IEEE/PES Transformers Committee Fall 2017 Meeting Minutes

Total Page:16

File Type:pdf, Size:1020Kb

IEEE/PES Transformers Committee Fall 2017 Meeting Minutes Transformers Committee Chair: Stephen Antosz Vice Chair: Sue McNelly Secretary: Bruce Forsyth Treasurer: Greg Anderson Awards Chair/Past Chair: Don Platts Standards Coordinator: Jim Graham IEEE/PES Transformers Committee Fall 2017 Meeting Minutes Louisville, KY October 30 – November 2, 2017 Unapproved (These minutes are on the agenda to be approved at the next meeting in Spring 2018) TABLE OF CONTENTS GENERAL ADMINISTRATIVE ITEMS 1.0 Agenda 2.0 Attendance OPENING SESSION – MONDAY OCTOBER 30, 2017 3.0 Approval of Agenda and Previous Minutes – Stephen Antosz 4.0 Chair’s Remarks & Report – Stephen Antosz 5.0 Vice Chair’s Report – Susan McNelly 6.0 Secretary’s Report – Bruce Forsyth 7.0 Treasurer’s Report – Gregory Anderson 8.0 Awards Report – Don Platts 9.0 Administrative SC Meeting Report – Stephen Antosz 10.0 Standards Report – Jim Graham 11.0 Liaison Reports 11.1. CIGRE – Raj Ahuja 11.2. IEC TC14 – Phil Hopkinson 11.3. Standards Coordinating Committee, SCC No. 18 (NFPA/NEC) – David Brender 11.4. Standards Coordinating Committee, SCC No. 4 (Electrical Insulation) – Paulette Payne Powell 12.0 Hot Topics for the Upcoming – Subcommittee Chairs 13.0 Opening Session Adjournment CLOSING SESSION – THURSDAY NOVEMBER 2, 2017 14.0 Chair’s Remarks and Announcements – Stephen Antosz 15.0 Meetings Planning SC Minutes & Report – Gregory Anderson 16.0 Reports from Technical Subcommittees (decisions made during the week) 17.0 Report from Standards Subcommittee (issues from the week) 18.0 New Business 19.0 Closing Session Adjournment APPENDIXES – ADDITIONAL DOCUMENTATION Appendix 1 – Meeting Schedule Appendix 2 – Semi-Annual Standards Report Appendix 3 – IEC TC14 Liaison Report Appendix 4 – CIGRE Report Page 2 of 55 ANNEXES – UNAPPROVED MINUTES OF TECHNICAL SUBCOMMITTEES NOTE: The Annexes included in these minutes are unapproved by the respective subcommittees and are accurate as of the date the Transformers Committee meeting minutes were published. Readers are encouraged to check the Transformers Committee website (www.transformerscommittee.org) for the latest revision of the unapproved and the minutes of the next Transformers Committee meeting for final revisions prior to approval. Annex A. Bushings SC – Peter Zhao Annex B. Dielectric Tests SC – Ajith Varghese Annex C. Distribution Transformers SC – Steve Shull Annex D. Dry Type Transformers SC – Charles Johnson Annex E. HVDC Converter Transformers & Reactors – Mike Sharp Annex F. Instrument Transformers SC – Ross McTaggart Annex G. Insulating Fluids SC – David Wallach Annex H. Insulation Life SC – Sheldon Kennedy Annex I. Meetings SC – Greg Anderson Annex J. Performance Characteristics SC – Ed teNyenhuis Annex K. Power Transformers SC – Bill Griesacker Annex L. Standards SC – Jerry Murphy Annex M. Underground Trans & Network Protectors SC – Dan Mulkey Page 3 of 55 General Administrative Items 1.0 AGENDA Opening Session Monday, October 30; 8:00 am - 9:15 am (rosters were circulated and attendance recorded for Committee membership) 1. Welcome and Announcements ..................................................................... Stephen Antosz 2. Meeting Minute .............................................................................................. Greg Anderson 3. Approval of Agenda ...................................................................................... Stephen Antosz 4. Approval of Minutes from Spring 2017 Meeting ......................................... Stephen Antosz 5. Chair’s Report & Administrative Subcommittee Report .............................. Stephen Antosz 6. Vice Chair’s Report ...................................................................................... Sue McNelly 7. Secretary's Report ......................................................................................... Bruce Forsyth 8. Treasurer's Report ......................................................................................... Greg Anderson 9. Standards Report ........................................................................................... Jim Graham 10. Liaison Representative Reports 10.1. CIGRE .............................................................................................. Raj Ahuja 10.2. IEC TC-14 ........................................................................................ Phil Hopkinson 10.3. Standards Coordinating Committee, SCC No. 18 (NFPA/NEC) ..... David Brender 10.4. Standards Coordinating Committee, SCC No. 4 (Elect. Ins’n) ........ Evanne Wang 11. Hot Topics for the Upcoming Week ............................................................. Subcommittee Chairs 12. New Business & Wrap-up ............................................................................ Stephen Antosz Closing Session Thursday, November 2, 2017: 11:00 am - 12:00 pm 1. Chair's Remarks and Announcements .......................................................... Stephen Antosz 2. Meetings Planning Subcommittee ................................................................ Greg Anderson 3. Reports from Technical Subcommittees (decisions made during the week) 3.1 Insulation Life .................................................................................. Sheldon Kennedy 3.2 Performance Characteristics ............................................................ Ed teNyenhuis 3.3 Power Transformers ......................................................................... Bill Griesacker 3.4 Standards ........................................................................................... Jerry Murphy 3.5 Subsurface Transformers & Network Protectors ............................. Dan Mulkey 3.6 Bushings ........................................................................................... Peter Zhao 3.7 Dielectric Tests ................................................................................ Ajith Varghese 3.8 Distribution Transformers ................................................................ Steve Shull 3.9 Dry Type Transformers ................................................................... Chuck Johnson 3.10 HVDC Converter Transformers & Reactors .................................... Mike Sharp 3.11 Instrument Transformers .................................................................. Ross McTaggart 3.12 Insulating Fluids .............................................................................. David Wallach 4. Additional Report from Standards Subcommittee (issues from the week) ... Jim Graham 5. New Business (continued from Monday) and Wrap-up ............................... Stephen Antosz Page 4 of 55 2.0 ATTENDANCE COMMITTEE MEMBER ATTENDANCE The following table lists all Committee Members registered to attend the meeting. See section 2.2 for a list of non-Committee Members registered to attend the meeting. Legend: CM Committee Member CM-LM Committee Member-IEEE Life Member CM-EM Committee Member-Emeritus Committee Member Attendance (Red designates CM added at present meeting) Member Type Name Company Mon Thu CM Anderson, Gregory GW Anderson & Associates, Inc. X X CM Ansari, Tauhid ABB Inc. X CM Antosz, Stephen Stephen Antosz & Associates, Inc X X CM Arteaga, Javier ABB Inc. X CM-LM Ayers, Donald Ayers Transformer Consulting X X CM Ballard, Robert Federal Pacific X X CM Balma, Peter Retired CM Beaster, Barry H-J Enterprises, Inc. X CM Beauchemin, Claude TJH2b Analytical Services X CM Betancourt, Enrique Prolec GE X X CM-LM Binder, Wallace WBBinder Consultant X X CM-LM Blackburn, Thomas Gene Blackburn Engineering X X CM Blaydon, Daniel Baltimore Gas & Electric X X CM-LM Boettger, William Boettger Transformer Consulting LLC X X CM Boman, Paul Hartford Steam Boiler X X CM Brender, David Copper Development Assn. X CM-LM Bush, Carl Pemco Corporation X X CM Callsen, Thomas Weldy-Lamont Associates X X CM Castellanos, Juan Prolec GE X X CM Cheim, Luiz ABB Inc. X CM Chiang, Solomon The Gund Company X CM Claiborne, C. Clair Claiborne Consulting LLC X CM Colopy, Craig EATON Corporation X X CM Crotty, John Ameren X X CM Damico, Frank Boldrocchi APC X CM Davis, Eric Burns & McDonnell X CM Del Rio, J. Arturo Trench Limited X X CM Denzer, Stephanie General Electric X CM Digby, Scott Duke Energy X X CM Dix, Larry Quality Switch, Inc. X X CM Dorris, Don Nashville Electric Service X X CM-LM Fairris, James KMS Electrical Products X CM Faulkenberry, Michael Georgia Power Co. X CM Ferreira, Marcos Advisian-Worley Parsons X X CM-LM Foldi, Joseph Foldi & Associates, Inc. X CM Forsyth, Bruce Weidmann Electrical Technology X X Page 5 of 55 Committee Member Attendance (Red designates CM added at present meeting) Member Type Name Company Mon Thu CM Foster, Derek Magnetics Design, LLC X CM Garcia, Eduardo Siemens X X CM Gardner, James SPX Transformer Solutions, Inc. X X CM Gaytan, Carlos Prolec GE X CM Ghafourian, Ali H-J Enterprises, Inc, X CM Ghosh, Rob ESSEX GROUP INC. X X CM-LM Girgis, Ramsis ABB Inc. X X CM Golarz, Jeffrey PJ Associates X X CM Graham, James Weidmann Electrical Technology CM Griesacker, Bill Doble Engineering Co. X X CM Gromlovits, Mark EMC OEM Products Division CM Hachichi, Said Hydro-Quebec X X CM Hakim, Shamaun WEG Transformers USA Inc. X CM Hardin, Michael H-J Enterprises, Inc. X CM Harley, John FirstPower Group LLC X X CM-LM Harlow, James Harlow Engineering Associates X CM Hayes, Roger General Electric X X CM Hernandez, Ronald Doble Engineering Co. X CM Herron, John Raytech USA X X CM Herz, Joshua Qualitrol X X CM Hochanh, Thang Surplec Inc. X X CM Hoffman, Gary Advanced Power Technologies X CM-LM Hopkinson,
Recommended publications
  • LECTURE NOTES on Utilization of Electrical Energy & Traction
    LECTURE NOTES ON Utilization of Electrical Energy & Traction Name of the course: Diploma in Electrical Engineering. (6th Semester) Notes Prepared by: HIMANSU BHUSAN BEHERA Designation : LECTURER IN ELECTRICAL College : UTKALMANI GOPABANDHU INSTITUTE OF ENGINEERING, ROURKELA CHAPTER-1 ELECTROLYSIS Definition and Basic principle of Electro Deposition. Electro deposition is the process of coating a thin layer of one metal on top of different metal to modify its surface properties. It is done to achieve the desire electrical and corrosion resistance, reduce wear &friction, improve heat tolerance and for decoration. Electroplating Basics Fig-1. Electrochemical Plating Figure- 1, schematically illustrates a simple electrochemical plating system. The ―electro‖ part of the system includes the voltage/current source and the electrodes, anode and cathode, immersed in the ―chemical‖ part of the system, the electrolyte or plating bath, with the circuit being completed by the flow of ions from the plating bath to the electrodes. The metal to be deposited may be the anode and be ionized and go into solution in the electrolyte, or come from the composition of the plating bath. Copper, tin, silver and nickel metal usually comes from anodes, while gold salts are usually added to the plating bath in a controlled process to maintain the composition of the bath. The plating bath generally contains other ions to facilitate current flow between the electrodes. The deposition of metal takes place at the cathode. The overall plating process occurs in the following sequence: 1. Power supply pumps electrons into the cathode. 2. An electron from the cathode transfers to a positively charged metal ion in the solution and the reduced metal plates onto the cathode.
    [Show full text]
  • THE ULTIMATE Tesla Coil Design and CONSTRUCTION GUIDE the ULTIMATE Tesla Coil Design and CONSTRUCTION GUIDE
    THE ULTIMATE Tesla Coil Design AND CONSTRUCTION GUIDE THE ULTIMATE Tesla Coil Design AND CONSTRUCTION GUIDE Mitch Tilbury New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-159589-9 The material in this eBook also appears in the print version of this title: 0-07-149737-4. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent.
    [Show full text]
  • IEEE Grounding Transformers
    Grounding Transformers John S. Levine, P.E. Levine Lectronics and Lectric, Inc. [email protected] 1 • It is used to provide a ground path on either an ungrounded Wye or a Delta connected system • The relatively low impedance path to ground maintains the system neutral at ground potential • On Ungrounded systems you can have overvoltages of 6 to 8 times normal with arcing faults Arcing Ground Faults Intermittent or Re-strike •Plot of transient over-voltage for an arcing ground fault Arcing Ground Faults Intermittent or Re-strike •Intermittent ground fault: A re-striking ground fault can create a high frequency oscillator (RLC circuit), independent of L and C values, causing high transient over- voltages. – i.e. re-striking due to ac voltage waveform or loose wire caused by vibration 480V Delta Source 3Ø Load Rfe V V Cb Cb S fa THE HIGH RESISTANCE GROUNDED POWER SYSTEM CONTROL OF TRANSIENT OVERVOLTAGE • It supports the voltage on a faulted phase – If a single line-to-ground fault occurs on an ungrounded or isolated system, no return path exists and no current flows – The system will continue to operate but the other two un- faulted lines will rise in in voltage by the square root of 3, possibly overstressing the transformer insulation, and other components, by 173% UNGROUNDED SYSTEM NORMAL CONDITIONS UNGROUNDED SYSTEM GROUND FAULT ON PHASE A • Provides a metering point to measure faults A typical example is a Wind Farm. They utilize grounding transformers for fault protection on ungrounded lines When a ground fault occurs on a collector cable causes the substation circuit breaker to open, the wind turbine string becomes isolated Turbines do not always detect the fault and the generators continue to energize the cable.
    [Show full text]
  • Power Processing, Part 1. Electric Machinery Analysis
    DOCONEIT MORE BD 179 391 SE 029 295,. a 'AUTHOR Hamilton, Howard B. :TITLE Power Processing, Part 1.Electic Machinery Analyiis. ) INSTITUTION Pittsburgh Onii., Pa. SPONS AGENCY National Science Foundation, Washingtcn, PUB DATE 70 GRANT NSF-GY-4138 NOTE 4913.; For related documents, see SE 029 296-298 n EDRS PRICE MF01/PC10 PusiPostage. DESCRIPTORS *College Science; Ciirriculum Develoiment; ElectricityrFlectrOmechanical lechnology: Electronics; *Fagineering.Education; Higher Education;,Instructional'Materials; *Science Courses; Science Curiiculum:.*Science Education; *Science Materials; SCientific Concepts ABSTRACT A This publication was developed as aportion of a two-semester sequence commeicing ateither the sixth cr'seventh term of,the undergraduate program inelectrical engineering at the University of Pittsburgh. The materials of thetwo courses, produced by a ional Science Foundation grant, are concernedwith power convrs systems comprising power electronicdevices, electrouthchanical energy converters, and associated,logic Configurations necessary to cause the system to behave in a prescribed fashion. The emphisis in this portionof the two course sequence (Part 1)is on electric machinery analysis. lechnigues app;icable'to electric machines under dynamicconditions are anallzed. This publication consists of sevenchapters which cW-al with: (1) basic principles: (2) elementary concept of torqueand geherated voltage; (3)tile generalized machine;(4i direct current (7) macrimes; (5) cross field machines;(6),synchronous machines; and polyphase
    [Show full text]
  • Neutral Current Problem and Mitigation Techniques: an Overview
    IOSR Journal of Engineering (IOSR JEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 PP 62-68 Neutral Current Problem and Mitigation Techniques: An Overview Karuna Nikum1, Rakesh Saxena2, Abhay Wagh3 1(Department of Electrical Engineering, ACE, Mumbai University, India) 2(SGSITS, RGPV University, Indore, India) 3(Directorate of Technical Education, Mumbai, India ) Abstract: In this paper, an attempt to overview a various number of mitigation techniques and power quality problems associated with neutral current for commercial loads are discussed. The load connected to three phase four wire system are generally single-phase loads and generate triplen harmonic currents due to unbalancing in phases at neutral. There are various neutral current mitigation techniques including active and passive has been discussed. The existing approach and a framework of references for researchers in this field are provided. I. ‘Introduction The ample use of electronic devices in all types of loads i.e. residential, commercial and industrial is adversely affecting the power quality (PQ) of the system[1]-[10]. When three-phase four-wire distribution (3P4W) systems are used to supply single-phase low voltage loads such as lighting ballasts (electronic type), light emitting diodes (LED), compact fluorescent lighting (CFL), personal computers, monitors, laser printers, variable speed drives, adjustable speeds drives (ASD) in air conditioner, UPS systems and other electronic equipment. These loads produces harmonics especially 3rd harmonics in the neutral. In general, the distribution systems designed for linear load type and no longer suitable for delivering large number of non-linear and harmonic generating loads [11]-[15]. The concern PQ issues are high reactive power requirement, harmonic current, low power factor and increased losses[16], [17].
    [Show full text]
  • Baluns, W2FMI Does Review the Amateur Literature, Both Fact and Fanciful, on the Subject
    While not strictly a compendium on baluns, W2FMI does review the amateur literature, both fact and fanciful, on the subject. He also presents the results of his experiments plus workable designs that we can build. More On The 1:1 Balun BY JERRY SEVICK'. W2FMI Mymost recent CQ article entitled ' More to antennas such as dipoles. invened Vees. On The 4:1 Balun"! presented some new 4 .1 and Vagi beams wtlich favor a balanced feed. I, designs as well as an evaluation of the designs In esserc..\ they prefer a source of power the - which have appeared in our amateur radio lit­ terminals of which are balanced (voltages erature over the years. It you read the article. being equal and opposite) with respect to ac­ you saw that I was very critical of the informa­ tual ground or to the virtual ground which « tion made available to amateurs, In fact, it was bisects the center of the antenna. The ques­ 1 shown that a very poor design was converted tion frequently asked is whether a 1:1 balun is I into a "peerless" design by making three sim­ really nee ded. II + 1 21~ ple changes, The number of bifilar turns was To illustrate the problem involved and 10 I changed from 10 to 14, the c ross-sectional give a basis lor my suggestions, I refer you to I area of the toroid was doubled by stacking two fig, 1. Here we have, at the feed po int of the I together, and the wires were covered with dipole.
    [Show full text]
  • DGA in Non-Mineral Oils and Load Tap Changers and Improved DGA Diagnosis Criteria
    443 DGA in Non-Mineral Oils and Load Tap Changers and Improved DGA Diagnosis Criteria Working Group D1.32 December 2010 WG D1.32 DGA in Non-Mineral Oils and Load Tap Changers and Improved DGA Diagnosis Criteria Contributing members Michel Duval (Convenor) Canada Helen Athanassatou Greece Ivanka Hoehlein Germany Anne Marie Haug Norway Fabio Scatiggio Italy Albrecht Moellmann Germany Marc Cyr Canada Hans Josef Knab Switzerland Marius Grisaru Israel Julie VanPeteghem Belgium Rainer Frotscher Germany Gerhard Buchgraber Austria Maria Martins Portugal Stefan Tenbohlen Germany Lisa Bates USA Riccardo Maina Italy Paul Boman USA Bruce Pahlavanpour UK A.C.Hall UK Patrick McShane USA Gordon Wilson UK Colin Myers UK Lars Arvidsson Sweden Russel Martin UK Maria Szebeni Hungary Zhongdong.Wang UK Kjell Carrander Sweden Participating members Alfonso de Pablo Spain Bernd-Klaus Goettert Germany Jan Olov Persson Sweden Vander Tumiatti Italy Jean Claude Duart Switzerland Liselotte Westlin Sweden Copyright © 2010 “Ownership of a CIGRE publication, whether in paper form or on electronic support only infers right of use for personal purposes. Are prohibited, except if explicitly agreed by CIGRE, total or partial reproduction of the publication for use other than personal and transfer to a third party; hence circulation on any intranet or other company network is forbidden”. Disclaimer notice “CIGRE gives no warranty or assurance about the contents of this publication, nor does it accept any responsibility, as to the accuracy or exhaustiveness of the information. All implied warranties and conditions are excluded to the maximum extent permitted by law”. ISBN: 978- 2- 85873- 131-2 1 TABLE OF CONTENTS 1 EXECUTIVE SUMMARY ....................................................................................................................................
    [Show full text]
  • Phase Shifting with Transformers – New Approaches for Harmonic Mitigation & Power Factor Correction
    Phase Shifting with Transformers – New Approaches for Harmonic Mitigation & Power Factor Correction Abstract Improved designs for electrically powered equipment such as solid-state motor drives, electronic lighting ballasts, DC power supplies and computers offer the promise of dramatically improving energy efficiency. These new technologies can have power quality side effects, which must be considered along with the energy benefits. Current demand characteristics, harmonic production and power susceptibility requirements create new issues of compatibility with other devices in the electrical environment. Contrary to this new energy saving product design, the dry type transformer efficiency in the last 20 years has been decreasing to meet market price competition. Under these modern loads, the standard distribution transformer became much less efficient and in some cases obsolete. In view of the increasing cost of energy we are seeing improvements in the design of distribution transformers. C802.2 and TP1 became legislation in the U.S. on January 1st, 2007 and became law in Canada on January 1st, 2005. We will review the reasons and the new style of transformers being designed for these applications. The positive side is that the new energy saving designs are converging with the power quality needs for the new electronic rich environments of our modern facilities. Introduction At the turn of the century, electricity invaded homes all over North America. The power grid that evolved from the beginning has remained essentially the same to this day. Important power transmission over long distances has led to the use of alternating current technology to simplify power transfer. This has served us well for the needs of namely light bulbs and motors.
    [Show full text]
  • Auto-Transformer
    Module 7 Transformer Version 2 EE IIT, Kharagpur Lesson 27 Auto-Transformer Version 2 EE IIT, Kharagpur Contents 27 Auto-Transformer 4 27.1 Goals of the lesson ………………………………………………………………. 4 27.2 Introduction ……………………………………………………………………… 4 27.3 2-winding transformer as Autotransformer ……………………………………... 5 27.4 Autotransformer as a single unit ………………………………………………… 6 27.5 Tick the correct answers ………………………………………………………… 9 27.6 Problems …………………………………………………………………………. 9 Version 2 EE IIT, Kharagpur 27.1 Goals of the lesson In this lesson we shall learn about the working principle of another type of transformer called autotransformer and its uses. The differences between a 2-winding and an autotransformer will be brought out with their relative advantages and disadvantages. At the end of the lesson some objective type questions and problems for solving are given. Key Words: tapping’s, conducted VA, transformed VA. After going through this section students will be able to understand the following. 1. Constructional differences between a 2-winding transformer and an autotransformer. 2. Economic advantages/disadvantages between the two types. 3. Relative advantages/disadvantages of the two, based on technical considerations. 4. Points to be considered in order to decide whether to select a 2-winding transformer or an autotransformer. 5. The difference between an autotransformer and variac (or dimmerstat). 6. The use of a 2-winding transformer as an autotransformer. 7. The connection of three identical single phase transformers to be used in 3-phase system. 27.2 Introduction So far we have considered a 2-winding transformer as a means for changing the level of a given voltage to a desired voltage level.
    [Show full text]
  • More on the 1:1 Balun
    While not strictly a compendium on baluns, W2FMI does review the amateur literature, both fact and fanciful, on the subject. He also presents the results of his experiments plus workable designs that we can build. More On The 1:1 Balun BY JERRY SEVICK*, W2FMI M most recent CQ article entitled "More to antennas such as dipoles, inverted Vees, 1 ll + li •-S—| On The 4:1 Balun" presented some new 4:1 and Yagi beams which favor a balanced feed. • designs as well as an evaluation of the designs In essence, they prefer a source of power the —i which have appeared in our amateur radio lit­ terminals of which are balanced (voltages Dipole erature over the years. If you read the article, being equal and opposite) with respect to ac­ <C ffi\ i ,eed"P°int you saw that I was very critical of the informa­ tual ground or to the virtual ground which tion made available to amateurs. In fact, it was bisects the center of the antenna. The ques­ shown that a very poor design was converted tion frequently asked is whether a 1:1 balun is ]l1 + h into a "peerless" design by making three sim­ really needed. l1 + l2l I ple changes. The number of bifilar turns was To illustrate the problem involved and to changed from 10 to 14, the cross-sectional give a basis for my suggestions, I refer you to area of the toroid was doubled by stacking two fig. 1. Here we have, at the feed point of the together, and the wires were covered with dipole, two equal and opposite transmission- Teflon tubing, resulting in the optimum char­ line currents which have two components acteristic impedance of the coiled transmis­ each—1-, and l2.
    [Show full text]
  • Baluns – Part Two – How Baluns Help and the Three Most Useful Versions
    BALUNS – PART TWO – HOW BALUNS HELP AND THE THREE MOST USEFUL VERSIONS In Part 1 of this series, we explained how imbalances in antenna systems can result in unbalanced (“extra”) currents running back down feedlines and into radios....and into soundcard systems.... and then into computers.......basically because one side of the antenna didn't take all that current and the feedline was where some of it ended up.....in effect adding feedline and shack wiring as part of the radiating system. This isn't desirable if you want digital or transistor systems to work correctly! I want to emphasize that if all you need to do is CW or Voice SSB communications, and you don't mind the occasional “hot” surface that has a bit of RF potential to it, you can do FINE with a simple dipole fed by coaxial cable, or with a typical manual or automatic tuner! I went for YEARS without any kind of balun at all! The problem comes when you are operating solid state devices like laptop computers, Raspberries, or other devices that will be “upset” or “reset” or “crashed” by significant RF currents flowing in and around your ham radio shack, and you are using antennas that aren't terribly well “balanced” (for whatever reason). In short --- if your computer crashes, then you start to want to add devices that reduce RF current flow in your shack – and you start to want BALUNS. How do we reduce or prevent unwanted unbalanced currents that are flowing on supposedly “ground” conductors? Basically by making the connection “back to the rig” have a higher impedance than the (desired) half of the antenna.
    [Show full text]
  • MO-201 Electric Power Distribution Systems
    ______________________________________________________________________ http://waterheatertimer.org/How-to-wire-3-phase-electric.html http://waterheatertimer.org/What-is-3-phase-electric.html Naval Facilities Engineering Command 200 Stovall Street Alexandria, Virginia 22332-2300 Electric Power Distribution Systems Operations NAVFAC MO-201 April 1990 SN 0525-LP-320-1900 FOREWORD This manual on electric power distribution systems is one of a series developed to aid utility supervisory personnel at shore establishments in the performance of their duties. It includes information obtained from extensive research of current literature on the subject and preferred practices based on practical experience. The principles and procedures described are in accordance with national professional society, association, and institute codes. Additional information concerning procedures, suggestions, recommendations or modifications that will improve this manual are invited and should be submitted through appropriate channels to the Commander, Naval Facilities Engineering Command, (Attention: Code 165), 200 Stovall Street, Alexandria, VA 22332-2300. This publication has been reviewed and approved in accordance with the Secretary of the Navy Instruction 5600.16A and is certified as an official publication of the Naval Facilities Engineering Command. It cancels and supersedes Operation of Electric Power Distribution Systems, NAVFAC MO-201, November 1963, in its entirety. D. B. CAMPBELL Assistant Commander for Public Works Centers and Departments ABSTRACT Application principles and procedures for the operation of electric power distribution systems and associated major apparatus are presented. The contents include principles of power systems, cabling systems, electrical equipment, power system protection and coordination, instruments and meters, operational procedures, and electrical utilization systems. i CONTENTS PAGE CHAPTER 1 PRINCIPLES OF POWER SYSTEMS 1-1 1.1 Typical Power Network...........................................................................
    [Show full text]