive) state. For example, 1 gram of Uranium238 (radioactive) yields 0.5g U238 + Pb206 in 4.5 billion years. In other words, the time required for half of 1 gram of uranium238 to break down to lead206 is 4.5 billion years. Half of the original U238 will still be present. Four and a half billion years is called as the Half life of U238. If a given sample of rock contains both U238 and Pb206, the ratio between them can be used to determine how long ago the rock was formed. Some minerals used in radiometric dating are : Original Element formed Time required for decay of half of Element by radioactive original element decay Uranium238 Lead206 4.5 billion years Uranium235 Lead207 710 million years Thorium232 Lead208 14 billion years Rubidium87 Strontium87 47 billion years Potassium40 Argon40 1.2 billion years Carbon14 Nitrogen14 3.6 thousand years At present the oldest rock of earth's crust to be measured by this method gives an age of about 4.5-4.8 billion years. The earth's geological history encompassing 4.5 billion years (b.y.) is divided into relevant time intervals which are accepted globally. A number of methods have been used to achieve geologic time units and from time to time a large number of terms have been used to signify a particular geologic time. Some of the methods were based on rock succession or sratigraphy using, systems, series, stages etc. and others based on occurrence of important events like Eons, Eras, Periods, Epochs, Ages etc. Besides this prefixes like Early-, Mid- or Late- or Upper or Lower were also used to specify geological intervals. Even then the division indicating the different stages of the Earth's history seem to have remained unsatisfactory. To cite an example, the vast Precambrian which stretches for nearly 4 billion years has been divided into only two major divisions - the Archaean and the Proterozoic while the comparatively smaller Phanerozoic time period spanning the last 570 million years has been divided into 3 major divisions which have been further divided into 15 sub-divisions based on the abundant fossil data easily available. The terms used in the geological time scale like Cambrian, Ordovician, Silurian etc. describe the entire stratigraphic record from the point at which abundant fossils appeared. These terms have be an applied to rocks and fossils when they are labels or geological systems, or to time when they designate the periods. Additional terms sub-divided the systems into Series and Stages and the periods into Epochs and Ages. The periods are each assigned to large units, the Paleozoic, Mesozoic and Cenozoic Eras and these in turn composed the Phanerozoic Eon. The science of sub-dividing and labeling geological time is known as chronostratigraphy. The past history of the earth was divided into two major Eons : The Cryptozoic (hidden life), now called as the Precambrian and the Phanerozoic (visible life). The Precambrian includes the span of time from the beginning of earth history to about 590 million years ago, some 80% of the geologic time. Precambrian time is 3 divided into two sub-eons: the Archean which extends from the beginning of earth history upto 2.5 billion years ago and the Proterozoic which spans the time from Archean to the Cambrian, around 590 million years ago. The term "Hadean" (introduced by Preston Cloud) is used to designate geological time from the origin of the earth, some 4550 Ma ago to the oldest terrestrial rocks now known at 3800 Ma. It is believed that in the oldest rocks dated at 3800 Ma, many geological, biochemical and perhaps biological events had remained unrecorded in the rocks. The possible clues of earliest life are the Isua supracrustals. Though highly metamorphosed, nature of metasediments indicates deposition under aqueous conditions and apparently under anaerobic conditions. Carbonates (implying presence of atmospheric CO2), sedimentary banded iron formations (BIFs) and reduced carbon in the form of graphite are also found. The Isua carbon is enriched in C12 which suggests presence of autotrophs. However, the oldest unequivocal remains of life come from slightly metamorphosed rocks about 3500 Ma old. The cherts show presence of stromatolites and filamentous microfossils. Stromatolites are deposits of limestone, dolomite, or chert that have been laid down in concentric or eccentric layers. Individual stromatolites are fused laterally to one another to form a solid mass of rock (see Figure 3). Certain blue-green algae can produce pebble-sized rocks of limestone commonly called water biscuits. The concentric layers of limestone are seen when water biscuits are broken open and they have been formed by organisms that grew on the surface. More than 28 species of algae mostly blue-green algae have been obtained from limestone matrix as well as from the surface of water biscuits. Many modern blue-green algae are able to form laminated limestone deposits. Thus, in the Precambrian, about 3.5 billion years appeared the first evidence of cellular organization, where both one-celled and filaments of cells having shape, size and organization of prokaryotic bacteria and blue-green algae were present. Some of them were accompanied with photosynthetic mechanisms whereas others were heterotrophs. Further upwards in Precambrian about 2.1 billion years (the Proterozoic) coccoid and bacillus type cells resembling modern bacteria and blue-green algae forming filamentous colonies had existed (see Figure 2). In the younger Precambrian, about 900 Ma ago, diversification of blue-green algae and appearance of unicellular organisms resembling extant green algae had occurred. Many organisms had nucleus like the eukaryotes. Besides algae, fungi of Phycomycetous type had also evolved. Above the Precambrian is the Cambrian and Ordovician between 570 and 435 million years. By this period, great diversification of algal types had occurred and together with the blue-green, the green, brown and red alga had also evolved. The organisms had become multicellular, showing evolution of eukaryotic conditions. Rocks also showed presence of spores with triradiate marks indicating occurrence of meiosis and sexual reproduction in the plant life cycles. In the Mid-Silurian (Wenlockian) about 420 Ma ago appeared the first vascular land plants. They were small, had naked, dichotomizing axes with terminal eusporangia. The parenchymatous axis contained primary xylem in the centre.
Recommended publications
  • A Comparative Study of the Primary Vascular System Of
    Amer. J. Bot. 55(4): 464-472. 1!16'>. A COMPARATIVE STUDY OF THE PRIMARY VASCULAR SYSTE~1 OF CONIFERS. III. STELAR EVOLUTION IN GYMNOSPERMS 1 KADAMBARI K. NAMBOODIRI2 AND CHARLES B. BECK Department of Botany, University of Michigan, Ann Arbor ABST RAe T This paper includes a survey of the nature of the primary vascular system in a large number of extinct gymnosperms and progymnosperms. The vascular system of a majority of these plants resembles closely that of living conifers, being characterized, except in the most primitive forms which are protostelic, by a eustele consisting of axial sympodial bundles from which leaf traces diverge. The vascular supply to a leaf originates as a single trace with very few exceptions. It is proposed that the eustele in the gyrr.nosperms has evolved directly from the protostele by gradual medullation and concurrent separation of the peripheral conducting tissue into longitudinal sympodial bundles from which traces diverge radially. A subsequent modification results in divergence of traces in a tangential plane, The closed vascular system of conifers with opposite and whorled phyllotaxis, in which the vascular supply to a leaf originates as two traces which subsequently fuse, is considered to be derived from the open sympodial system characteristic of most gymnosperms. This hypothesis of stelar evolution is at variance with that of Jeffrey which suggests that the eustele of seed plants is derived by the lengthening and overlapping of leaf gaps in a siphonostele followed by further reduction in the resultant vascular bundles. This study suggests strongly that the "leaf gap" of conifers and other extant gymnosperms is not homologous with that of siphonostelic ferns and strengthens the validity of the view that Pterop­ sida is an unnatural group.
    [Show full text]
  • Prepared in Cooperation with the Lllinois State Museum, Springfield
    Prepared in cooperation with the lllinois State Museum, Springfield Richard 1. Leary' and Hermann W. Pfefferkorn2 ABSTRACT The Spencer Farm Flora is a compression-impression flora of early Pennsylvanian age (Namurian B, or possibly Namurian C) from Brown County, west-central Illinois. The plant fossils occur in argillaceous siltstones and sand- stones of the Caseyville Formation that were deposited in a ravine eroded in Mississippian carbonate rocks. The plant-bearing beds are the oldest deposits of Pennsylva- nian age yet discovered in Illinois. They were formed be- fore extensive Pennsylvanian coal swamps developed. The flora consists of 29 species and a few prob- lematical forms. It represents an unusual biofacies, in which the generally rare genera Megalopteris, Lesleya, Palaeopteridium, and Lacoea are quite common. Noegger- athiales, which are seldom present in roof-shale floras, make up over 20 percent of the specimens. The Spencer Farm Flora is an extrabasinal (= "upland1') flora that was grow- ing on the calcareous soils in the vicinity of the ravine in which they were deposited. It is suggested here that the Noeggerathiales may belong to the Progymnosperms and that Noeggerathialian cones might be derived from Archaeopteris-like fructifica- tions. The cone genus Lacoea is intermediate between Noeggerathiostrobus and Discini tes in its morphology. Two new species, Lesleya cheimarosa and Rhodeop- teridi urn phillipsii , are described, and Gulpenia limbur- gensis is reported from North America for the first time. INTRODUCTION The Spencer Farm Flora (table 1) differs from other Pennsylvanian floras of the Illinois Basin. Many genera and species in the Spencer Farm Flora either have not been found elsewhere in the basin or are very l~uratorof Geology, Illinois State Museum, Springfield.
    [Show full text]
  • Evolution of the Female Conifer Cone Fossils, Morphology and Phylogenetics
    DEPARTMENT OF BIOLOGICAL AND ENVIRONMENTAL SCIENCES EVOLUTION OF THE FEMALE CONIFER CONE FOSSILS, MORPHOLOGY AND PHYLOGENETICS Daniel Bäck Degree project for Bachelor of Science with a major in Biology BIO602, Biologi: Examensarbete – kandidatexamen, 15 hp First cycle Semester/year: Spring 2020 Supervisor: Åslög Dahl, Department of Biological and Environmental Sciences Examiner: Claes Persson, Department of Biological and Environmental Sciences Front page: Abies koreana (immature seed cones), Gothenburg Botanical Garden, Sweden Table of contents 1 Abstract ............................................................................................................................... 2 2 Introduction ......................................................................................................................... 3 2.1 Brief history of Florin’s research ............................................................................... 3 2.2 Progress in conifer phylogenetics .............................................................................. 4 3 Aims .................................................................................................................................... 4 4 Materials and Methods ........................................................................................................ 4 4.1 Literature: ................................................................................................................... 4 4.2 RStudio: .....................................................................................................................
    [Show full text]
  • X. the Conifers and Ginkgo
    X. The Conifers and Ginkgo Now we turn our attention to the Coniferales, another great assemblage of seed plants. First let's compare the conifers with the cycads: Cycads Conifers few apical meristems per plant many apical meristems per plant leaves pinnately divided leaves undivided wood manoxylic wood pycnoxylic seeds borne on megaphylls seeds borne on stems We should also remember that these two groups have a lot in common. To begin with, they are both groups of woody seed plants. They are united by a small set of derived features: 1) the basic structure of the stele (a eustele or a sympodium, two words for the same thing) and no leaf gaps 2) the design of the apical meristem (many initials, subtended by a slowly dividing group of cells called the central mother zone) 3) the design of the tracheids (circular-bordered pits with a torus) We have three new seed plant orders to examine this week: A. Cordaitales This is yet another plant group from the coal forest. (Find it on the Peabody mural!) The best-known genus, Cordaites, is a tree with pycnoxylic wood bearing leaves up to about a foot and a half long and four inches wide. In addition, these trees bore sporangia (micro- and mega-) in strobili in the axils of these big leaves. The megasporangia were enclosed in ovules. Look at fossils of leaves and pollen-bearing shoots of Cordaites. The large, many-veined megaphylls are ancestral to modern pine needles; the shoots are ancestral to pollen-bearing strobili of modern conifers. 67 B.
    [Show full text]
  • 1 Supplementary Materials and Methods 1 S1 Expanded
    1 Supplementary Materials and Methods 2 S1 Expanded Geologic and Paleogeographic Information 3 The carbonate nodules from Montañez et al., (2007) utilized in this study were collected from well-developed and 4 drained paleosols from: 1) the Eastern Shelf of the Midland Basin (N.C. Texas), 2) Paradox Basin (S.E. Utah), 3) Pedregosa 5 Basin (S.C. New Mexico), 4) Anadarko Basin (S.C. Oklahoma), and 5) the Grand Canyon Embayment (N.C. Arizona) (Fig. 6 1a; Richey et al., (2020)). The plant cuticle fossils come from localities in: 1) N.C. Texas (Lower Pease River [LPR], Lake 7 Kemp Dam [LKD], Parkey’s Oil Patch [POP], and Mitchell Creek [MC]; all representing localities that also provided 8 carbonate nodules or plant organic matter [POM] for Montañez et al., (2007), 2) N.C. New Mexico (Kinney Brick Quarry 9 [KB]), 3) S.E. Kansas (Hamilton Quarry [HQ]), 4) S.E. Illinois (Lake Sara Limestone [LSL]), and 5) S.W. Indiana (sub- 10 Minshall [SM]) (Fig. 1a, S2–4; Richey et al., (2020)). These localities span a wide portion of the western equatorial portion 11 of Euramerica during the latest Pennsylvanian through middle Permian (Fig. 1b). 12 13 S2 Biostratigraphic Correlations and Age Model 14 N.C. Texas stratigraphy and the position of pedogenic carbonate samples from Montañez et al., (2007) and cuticle were 15 inferred from N.C. Texas conodont biostratigraphy and its relation to Permian global conodont biostratigraphy (Tabor and 16 Montañez, 2004; Wardlaw, 2005; Henderson, 2018). The specific correlations used are (C. Henderson, personal 17 communication, August 2019): (1) The Stockwether Limestone Member of the Pueblo Formation contains Idiognathodus 18 isolatus, indicating that the Carboniferous-Permian boundary (298.9 Ma) and base of the Asselian resides in the Stockwether 19 Limestone (Wardlaw, 2005).
    [Show full text]
  • Stratigraphy and Petrology of Mississippian, Pennsylvanian And
    STRATIGRAPHY AND PETROLOGY OF MISSISSIPPIAN, PENNSYLVANIAN, AND PERMIAN ROCKS IN THE MAGDALENA AREA, SOCORRO COUNTY, NEW MEXICO Open-File Report 54 New Mexico Bureau of Mines and Mineral Resources by William Terry Siemers December 1973 TABLEOFCONTENTS INTRODUCTION Area of Study Purpose of Study Method of Study Location and Accessibility ACKNOWLEDGMENTS 5 PALEOTECTONIC SETTING 6 MISSISSIPPIAN PERIOD 11 i Prekious Work 11 Regional Stratigraphy 11 Northern New Mexico 13 south- CentralNew Mexico 13 Southwestern New Mexico 14 Local Stratigraphy 16 Tip Top Mountain 16 *, North Baldy 20 North Fork Canyon 23 Stratigraphic Summary 26 Petrography 27 Caloso Formation 27 Kelly Limestone 28 PENNSYLVANIAN PERIOD 34 Previous Work 34. RegionalStratigraphy 38 Northern New Mexico 38 I Central New Mexico 39 1 Southwestern New Mexico 41 Local Stratigraphy 42 Tip Top Mountain 48 /' c. Sandia Formation 49 ' Madera Limestone 51 North Fork Canyon 52 Sandia Formation 53 Madera Limestone 55 North Baldy 56 Summary of Pennsylvanian Sections 62 ~~ ~ .. 11 Petrography 63 Sandia Formation 63 Madera Limestone 67 ROCKS OF QUESTIONED AGE 72 Bursum Farmation 73 Ab0 Formation 73 c Yeso Formation 75 Glorieta Sandstone 76 San Andres Formation 76 Comparison of Olney Ranch and Tres Montosas 'sections 76 . with Permian and Pennsylvanian Formations Thickness 76 Sedimentary Structures 77 Lithology 78 ENVIRONMENTS OF DEPOSITION 94 Caloso Formation 94 Kelly Limestone 95 Sandia Formation 96 . Quartzite 96 . Shale 97 Limestone 97 Madera Limestone 97 SUMMARY AND CONCLUSIONS 98 REFERENCES 100 APPENDICES 108 Appendix I: Stratigraphic Columns 109 Appendix II: Sedimentary Petrology 118 Appendix 111: Classification Systems 127 c iii LIST OF FIGURES Figure Page 1.
    [Show full text]
  • The Joggins Fossil Cliffs UNESCO World Heritage Site: a Review of Recent Research
    The Joggins Fossil Cliffs UNESCO World Heritage site: a review of recent research Melissa Grey¹,²* and Zoe V. Finkel² 1. Joggins Fossil Institute, 100 Main St. Joggins, Nova Scotia B0L 1A0, Canada 2. Environmental Science Program, Mount Allison University, Sackville, New Brunswick E4L 1G7, Canada *Corresponding author: <[email protected]> Date received: 28 July 2010 ¶ Date accepted 25 May 2011 ABSTRACT The Joggins Fossil Cliffs UNESCO World Heritage Site is a Carboniferous coastal section along the shores of the Cumberland Basin, an extension of Chignecto Bay, itself an arm of the Bay of Fundy, with excellent preservation of biota preserved in their environmental context. The Cliffs provide insight into the Late Carboniferous (Pennsylvanian) world, the most important interval in Earth’s past for the formation of coal. The site has had a long history of scientific research and, while there have been well over 100 publications in over 150 years of research at the Cliffs, discoveries continue and critical questions remain. Recent research (post-1950) falls under one of three categories: general geol- ogy; paleobiology; and paleoenvironmental reconstruction, and provides a context for future work at the site. While recent research has made large strides in our understanding of the Late Carboniferous, many questions remain to be studied and resolved, and interest in addressing these issues is clearly not waning. Within the World Heritage Site, we suggest that the uppermost formations (Springhill Mines and Ragged Reef), paleosols, floral and trace fossil tax- onomy, and microevolutionary patterns are among the most promising areas for future study. RÉSUMÉ Le site du patrimoine mondial de l’UNESCO des falaises fossilifères de Joggins est situé sur une partie du littoral qui date du Carbonifère, sur les rives du bassin de Cumberland, qui est une prolongation de la baie de Chignecto, elle-même un bras de la baie de Fundy.
    [Show full text]
  • The Joggins Cliffs of Nova Scotia: B2 the Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H
    GAC-MAC-CSPG-CSSS Pre-conference Field Trips A1 Contamination in the South Mountain Batholith and Port Mouton Pluton, southern Nova Scotia HALIFAX Building Bridges—across science, through time, around2005 the world D. Barrie Clarke and Saskia Erdmann A2 Salt tectonics and sedimentation in western Cape Breton Island, Nova Scotia Ian Davison and Chris Jauer A3 Glaciation and landscapes of the Halifax region, Nova Scotia Ralph Stea and John Gosse A4 Structural geology and vein arrays of lode gold deposits, Meguma terrane, Nova Scotia Rick Horne A5 Facies heterogeneity in lacustrine basins: the transtensional Moncton Basin (Mississippian) and extensional Fundy Basin (Triassic-Jurassic), New Brunswick and Nova Scotia David Keighley and David E. Brown A6 Geological setting of intrusion-related gold mineralization in southwestern New Brunswick Kathleen Thorne, Malcolm McLeod, Les Fyffe, and David Lentz A7 The Triassic-Jurassic faunal and floral transition in the Fundy Basin, Nova Scotia Paul Olsen, Jessica Whiteside, and Tim Fedak Post-conference Field Trips B1 Accretion of peri-Gondwanan terranes, northern mainland Nova Scotia Field Trip B2 and southern New Brunswick Sandra Barr, Susan Johnson, Brendan Murphy, Georgia Pe-Piper, David Piper, and Chris White The Joggins Cliffs of Nova Scotia: B2 The Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H. Calder, M.R. Gibling, and M.C. Rygel Lyell & Co's "Coal Age Galapagos” B3 Geology and volcanology of the Jurassic North Mountain Basalt, southern Nova Scotia Dan Kontak, Jarda Dostal,
    [Show full text]
  • Transformative Paleobotany
    Chapter 6 Lower Permian Flora of the Sanzenbacher Ranch, Clay County, Texas William A. DiMichele1, Robert W. Hook2, Hans Kerp3, Carol L. Hotton1,4, Cindy V. Looy5 and Dan S. Chaney1 1NMNH Smithsonian Institution, Washington, DC, United States; 2The University of Texas at Austin, Austin, TX, United States; 3Westfälische Wilhelms-Universität Münster, Münster, Germany; 4National Institutes of Health, Bethesda, MD, United States; 5University of California Berkeley, Berkeley, CA, United States 1. INTRODUCTION 1985; Broutin, 1986; Popa, 1999; Steyer et al., 2000; Wagner and Mayoral, 2007; Bercovici and Broutin, 2008; Since 1989, field parties supported by the U.S. National Barthel, 2009; Wagner and Álvarez-Vázquez, 2010; Museum of Natural History have obtained large collections Barthel and Brauner, 2015). Furthermore, because this of mainly Permian plant fossils from north central Texas. locality was collected on three occasions over a time period This work was undertaken to study known localities and to of 50 years and by different parties, comparative analysis of find new fossiliferous deposits that would contribute to a the Sanzenbacher collections provides a basis for assessing better understanding of floral and paleoenvironmental sites that have comparable histories. changes within the region during the early Permian. From the outset, the effort was interdisciplinary and grew, through the contributions of nearly 20 paleobotanists, 2. GEOLOGY palynologists, invertebrate and vertebrate paleontologists, Clay County is the only county in the Permo-Carboniferous and sedimentary geologists of several subdisciplines, to be outcrop belt of north central Texas that lacks marine rocks. quite comprehensive. Our reporting of results, however, has These alluvial sediments accumulated east of a broad been influenced by unexpected developments, including the coastal plain that bordered the Eastern Shelf of the Midland discovery of new plant-fossil assemblages in areas once Basin.
    [Show full text]
  • U.S. GEOLOGICAL SURVEY BULLETIN 21 Cover
    rf Predictive Stratigraphic Analysis- - Concept and Application u.s. GEOLOGICAL SURVEY BULLETIN 21 Cover. Calcic paleo-Vertisol underlying the resistant transgressive marine limestone Little Stone Gap Member of the Hinton Formation (Upper Mississippian) in southwestern West Virginia. This paleosol is indicative of a relatively dry climate when evapotranspira- tion exceeded rainfall for more than 6 months out of the year. The light-gray color at the level of the photograph scale (center) is the result of gleying (bleaching) after burial. A calcified root system, located in the proximity of the scale, branches downward and sug­ gests a well-developed root system for a plant whose stem may have been up to 15 centi­ meters in diameter. Numerous mineralized fossil roots at this level indicate that land plants were very well adapted to seasonally dry conditions in nonwaterlogged environ­ ments by Late Mississippian time. Cross-cutting fractures, known as mukkara structures and caused by seasonal expansion (wet) and contraction (dry), are visible throughout the outcrop beneath the resistant limestone layer except where interrupted or destroyed by paleoroot systems. Predictive Stratigraphic Analysis Concept and Application Edited by C. Blaine Cecil and N. Terence Edgar U.S. GEOLOGICAL SURVEY BULLETIN 2110 A collection of extended abstracts of papers presented at two workshops on the title subject UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY GORDON P. EATON, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]
  • III Unit- GYMNOSPERMS )
    CORE COURSE II PLANT BIODIVERSITY II ( III Unit- GYMNOSPERMS ) Unit III : A general account of the characteristic features of Gymnosperms. Origin of Gymnosperms. Classification of Gymnosperms (Sporne, 1965). General structure and interrelationships of Pteridospermales, Bennetittales, Pentoxylales and Cordaitales. 1. General account on characteristic features of Gymnosperms. The word “Gymnosperm” comes from the Greek words “gymnos”(naked) and “sperma”(seed), hence known as “Naked seeds.” Gymnosperms are the seed- producing plants, but unlike angiosperms, they produce seeds without fruits. These plants develop on the surface of scales or leaves, or at the end of stalks forming a cone-like structure. Gymnosperms belong to kingdom ‘Plantae‘ and sub-kingdom ‘Embryophyta’. The fossil evidence suggested that they originated during the Paleozoic era, about 390 million years ago. Basically, gymnosperms are plants in which the ovules are not enclosed within the ovary wall, unlike the angiosperms. It remains exposed before and after fertilisation, and before developing into a seed. The stem of gymnosperms can be branched or unbranched. The thick cuticle, needle-like leaves, and sunken stomata reduce the rate of water loss in these plants. The family of gymnosperms consist of conifers, the cycads, the gnetophytes, and the species of Gynkgophyta division and Ginkgo biloba. Following are the important characteristics of gymnosperms: 1. Habit: Gymnosperms are a small group of seed plants which are represented by only 900 living species.The living gymnosperms are woody, evergreen (except Larix Dr.P.PRABAKARAN Assist .Prof.Botany MRGAC Page 1 and a Taxodium) perennials grow as trees or shrubs. Tallest trees are Sequoia sempervirens (366ft) and S.
    [Show full text]