Animal Diversity Part 1

Total Page:16

File Type:pdf, Size:1020Kb

Animal Diversity Part 1 Animal Diversity part 1 Animal diversity, part 1 I. Plants vs. animals Textbook reference: Diversity 1 Brooker et al. Principles of Biology pp. 509-515 II. Protists I. List the key distinguishing III. Ancestry of animals features of animals, and compare with IV. Animal body plans plants Fig.5.20 I. A. Cell structure Plants Animals • Multicellular • Multicellular • Cell walls • No cell walls – Rigid – Flexible – Extracellular matrix • Cell wall ducts • Cell junctions – Plasmodesmata – Anchoring junctions – Tight junctions – Gap junctions 1 I. B. Mode of Nutrition Plants Animals • Source of organic • Source of organic compounds: compounds: – Autotrophs – Heterotrophs – Producers – Consumers – Synthesize everything from scratch • Immobile • Variety of modes of feeding I. C. Movement Plants Animals • Air currents • Muscle • Water currents • Nervous system • Phototropism • Vine tendrils • Protective response Fig. 25.2 I. D. Genomes and Symmetry Plants Animals • Radial symmetry in • Hox genes early life – Symmetry – Body axis • Most do not keep whole-body • Radial symmetry symmetry • Bilateral symmetry 2 I. E. Reproduction and Development Plants Animals • Typically sexual • Most have sexual reproduction reproduction – But many can also – Internal or external reproduce asexually fertilization – Internal or external development • Alternation of generations • Metamorphosis Fig. 27.1 Animal diversity, part 1 Which of the following is not a feature of Diversity 1 I. Plants vs. animals animal cells? A. Mitochondria II. Protists B. Nucleus C. Rough endoplasmic reticulum II/III. Describe D. Plasmodesmata the evidence III. Ancestry of animals for common ancestry of animals and a IV. Animal body plans type of protist 3 II. A. What are protists? Fig. 21.1 • Any eukaryote that is not an animal, plant, or fungus • Non-phyletic II. B. What are the common II. C. Three categories of protist characteristics of protists? • Protozoa • Fungus-like Protists • Live in moist environments • Algae • Most are microscopic III. A. Choanoflagellates – Protozoa –Unicellular colonial – Uses flagellum to generate water currents/to move – Fig. 25.2 Collar of tentacles trap bacteria, etc. Fig. 25.3 Animal diversity, part 1 III. B. Sponge Diversity 1 I. Plants vs. animals – Animal – Multicellular II. Protists – Uses flagellum of collar cells to IV. Distinguish move food into categories of III. Ancestry of animals central cavity animal on the basis of body plan IV. Animal body plans Fig. 25.3 4 IV. Body Plans: Ways to classify animals IV. A. Tissues • Tissues • A group of cells with similar structure and function, along with their surrounding matrix • Symmetry • Germ Layers • Metazoa = Animals • Embryonic Development – Multicellular animals – Parazoa—animals that don’t actually have tissues • Body Cavities – Eumetazoa—animals with tissues and organs • Segmentation IV. B. Symmetry • The existence of balanced proportions of the body on either side of a median plane • Parazoa often don’t have symmetry • Radiata—symmetry along any longitudinal plane through the axis – Tend to be spherical or tubular Parazoa Eumetazoa Eumetazoa • no tissues 2 tissue layers 3 tissue layers Bilateria—symmetry along vertical midline plane to have left/right halves. Symmetry Parazoa Eumetazoa Eumetazoa no symmetry radial bilateral symmetry symmetry 5 IV. C. Germ Layers Germ Layers • Layers formed by gastrulation • Radiata: diploblastic – Endoderm: forms lining of digestive cavity – Ectoderm: forms epidermis & nervous system • Bilateria: triploblastic – Endoderm – Mesoderm: forms organs between endo- and ectoderm – Ectoderm Fig. 25.5 IV. D. Embryonic Development • Developmental patterns of Bilateria – Protostomes • Blastopore becomes mouth • Determinate cleavage • Spiral cleavage – Deuterostomes • Blastopore becomes anus Radiata Bilateria • Indeterminate cleavage diploblastic triploblastic • Radial cleavage Fig. 25.6 Germ Layers Fig. 25.5 6 IV. E. Body Cavity Would you expect a protostome to produce identical twin offspring? Explain • Coelom: Fluid-filled body cavity lined by A. Yes mesoderm B. No – Used to describe differences in animal structure – Do not reveal evolutionary relationships • Coelomates • Pseudocoelomates • Acoelomates Body Cavity Body Cavity • Coelomates • Pseudocoelomates – True coelom – Fluid-filled cavity not completely For example lined by mesoderm – Annelids – Arthropods – Rotifers – Chordates – Nematodes Fig. 25.7 Fig. 25.7 Body Cavity IV. F. Segmentation • Acoelomates • A body plan divided into regions called – Mesenchyme- segments filled cavity • Can be highly repetitive – Flatworms • Can allow for specialization; appendages Fig. 25.7 7 Segmental variation Segmentation Fig. 25.7 8.
Recommended publications
  • The NEURONS and NEURAL SYSTEM: a 21St CENTURY PARADIGM
    The NEURONS and NEURAL SYSTEM: a 21st CENTURY PARADIGM This material is excerpted from the full β-version of the text. The final printed version will be more concise due to further editing and economical constraints. A Table of Contents and an index are located at the end of this paper. A few citations have yet to be defined and are indicated by “xxx.” James T. Fulton Neural Concepts [email protected] July 19, 2015 Copyright 2011 James T. Fulton 2 Neurons & the Nervous System 4 The Architectures of Neural Systems1 [xxx review cogn computation paper and incorporate into this chapter ] [xxx expand section 4.4.4 as a key area of importance ] [xxx Text and semantics needs a lot of work ] Don’t believe everything you think. Anonymous bumper sticker You must not fool yourself, and you are the easiest person to fool Richard Feynman I am never content until I have constructed a model of what I am studying. If I succeed in making one, I understand; otherwise, I do not. William Thomson (Lord Kelvin) It is the models that tell us whether we understand a process and where the uncertainties remain. Bridgeman, 2000 4.1 Background [xxx chapter is a hodge-podge at this time 29 Aug 11 ] The animal kingdom shares a common neurological architecture that is ramified in a specific species in accordance with its station in the phylogenic tree and the ecological domain. This ramification includes not only replication of existing features but further augmentation of the system using new and/or modified features.
    [Show full text]
  • S I Section 4
    3/31/2011 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Porifera Ecdysozoa Deuterostomia Lophotrochozoa Cnidaria and Ctenophora Cnidaria and Protostomia SSiection 4 Radiata Bilateria Professor Donald McFarlane Parazoa Eumetazoa Lecture 13 Invertebrates: Parazoa, Radiata, and Lophotrochozoa Ancestral colonial choanoflagellate 2 Traditional classification based on Parazoa – Phylum Porifera body plans Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Parazoa 4 main morphological and developmental Sponges features used Loosely organized and lack Porifera Ecdysozoa Cnidaria and Ctenophora tissues euterostomia photrochozoa D 1. o Presence or absence of different tissue L Multicellular with several types of types Protostomia cells 2. Type of body symmetry Radiata Bilateria 8,000 species, mostly marine Parazoa Eumetazoa 3. Presence or absence of a true body No apparent symmetry cavity Ancestral colonial Adults sessile, larvae free- choanoflagellate 4. Patterns of embryonic development swimming 3 4 1 3/31/2011 Water drawn through pores (ostia) into spongocoel Flows out through osculum Reproduce Choanocytes line spongocoel Sexually Most hermapppgggphrodites producing eggs and sperm Trap and eat small particles and plankton Gametes are derived from amoebocytes or Mesohyl between choanocytes and choanocytes epithelial cells Asexually Amoebocytes absorb food from choanocytes, Small fragment or bud may detach and form a new digest it, and carry
    [Show full text]
  • Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide
    EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide BASAL METAZOANS Dirk Erpenbeck Ludwig-Maximilians Universität München, Germany Simion Paul and Michaël Manuel Université Pierre et Marie Curie in Paris, France. Paulyn Cartwright University of Kansas USA. Oliver Voigt and Gert Wörheide Ludwig-Maximilians Universität München, Germany Keywords: Metazoa, Porifera, sponges, Placozoa, Cnidaria, anthozoans, jellyfishes, Ctenophora, comb jellies Contents 1. Introduction on ―Basal Metazoans‖ 2. Phylogenetic relationships among non-bilaterian Metazoa 3. Porifera (Sponges) 4. Placozoa 5. Ctenophora (Comb-jellies) 6. Cnidaria 7. Cultural impact and relevance to human welfare Glossary Bibliography Biographical Sketch Summary Basal metazoans comprise the four non-bilaterian animal phyla Porifera (sponges), Cnidaria (anthozoans and jellyfishes), Placozoa (Trichoplax) and Ctenophora (comb jellies). The phylogenetic position of these taxa in the animal tree is pivotal for our understanding of the last common metazoan ancestor and the character evolution all Metazoa,UNESCO-EOLSS but is much debated. Morphological, evolutionary, internal and external phylogenetic aspects of the four phyla are highlighted and discussed. SAMPLE CHAPTERS 1. Introduction on “Basal Metazoans” In many textbooks the term ―lower metazoans‖ still refers to an undefined assemblage of invertebrate phyla, whose phylogenetic relationships were rather undefined. This assemblage may contain both bilaterian and non-bilaterian taxa. Currently, ―Basal Metazoa‖ refers to non-bilaterian animals only, four phyla that lack obvious bilateral symmetry, Porifera, Placozoa, Cnidaria and Ctenophora. ©Encyclopedia of Life Support Systems (EOLSS) EVOLUTION OF PHYLOGENETIC TREE OF LIFE - Basal Metazoans - Dirk Erpenbeck, Simion Paul, Michael Manuel, Paulyn Cartwright, Oliver Voigt and Gert Worheide These four phyla have classically been known as ―diploblastic‖ Metazoa.
    [Show full text]
  • Animal Diversity Part 2
    Textbook resources • pp. 517-522 • pp. 527-8 Animal Diversity • p. 530 part 2 • pp. 531-2 Clicker question In protostomes A. The blastopore becomes the mouth. B. The blastopore becomes the anus. C. Development involves indeterminate cleavage. D. B and C Fig. 25.2 Phylogeny to know (1). Symmetry Critical innovations to insert: Oral bilateral symmetry ecdysis mouth develops after anus multicellularity Aboral tissues 1 Animal diversity, part 2 Parazoa Diversity 2 I. Parazoa • Porifera: Sponges II. Cnidaria & Ctenophora • Tissues • Symmetry I. Outline the • Germ Layers III. Lophotrochozoa unique • Embryonic characteristics Development of sponges IV. Ecdysozoa • Body Cavities • Segmentation Parazoa Parazoa • Porifera: Sponges • Porifera: Sponges – Multicellular without – Hermaphrodites tissues – Sexual and asexual reproduction – Choanocytes (collar cells) use flagella to move water and nutrients into pores – Intracellular digestion Fig. 25.11 Animal diversity, part 2 Clicker Question Diversity 2 I. Parazoa In diploblastic animals, the inner lining of the digestive cavity or tract is derived from II. Cnidaria & Ctenophora A. Endoderm. II. Outline the B. Ectoderm. unique III. Lophotrochozoa C. Mesoderm. characteristics D. Coelom. of cnidarians and IV. Ecdysozoa ctenophores 2 Coral Box jelly Cnidaria and Ctenophora • Cnidarians – Coral; sea anemone; jellyfish; hydra; box jellies • Ctenophores – Comb jellies Sea anemone Jellyfish Hydra Comb jelly Cnidaria and Ctenophora Fig. 25.12 Coral Box jelly Cnidaria and Ctenophora • Tissues Fig. 25.12 –
    [Show full text]
  • BIOL 2290 - 3 EVOLUTION of ANIMAL BODY PLANS (3,0,3) Winter 2020
    BIOL 2290 - 3 EVOLUTION OF ANIMAL BODY PLANS (3,0,3) Winter 2020 Instructor: Dr. Louis Gosselin Office: Research Centre RC203 Email: [email protected] Course website: www.faculty.tru.ca/lgosselin/biol2290/ Meeting times Lectures: Mon 8:30 - 9:45 [AE 162] Wed 8:30 - 9:45 [AE 162] Laboratories - 3 hours per week [S 378] Calendar description This course explores the spectacular diversity of animal body plans, and examines the sequence of events that lead to this diversity. Lectures and laboratories emphasize the inherent link between body form, function and phylogeny. The course also highlights the diverse roles that animals play in natural ecosystems as well as their implications for humans, and examines how knowledge of animal morphology, development, and molecular biology allows us to reconstruct the phylogenetic tree of the Animalia. Educational objectives Upon successful completion of this course, students will be able to identify the major evolutionary events that lead to the current diversity of animal body plans, and the selective pressures that favoured each type of body plan. They will be able to recognize the functional significance of animal body design, relating morphology with specific lifestyles. Students will be able to describe the major functions that animals play in natural ecosystems and the significance of different animals for humans. In addition, students successfully completing the laboratory component of the course will be skilled in dissection techniques, identification, and in the basic design, execution and analysis of a scientific experiment with animals. Prerequisites BIOL1110, BIOL1210 Required texts Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate Zoology.
    [Show full text]
  • FISH310: Biology of Shellfishes
    FISH310: Biology of Shellfishes Lecture Slides #3 Phylogeny and Taxonomy sorting organisms How do we classify animals? Taxonomy: naming Systematics: working out relationships among organisms Classification • All classification schemes are, in part, artificial to impose order (need to start some where using some information) – Cell number: • Acellular, One cell (_________), or More than one cell (metazoa) – Metazoa: multicellular, usu 2N, develop from blastula – Body Symmetry – Developmental Pattern (Embryology) – Evolutionary Relationship Animal Kingdom Eumetazoa: true animals Corals Anemones Parazoa: no tissues Body Symmetry • Radial symmetry • Phyla Cnidaria and Ctenophora • Known as Radiata • Any cut through center ! 2 ~ “mirror” pieces • Bilateral symmetry • Other phyla • Bilateria • Cut longitudinally to achieve mirror halves • Dorsal and ventral sides • Anterior and posterior ends • Cephalization and central nervous system • Left and right sides • Asymmetry uncommon (Porifera) Form and Life Style • The symmetry of an animal generally fits its lifestyle • Sessile or planktonic organisms often have radial symmetry • Highest survival when meet the environment equally well from all sides • Actively moving animals have bilateral symmetry • Head end is usually first to encounter food, danger, and other stimuli Developmental Pattern • Metazoa divided into two groups based on number of germ layers formed during embryogenesis – differs between radiata and bilateria • Diploblastic • Triploblastic Developmental Pattern.. • Radiata are diploblastic: two germ layers • Ectoderm, becomes the outer covering and, in some phyla, the central nervous system • Endoderm lines the developing digestive tube, or archenteron, becomes the lining of the digestive tract and organs derived from it, such as the liver and lungs of vertebrates Diploblastic http://faculty.mccfl.edu/rizkf/OCE1001/Images/cnidaria1.jpg Developmental Pattern….
    [Show full text]
  • Cellular and Molecular Processes Leading to Embryo Formation In
    Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini To cite this version: Alexander Ereskovsky, Emmanuelle Renard, Carole Borchiellini. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes through- out animal evolution. Development Genes and Evolution, Springer Verlag, 2013, 223, pp.5 - 22. 10.1007/s00427-012-0399-3. hal-01456624 HAL Id: hal-01456624 https://hal.archives-ouvertes.fr/hal-01456624 Submitted on 5 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author's personal copy Dev Genes Evol (2013) 223:5–22 DOI 10.1007/s00427-012-0399-3 REVIEW Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution Alexander V. Ereskovsky & Emmanuelle Renard & Carole Borchiellini Received: 20 December 2011 /Accepted: 26 March 2012 /Published online: 29 April 2012 # Springer-Verlag 2012 Abstract The emergence of multicellularity is regarded as metamorphosis. Thus, sponges can provide information en- one of the major evolutionary events of life. This transition abling us to better understand early animal evolution at the unicellularity/pluricellularity was acquired independently molecular level but also at the cell/cell layer level.
    [Show full text]
  • Diversity of Animals 355 15 | DIVERSITY of ANIMALS
    Concepts of Biology Chapter 15 | Diversity of Animals 355 15 | DIVERSITY OF ANIMALS Figure 15.1 The leaf chameleon (Brookesia micra) was discovered in northern Madagascar in 2012. At just over one inch long, it is the smallest known chameleon. (credit: modification of work by Frank Glaw, et al., PLOS) Chapter Outline 15.1: Features of the Animal Kingdom 15.2: Sponges and Cnidarians 15.3: Flatworms, Nematodes, and Arthropods 15.4: Mollusks and Annelids 15.5: Echinoderms and Chordates 15.6: Vertebrates Introduction While we can easily identify dogs, lizards, fish, spiders, and worms as animals, other animals, such as corals and sponges, might be easily mistaken as plants or some other form of life. Yet scientists have recognized a set of common characteristics shared by all animals, including sponges, jellyfish, sea urchins, and humans. The kingdom Animalia is a group of multicellular Eukarya. Animal evolution began in the ocean over 600 million years ago, with tiny creatures that probably do not resemble any living organism today. Since then, animals have evolved into a highly diverse kingdom. Although over one million currently living species of animals have been identified, scientists are [1] continually discovering more species. The number of described living animal species is estimated to be about 1.4 million, and there may be as many as 6.8 million. Understanding and classifying the variety of living species helps us to better understand how to conserve and benefit from this diversity. The animal classification system characterizes animals based on their anatomy, features of embryological development, and genetic makeup.
    [Show full text]
  • The Geological Succession of Primary Producers in the Oceans
    CHAPTER 8 The Geological Succession of Primary Producers in the Oceans ANDREW H. KNOLL, ROGER E. SUMMONS, JACOB R. WALDBAUER, AND JOHN E. ZUMBERGE I. Records of Primary Producers in Ancient Oceans A. Microfossils B. Molecular Biomarkers II. The Rise of Modern Phytoplankton A. Fossils and Phylogeny B. Biomarkers and the Rise of Modern Phytoplankton C. Summary of the Rise of Modern Phytoplankton III. Paleozoic Primary Production A. Microfossils B. Paleozoic Molecular Biomarkers C. Paleozoic Summary IV. Proterozoic Primary Production A. Prokaryotic Fossils B. Eukaryotic Fossils C. Proterozoic Molecular Biomarkers D. Summary of the Proterozoic Record V. Archean Oceans VI. Conclusions A. Directions for Continuing Research References In the modern oceans, diatoms, dinoflagel- geobiological prominence only in the Mesozoic lates, and coccolithophorids play prominent Era also requires that other primary producers roles in primary production (Falkowski et al. fueled marine ecosystems for most of Earth 2004). The biological observation that these history. The question, then, is What did pri- groups acquired photosynthesis via endo- mary production in the oceans look like before symbiosis requires that they were preceded in the rise of modern phytoplankton groups? time by other photoautotrophs. The geologi- In this chapter, we explore two records cal observation that the three groups rose to of past primary producers: morphological 133 CCh08-P370518.inddh08-P370518.indd 113333 55/2/2007/2/2007 11:16:46:16:46 PPMM 134 8. THE GEOLOGICAL SUCCESSION OF PRIMARY PRODUCERS IN THE OCEANS fossils and molecular biomarkers. Because without well developed frustules might these two windows on ancient biology are well leave no morphologic record at all in framed by such different patterns of pres- sediments.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • A Screen for Gene Paralogies Delineating Evolutionary Branching Order of Early Metazoa
    bioRxiv preprint doi: https://doi.org/10.1101/704551; this version posted July 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A screen for gene paralogies delineating evolutionary branching order of early Metazoa Albert Erives and Bernd Fritzsch Department of Biology, University of Iowa, Iowa City, IA, 52242, USA. E-mails for correspondence: [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/704551; this version posted July 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The evolutionary diversification of animals is one of nature’s greatest mysteries. In addition, animals evolved wildly divergent multicellular life strategies featuring ciliated sensory epithelia. In many lineages epithelial sensoria became coupled to increasingly complex nervous systems. Currently, different phylogenetic analyses of single-copy genes support mutually-exclusive possibilities that either Porifera or Ctenophora is sister to all other animals. Resolving this dilemma would advance the ecological and evolutionary understanding of the first animals. Here we computationally identify and analyze gene families with ancient duplications that could be informative. In the TMC family of mechano-transducing transmembrane channels, we find that eumetazoans are composed of Placozoa, Cnidaria, and Bilateria, excluding Ctenophora.
    [Show full text]
  • How Cnidaria Got Its Cnidocysts
    tems: ys Op l S e a n A ic c g c o l e s o i s Shostak, Biol syst Open Access 2015, 4:2 B Biological Systems: Open Access DOI: 10.4172/2329-6577.1000139 ISSN: 2329-6577 Review Article Open Access How Cnidaria Got Its Cnidocysts Stanley Shostak* Department of Biological Sciences, University of Pittsburgh, USA *Corresponding author: Stanley Shostak, Department of Biological Sciences, University of Pittsburgh, USA, Tel: 0114129156595, E-mail: [email protected] Received date: May 06, 2015; Accepted date: Aug 03, 2015; Published date: Aug 11, 2015 Copyright: © 2015 Shostak S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract A complex hypothesis is offered for the origins of cnidarian cnidocysts through symbiogeny. The two-part hypothetical pathway links the origins of tissues through an early amalgamation of amoebic and epithelial cells to and the later introduction of an extrusion apparatus from bacterial parasites. The first part of the hypothesis is based on evidence for morphological, molecular, and developmental similarities of cnidarians and myxozoans indicative of common ancestry. Support is drawn from Ediacaran fossils suggesting that stem-metazoans consisted of symbiogenic pairs of epithelial-like shells enclosing amoeba-like cells. The amoeba-like cells would have evolved into germ cells and cells differentiating as or inducing nerve, muscle, and gland cells. The second part of the hypothesis proposes that cnidocysts evolved in a cnidarian/myxozoan branch of the metazoan tree through the horizontal transfer of bacterial genes encoding an extrusion apparatus to proto-cnidarian amoebic cells and consequently to the Cnidarian germ line.
    [Show full text]