Common Standards Monitoring Guidance for Lagoons Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Age Structure, Growth and Shell Form of Cerastoderma Glaucum (Bivalvia
Age structure, growth and shell form of Cerastoderma glaucum (Bivalvia: Cardiidae) from El Mellah lagoon, Algeria Lamia Bensaâd-Bendjedid, Saber Belhaoues, Asma Kerdoussi, Naouel Djebbari, Mardja Tahri, Mourad Bensouilah Laboratory of Ecobiology for Marine Environment and Coastlines, Faculty of Science, Badji Mokhtar University, Annaba 23000, Algeria. Corresponding author: L. Bensaâd-Benjedid, [email protected] Abstract. Cerastoderma glaucum (Poiret, 1789) the lagoon specialist cockle, represents one of the most abundant molluscs in El Mellah coastal lagoon (northeastern Algeria); several morphological and biological characteristics of this species were investigated over a period of 18 months (January 2014 to June 2015). Analysis of allometry and different morphometric indices indicate that this population tends to assume a globular shell shape which becomes elongated as the cockle grows. From length-frequency data examination using software FiSAT II and VONBIT for Excel, age was ranged from the first to the third year old, asymptotic length (L∞) was estimated to 48.061 mm and growth coefficient (K) was 0.71 -1 yr . The growth performance index (Φ′) and theoretical life span (tmax) were 3.21 and 4.23 yr respectively, total mortality rate (Z) obtained was 1.94 yr-1. Monthly variations in condition index were noticed, two sharp falls due spawning events were observed, the first spawning occurred between March and June and, the second one took place from August to October. The findings of the current study can be utilized to guide future research in various fields as pathology, biomonitoring and environmental management of this species. Key Words: Cerastoderma glaucum, shell shape, growth, Condition index, Algeria. -
An Adaptable Chromosome Preparation Methodology for Use In
Guo et al. BMC Biology (2018) 16:25 https://doi.org/10.1186/s12915-018-0497-4 METHODOLOGY ARTICLE Open Access An adaptable chromosome preparation methodology for use in invertebrate research organisms Longhua Guo1†, Alice Accorsi2,3†, Shuonan He2, Carlos Guerrero-Hernández2, Shamilene Sivagnanam4, Sean McKinney2, Matthew Gibson2 and Alejandro Sánchez Alvarado2,3* Abstract Background: The ability to efficiently visualize and manipulate chromosomes is fundamental to understanding the genome architecture of organisms. Conventional chromosome preparation protocols developed for mammalian cells and those relying on species-specific conditions are not suitable for many invertebrates. Hence, a simple and inexpensive chromosome preparation protocol, adaptable to multiple invertebrate species, is needed. Results: We optimized a chromosome preparation protocol and applied it to several planarian species (phylum Platyhelminthes), the freshwater apple snail Pomacea canaliculata (phylum Mollusca), and the starlet sea anemone Nematostella vectensis (phylum Cnidaria). We demonstrated that both mitotically active adult tissues and embryos can be used as sources of metaphase chromosomes, expanding the potential use of this technique to invertebrates lacking cell lines and/or with limited access to the complete life cycle. Simple hypotonic treatment with deionized water was sufficient for karyotyping; growing cells in culture was not necessary. The obtained karyotypes allowed the identification of differences in ploidy and chromosome architecture among -
Download PDF Version
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Lagoon cockle (Cerastoderma glaucum) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White 2002-07-15 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1315]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. 2002. Cerastoderma glaucum Lagoon cockle. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1315.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2002-07-15 Lagoon cockle (Cerastoderma glaucum) - Marine Life Information Network See online review for distribution map Three Cerastoderma glaucum with siphons extended. Distribution data supplied by the Ocean Photographer: Dennis R. -
Toxin-Like Neuropeptides in the Sea Anemone Nematostella Unravel Recruitment from the Nervous System to Venom
Toxin-like neuropeptides in the sea anemone Nematostella unravel recruitment from the nervous system to venom Maria Y. Sachkovaa,b,1, Morani Landaua,2, Joachim M. Surma,2, Jason Macranderc,d, Shir A. Singera, Adam M. Reitzelc, and Yehu Morana,1 aDepartment of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, 9190401 Jerusalem, Israel; bSars International Centre for Marine Molecular Biology, University of Bergen, 5007 Bergen, Norway; cDepartment of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223; and dBiology Department, Florida Southern College, Lakeland, FL 33801 Edited by Baldomero M. Olivera, University of Utah, Salt Lake City, UT, and approved September 14, 2020 (received for review May 31, 2020) The sea anemone Nematostella vectensis (Anthozoa, Cnidaria) is a to a target receptor in the nervous system of the prey or predator powerful model for characterizing the evolution of genes func- interfering with transmission of electric impulses. For example, tioning in venom and nervous systems. Although venom has Nv1 toxin from Nematostella inhibits inactivation of arthropod evolved independently numerous times in animals, the evolution- sodium channels (12), while ShK toxin from Stichodactyla heli- ary origin of many toxins remains unknown. In this work, we pin- anthus is a potassium channel blocker (13). Nematostella’snem- point an ancestral gene giving rise to a new toxin and functionally atocytes produce multiple toxins with a 6-cysteine pattern of the characterize both genes in the same species. Thus, we report a ShK toxin (7, 9). The ShKT superfamily is ubiquitous across sea case of protein recruitment from the cnidarian nervous to venom anemones (14); however, its evolutionary origin remains unknown. -
Dynamics of Venom Composition Across a Complex Life Cycle Yaara Y
bioRxiv preprint first posted online Jul. 5, 2017; doi: http://dx.doi.org/10.1101/159889. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Dynamics of venom composition across a complex life cycle Yaara Y. Columbus-Shenkar#, Maria Y. Sachkova#, Arie Fridrich, Vengamanaidu Modepalli, Kartik Sunagar, Yehu Moran* Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel #These authors contributed equally to this work *Corresponding author: [email protected] Keywords: venom evolution; Cnidaria; life cycle bioRxiv preprint first posted online Jul. 5, 2017; doi: http://dx.doi.org/10.1101/159889. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Little is known about venom in young developmental stages of animals. The appearance of stinging cells in very early life stages of the sea anemone Nematostella vectensis suggests that toxins and venom are synthesized already in eggs, embryos and larvae of this species. Here we harness transcriptomic and biochemical tools as well as transgenesis to study venom production dynamics in Nematostella. We find that the venom composition and arsenal of toxin-producing cells change dramatically between developmental stages of this species. These findings might be explained by the vastly different ecology of the larva and adult polyp as sea anemones develop from a miniature non-feeding mobile planula to a much larger sessile polyp that predates on other animals. -
Feeding-Dependent Tentacle Development in the Sea Anemone Nematostella Vectensis ✉ Aissam Ikmi 1,2 , Petrus J
ARTICLE https://doi.org/10.1038/s41467-020-18133-0 OPEN Feeding-dependent tentacle development in the sea anemone Nematostella vectensis ✉ Aissam Ikmi 1,2 , Petrus J. Steenbergen1, Marie Anzo 1, Mason R. McMullen2,3, Anniek Stokkermans1, Lacey R. Ellington2 & Matthew C. Gibson2,4 In cnidarians, axial patterning is not restricted to embryogenesis but continues throughout a prolonged life history filled with unpredictable environmental changes. How this develop- 1234567890():,; mental capacity copes with fluctuations of food availability and whether it recapitulates embryonic mechanisms remain poorly understood. Here we utilize the tentacles of the sea anemone Nematostella vectensis as an experimental paradigm for developmental patterning across distinct life history stages. By analyzing over 1000 growing polyps, we find that tentacle progression is stereotyped and occurs in a feeding-dependent manner. Using a combination of genetic, cellular and molecular approaches, we demonstrate that the crosstalk between Target of Rapamycin (TOR) and Fibroblast growth factor receptor b (Fgfrb) signaling in ring muscles defines tentacle primordia in fed polyps. Interestingly, Fgfrb-dependent polarized growth is observed in polyp but not embryonic tentacle primordia. These findings show an unexpected plasticity of tentacle development, and link post-embryonic body patterning with food availability. 1 Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany. 2 Stowers Institute for Medical Research, Kansas City, MO 64110, -
HETA ROUSI: Zoobenthos As Indicators of Marine Habitats in the Northern Baltic
Heta Rousi Zoobenthos as indicators of marine Heta Rousi | habitats in the northern Baltic Sea of marine as indicators habitats in the northernZoobenthos Baltic Sea Heta Rousi This thesis describes how physical and chemical environmental variables impact zoobenthic species distribution in the northern Baltic Sea and how dis- Zoobenthos as indicators of marine tinct zoobenthic species indicate different marine benthic habitats. The thesis inspects the effects of habitats in the northern Baltic Sea depth, sediment type, temperature, salinity, oxy- gen, nutrients as well as topographical and geo- logical factors on zoobenthos on small and large temporal and spatial scales. | 2020 ISBN 978-952-12-3944-1 Heta Rousi Född 1979 Studier och examina Magister vid Helsingfors Universitet 2006 Licentiat vid Åbo Akademi 2013 Doktorsexamen vid Åbo Akademi 2020 Institutionen för miljö- och marinbiologi, Åbo Akademi ZOOBENTHOS AS INDICATORS OF MARINE HABITATS IN THE NORTHERN BALTIC SEA HETA ROUSI Environmental and Marine Biology Faculty of Science and Engineering Åbo Akademi University Finland, 2020 SUPERVISED BY PRE-EXAMINED BY Professor Erik Bonsdorff Research Professor (Supervisor & Examiner) Markku Viitasalo Åbo Akademi University Finnish Environment Institute Faculty of Science and Engineering Sustainable Use of the Marine Areas Environmental and Marine Biology Latokartanonkaari 11 Artillerigatan 6 00790 Helsinki 20520 Åbo Finland Finland Professor Emeritus Ilppo Vuorinen CO-SUPERVISOR University of Turku Adjunct Professor Faculty of Science and Engineering Samuli Korpinen Itäinen Pitkäkatu 4 Finnish Environment Institute 20520 Turku Marine Management Finland Latokartanonkaari 11 00790 Helsinki FACULTY OPPONENT Finland Associate Professor Urszula Janas SUPERVISING AT THE University of Gdansk LICENCIATE PHASE Institute of Oceanography Assistant Professor Al. -
Digenean Fauna of Cerastoderma Glaucum (Veneroidae, Cardidae) from Tunisian Coasts
Bull. Eur. Ass. Fish Pathol., 31(1) 2011, 4 Digenean fauna of Cerastoderma glaucum (Veneroidae, Cardidae) from Tunisian coasts L. Gargouri Ben Abdallah1*, R. Antar1, K. Hosni2, N. Trigui El Menif2 and F. Maamouri1 1 Reasearch Unit Animal Bio-Ecology and Systematic Evolutionary, Faculty of Sciences, Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia; 2 Laboratory of Environment Bio-monitoring (LBE), Faculty of Sciences, Bizerte, University 7th November Carthage, 7021 Zarzouna, Bizerte,Tunisia Abstract The study conducted on the cockle Cerastoderma glaucum from Tunisian coasts (Bizerte lagoon and Gulf of Gabes) showed the presence of two digenean species (sporocyst and cercaria of Bucephalus minimus and metacercaria of Meiogymnophallus strigatus). A description of these larvae and the behaviour of the naturally emerging cercaria are reported. The examination of the frequency of B. minimus and M. strigatus reveals some seasonal variation. This variation becomes more significant by comparing the sites. B. minimus has the highest frequency in the Bizerte lagoon, by contrast to that of M. strigatus which is the highest in the Gulf of Gabes. This variation is statistically significant. These results indicate that B. minimus and M. strigatus can be considered as biological indicators making it possible to predict the capture area of the cockle. Introduction The cockle, Cerastoderma glaucum, which has process of regulating of the natural popula- a significant economic value, is commonly tions of marine organisms, is a theme which exploited in several European countries. In was the subject of little attention because of the Tunisia, in spite of its abundance in several durability of the relation parasite-host (Combes, sites, in lagoons as well as in the sea, this species 1995). -
Behind Anemone Lines: Determining the Environmental Drivers Influencing Lagoonal Benthic Communities, with Special Reference to the Anemone Nematostella Vectensis
Behind Anemone Lines: Determining the environmental drivers influencing lagoonal benthic communities, with special reference to the anemone Nematostella vectensis. by Jessica R. Bone Bournemouth University December 2018 Copyright Statement This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. i Behind Anemone Lines: Determining the environmental drivers influencing lagoonal benthic communities, with special reference to the anemone Nematostella vectensis. Jess R. Bone Abstract Climate change induced sea level rise and increase in associated storms is impacting the coastal zone worldwide. Lagoons are a transitional ecosystem on the coast that are threatened with habitat loss due to ingress of seawater, though conversely this also represents an opportunity for lagoon habitat creation. It is important to quantify the spatio-temporal trends of macrozoobenthic communities and abiotic factors to determine the ecological health of lagoon sites. Such information will ensure optimal and adaptive management of these rare and protected ecosystems. This thesis examines the spatial distribution of macrozoobenthic assemblages and the abiotic and biotic factors that may determine their abundance, richness and distribution at tidally restricted urban lagoon at Poole Park on the south coast of England. The macrozoobenthic assemblages were sampled using a suction corer during a spatially comprehensive survey in November 2017, in addition to aquatic and sediment variables such as salinity, temperature, organic matter content and silt content. Species richness and density were significantly lower in areas of high organic matter and silt content, indicative of hostile conditions. -
Ruditapes Philippinarum (Adams and Reeve, 1850) and Trophic Niche Overlap with Native Species
Aquatic Invasions (2019) Volume 14, Issue 4: 638–655 CORRECTED PROOF Research Article Food sources of the non-indigenous bivalve Ruditapes philippinarum (Adams and Reeve, 1850) and trophic niche overlap with native species Ester Dias1,*, Paula Chainho2, Cristina Barrocas-Dias3,4 and Helena Adão5 1CIMAR/CIIMAR –Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal 2MARE, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal 3HERCULES Laboratory, University of Évora, Largo Marquês de Marialva, 8, 7000-809 Évora, Portugal 4Chemistry Department, School of Sciences and Technology, Rua Romão Ramalho 59, Évora, Portugal 5MARE- University of Évora, School of Sciences and Technology, Apartado 94, 7005-554 Évora, Portugal Author e-mails: [email protected] (ED), [email protected] (PC), [email protected] (CBD), [email protected] (HA) *Corresponding author Citation: Dias E, Chainho P, Barrocas- Dias C, Adão H (2019) Food sources of the Abstract non-indigenous bivalve Ruditapes philippinarum (Adams and Reeve, 1850) The Manila clam, Ruditapes philippinarum (Adams and Reeve, 1850), was introduced and trophic niche overlap with native in many estuaries along the Atlantic and Mediterranean coasts for fisheries and species. Aquatic Invasions 14(4): 638–655, aquaculture, being one of the top five most commercially valuable bivalve species https://doi.org/10.3391/ai.2019.14.4.05 worldwide. In Portugal, the colonization of the Tagus estuary by this species Received: 8 February 2019 coincided with a significant decrease in abundance of the native R. -
Macrobenthic Assemblage Structure and Distribution at the Boojagh Marine National Park, Southern Caspian Sea, Iran
Iranian Journal of Fisheries Sciences 19(2) 748-767 2020 DOI: 10.22092/ijfs.2020.120829 Macrobenthic assemblage structure and distribution at the Boojagh Marine National Park, Southern Caspian Sea, Iran. Bahrebar S.¹; Negarestan H.²*; Maghsoudlo A.³; Danehkar A.4 Received: December 2016 Accepted: Febtuary 2017 Abstract Although macrobenthic assemblages are considered as major players in many ecosystems around the world, the ecology of Caspian Sea macrobenthos is currently understudied. This study describes the species composition and quantitative distribution of macrobenthos in the southern Caspian Sea and relates the distribution to seasonal changes at three depths (1, 5 and 10 meters) on the Boojagh Marine National Park (BMNP) coast in the southern Caspian Sea between the summers of 2015 and 2016. To investigate the distribution of macrobenthos in BMNP, the data of 450 samples were analyzed. In this study sixteen species were identified: Cerastoderma glaucum, Mytilaster lineatus, Pyrgula grimmi, Anisus kolesnikovi, Stenogammarus carausui, Paraniphargoides motasi, Onisimus caspius, Pterocuma pectinatum, Pterocuma sowinskyi, Pseudocuma (Stenocuma) gracile, Nais sp., Hypania invalida, Manayunkia caspica, Streblospio gynobranchiata, Hediste diversicolor, Amphibalanus improvisus. Among them, the non-indigenous C. glaucum was the dominant species, accounting for 27% of the total abundance and in descending order P. grimmi with 14.4%, A. improvisus with 8.7%, M. lineatus with 7.9%, Nais sp. with 7.5%, N. carausui with 5.2%, P. motasi with 5%, S. gynobranchiata with 4.5%, H. invalida with 5%, M. Caspica with 3.1%, P. sowinskyi with 2.5%, O. caspius with 2.4%, A. kolesnikovi and H. diversicolor with 1.8%, S. -
The Starlet Sea Anemone
The Starlet Sea Anemone I. The starlet sea anemone (Nematostella vectensis)—an “emerging model system” A. The growing literature on Nematostella. A query of the Scientific Citation Index (conducted 06/26/07) identified 74 articles and reviews that contain “nematostella” in the title, keywords, or abstract. The number of such publications is increasing dramatically (Fig. 1a), as are the citations of these papers (Fig. 1b). Much of the Nematostella literature is not yet indexed; we identified another 66 published books, reviews, or articles published prior to the 1990’s that mention Nematostella. An annotated list is housed at http://nematostella.org/Resources_References. A B Figure 1. Nematostella publications (A) and citations (B) by year. B. Nematostella’s Merits as a Model System Nematostella is an estuarine sea anemone that is native to the Atlantic coast of North America. In the early 1990’s, its potential value as a model system for developmental biology was first explicitly recognized by Hand and Uhlinger [1]. Over the last 10 years, its utility has extended far beyond developmental biology due to its informative phylogenetic position, and its amenability to field studies, organismal studies, developmental studies, cellular studies, molecular and biochemical studies, genetic studies, and genomic studies [2]. 1. Phylogenetic relationships. Nematostella is a member of the Cnidaria, one of the oldest metazoan phyla. The Cnidaria is a closely related outgroup to the Bilateria, the evolutionary lineage that comprises >99% of all extant animals (Fig. 3). Comparisons between Nematostella and bilaterians have provided insights into the evolution of key animal innovations, including germ cell specification, bilateral symmetry, mesoderm, and the nervous system [3-7].