bioRxiv preprint first posted online Jul. 5, 2017; doi: http://dx.doi.org/10.1101/159889. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Dynamics of venom composition across a complex life cycle Yaara Y. Columbus-Shenkar#, Maria Y. Sachkova#, Arie Fridrich, Vengamanaidu Modepalli, Kartik Sunagar, Yehu Moran* Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel #These authors contributed equally to this work *Corresponding author:
[email protected] Keywords: venom evolution; Cnidaria; life cycle bioRxiv preprint first posted online Jul. 5, 2017; doi: http://dx.doi.org/10.1101/159889. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Little is known about venom in young developmental stages of animals. The appearance of stinging cells in very early life stages of the sea anemone Nematostella vectensis suggests that toxins and venom are synthesized already in eggs, embryos and larvae of this species. Here we harness transcriptomic and biochemical tools as well as transgenesis to study venom production dynamics in Nematostella. We find that the venom composition and arsenal of toxin-producing cells change dramatically between developmental stages of this species. These findings might be explained by the vastly different ecology of the larva and adult polyp as sea anemones develop from a miniature non-feeding mobile planula to a much larger sessile polyp that predates on other animals.