How Is Epizootic Ulcerative Syndrome (EUS) Diagnosed? 10

Total Page:16

File Type:pdf, Size:1020Kb

How Is Epizootic Ulcerative Syndrome (EUS) Diagnosed? 10 Food and Agriculture Organization of the United Nations What you need to know about EPIZOOTIC ULCERATIVE SYNDROME (EUS) An extension brochure for Africa he designations employed and the presentation of material in this information Tproduct do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Electronic Publishing Policy and Support Branch Communication Division FAO Viale delle Terme di Caracalla, 00153 Rome, Italy or by e-mail to: [email protected] © FAO 2020 , Philippine isolates,1999 ©FAO/M.B. Reantaso ©FAO/M.B. , Philippine isolates,1999 Aphanomyces sporangia Aphanomyces Design and layout: José Luis Castilla Civit What you need to know about EPIZOOTIC ULCERATIVE SYNDROME (EUS) An extension brochure for Africa Food and Agriculture Organization of the United Nations Rome, 2020 iii Required citation: FAO. 2020. What you need to know about epizootic ulcerative syndrome (EUS) – An extension brochure for Africa. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. © FAO, 2020 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services. The use of the FAO logo is not permitted. If the work is adapted, then it must be licensed under the same or equivalent Creative Commons licence. If a translation of this work is created, it must include the following disclaimer along with the required citation: “This translation was not created by the Food and Agriculture Organization of the United Nations (FAO). FAO is not responsible for the content or accuracy of this translation. The original [Language] edition shall be the authoritative edition.” Disputes arising under the licence that cannot be settled amicably will be resolved by mediation and arbitration as described in Article 8 of the licence except as otherwise provided herein. The applicable mediation rules will be the mediation rules of the World Intellectual Property Organization http://www.wipo.int/amc/en/mediation/rules and any arbitration will be conducted in accordance with the Arbitration Rules of the United Nations Commission on International Trade Law (UNCITRAL). Third-party materials. Users wishing to reuse material from this work that is attributed to a third party, such as tables, figures or images, are responsible for determining whether permission is needed for that reuse and for obtaining permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user. Sales, rights and licensing. FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through [email protected]. Requests for commercial use should be submitted via: www.fao.org/contact-us/licence-request. Queries regarding rights and licensing should be submitted to: [email protected]. Cover photographs: ©FAO/D. Huchzermeyer, Rhodes University. Preparation of this document his extension brochure – What you need to know about epizootic ulcerative Tsyndrome (EUS) – provides simple facts or answers to frequently asked questions about EUS. This brochure is intended to address a wide range of audience from fish farmers and fishermen to extension officers as well as policy- makers as a public information campaign to make available factual information about the disease so that awareness may be raised for better understanding of its potential impact. The original brochure, an outcome of FAO’s Technical Cooperation Project TCP/RAF/3111 Emergency Assistance to Combat Epizootic Ulcerative Syndrome in the Chobe/Zambezi River System, was prepared under the technical supervision of Dr Melba B. Reantaso (FAO) and Dr Rohana P. Subasinghe (FAO retiree). The current version of the extension brochure is focused on Africa. This was prepared by Dr Melba Reantaso and Dr David Huchzermeyer (South Africa). iii Contents Preparation of this document iii Acknowledgements vi What is epizootic ulcerative syndrome (EUS)? 1 What does epizootic ulcerative syndrome (EUS) do to the fish? 4 History of epizootic ulcerative syndrome (EUS) in Africa 7 Location of the first recorded occurrence in Africa 8 How does epizootic ulcerative syndrome (EUS) occur? 9 How is epizootic ulcerative syndrome (EUS) diagnosed? 10 Which species are susceptible or affected? 12 Which species are not susceptible or affected by epizootic ulcerative syndrome (EUS)? 17 How is epizootic ulcerative syndrome (EUS) spread? What factors cause the fish to become infected with EUS? 18 Why and where is epizootic ulcerative syndrome (EUS) a problem today? 21 Is it safe to eat epizootic ulcerative syndrome (EUS) fish? 24 Can epizootic ulcerative syndrome (EUS)-affected fish be treated? 25 Can infection be prevented? 26 What can one do in the event of a disease outbreak? 28 Can I collect epizootic ulcerative syndrome (EUS) samples for laboratory examination? 29 References 30 Glossary 31 v Acknowledgements he FAO Fisheries Division (NFI) of the Food and Agriculture Organization of Tthe United Nations (FAO), the FAO project GCP/GLO/979/NOR: “Improving Biosecurity Governance and Legal Framework for Efficient and Sustainable Aquaculture Production” funded by the Norwegian Agency for Development Cooperation and UTF/ZAM/077/ZAM: Technical Assistance to the Zambia Aquaculture Enterprise Development (ZAED): Output 4: Improving Aquatic Animal Health funded by the African Development Bank, and FAO’s Strategic Programme 5, are gratefully acknowledged for support in the preparation and compilation of this publication. Translation, printing and distribution costs were shouldered by the Southern African Development Community under the leadership of Dr Motseki Hlatshwayo. We also appreciate Prof Kishio Hatai, Dr Gilson Njunga, Dr Ben Van der Waal for providing photos. vi What is epizootic ulcerative syndrome (EUS)? pizootic ulcerative syndrome or EUS is the name given to a disease caused Eby an infection with the oomycete fungus known as Aphanomyces invadans or A. piscicida. Aphanomyces is a member of a group of organisms commonly known as water a moulds; they are currently recognized asb belonging, with diatoms and brown algae, to the group of Stramenopiles (OIE, 2019).This group of organisms contains a number of pathogens of plants and animals that have had devastating effects on agriculture and aquaculture throughout the world. In contrast to free-living saprophytic water moulds, Aphanomyces invadans is an obligate pathogen. EUS is an epizootic condition affecting wild and farmed freshwater and estuarine finfish since it was first reported in 1971. In affected areas, the disease often occurs seasonally and may be worse in some years. EUS is also known by other names such as red spot disease (RSD), mycotic granulomatosis (MG), ulcerative mycosis (UM) and in 2005 it was suggested to rename EUS as epizootic granulomatous aphanomycosis (EGA) (Baldock et al. 2005). However the name EUS is most frequently used to describe the disease. ©FAO/B. Van Van der Waal, Namibia ©FAO/B. Figure 1. Enteromius paludinosus – Straightfin barb showing typical epizootic ulcerative syndrome (EUS) lesion. Caprivi Region, Namibia, 2007. 1 AQUAPONICS ©FAO/D. Huchzermeyer, Rhodes University Huchzermeyer, ©FAO/D. Figure 2. Invading hyphae of Aphanomyces invadans (short arrows) with development of typical mycotic granulomas (long arrows) in a histological section of muscle from of an epizootic ulcerative syndrome (EUS)-affected fish (Serranochromis robustus), north Zambia, 2014 (Grocott’s
Recommended publications
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • The Coincidence of Ecological Opportunity with Hybridization Explains Rapid Adaptive Radiation in Lake Mweru Cichlid fishes
    ARTICLE https://doi.org/10.1038/s41467-019-13278-z OPEN The coincidence of ecological opportunity with hybridization explains rapid adaptive radiation in Lake Mweru cichlid fishes Joana I. Meier 1,2,3,4, Rike B. Stelkens 1,2,5, Domino A. Joyce 6, Salome Mwaiko 1,2, Numel Phiri7, Ulrich K. Schliewen8, Oliver M. Selz 1,2, Catherine E. Wagner 1,2,9, Cyprian Katongo7 & Ole Seehausen 1,2* 1234567890():,; The process of adaptive radiation was classically hypothesized to require isolation of a lineage from its source (no gene flow) and from related species (no competition). Alternatively, hybridization between species may generate genetic variation that facilitates adaptive radiation. Here we study haplochromine cichlid assemblages in two African Great Lakes to test these hypotheses. Greater biotic isolation (fewer lineages) predicts fewer constraints by competition and hence more ecological opportunity in Lake Bangweulu, whereas opportunity for hybridization predicts increased genetic potential in Lake Mweru. In Lake Bangweulu, we find no evidence for hybridization but also no adaptive radiation. We show that the Bangweulu lineages also colonized Lake Mweru, where they hybridized with Congolese lineages and then underwent multiple adaptive radiations that are strikingly complementary in ecology and morphology. Our data suggest that the presence of several related lineages does not necessarily prevent adaptive radiation, although it constrains the trajectories of morphological diversification. It might instead facilitate adaptive radiation when hybridization generates genetic variation, without which radiation may start much later, progress more slowly or never occur. 1 Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution,UniversityofBern,Baltzerstr.6,CH-3012Bern,Switzerland.2 Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland.
    [Show full text]
  • Molecular Investigations of the Diversity of Freshwater Fishes Across Three Continents
    Molecular Investigations of the Diversity of Freshwater Fishes across Three Continents by Malorie M. Hayes A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 8, 2020 Keywords: Enteromius, Barbus, sub-Saharan Africa, phylogenetics, systematics, Pteronotropis, conservation genetics, Trichomycterus, Guyana Copyright 2020 by Malorie M. Hayes Approved by Jonathan W. Armbruster, Chair, Professor and Director Auburn University Museum of Natural History Department of Biological Sciences Jason E. Bond, Professor and Schlinger Chair in Insect Systematics University of California, Davis Scott R. Santos, Professor and Chair of the Department of Biological Sciences at Auburn University John P. Friel, Director of the Alabama Museum of Natural History Abstract Fishes are the most speciose vertebrates, and incredible diversity can be found within different groups of fish. Due to their physiological limitations, fish are confined to waters, and in freshwater fish, this is restricted to lakes, rivers, and streams. With a constrained habitat like a freshwater system, it can be expected that freshwater fish will show varying levels of diversity depending on a suite of characteristics. Within this dissertation, I examine the diversity of three fish groups: the speciose Enteromius of West Africa, the population genetic diversity of Pteronotropis euryzonus in Alabama and Georgia, and the unexpectedly species rich Trichomycterus from the Guyana highlands. I use molecular methods and geometric morphometrics to determine the systematics of the species and uncover the hidden diversity within their respective groups. When it comes to diversity, the small barbs of Africa are vastly understudied and require a taxonomic revision.
    [Show full text]
  • Jlb Smith Institute of Ichthyology
    ISSN 0075-2088 J.L.B. SMITH INSTITUTE OF ICHTHYOLOGY GRAHAMSTOWN, SOUTH AFRICA SPECIAL PUBLICATION No. 56 SCIENTIFIC AND COMMON NAMES OF SOUTHERN AFRICAN FRESHWATER FISHES by Paul H. Skelton November 1993 SERIAL PUBLICATIONS o f THE J.L.B. SMITH INSTITUTE OF ICHTHYOLOGY The Institute publishes original research on the systematics, zoogeography, ecology, biology and conservation of fishes. Manuscripts on ancillary subjects (aquaculture, fishery biology, historical ichthyology and archaeology pertaining to fishes) will be considered subject to the availability of publication funds. Two series are produced at irregular intervals: the Special Publication series and the Ichthyological Bulletin series. Acceptance of manuscripts for publication is subject to the approval of reviewers from outside the Institute. Priority is given to papers by staff of the Institute, but manuscripts from outside the Institute will be considered if they are pertinent to the work of the Institute. Colour illustrations can be printed at the expense of the author. Publications of the Institute are available by subscription or in exchange for publi­ cations of other institutions. Lists of the Institute’s publications are available from the Publications Secretary at the address below. INSTRUCTIONS TO AUTHORS Manuscripts shorter than 30 pages will generally be published in the Special Publications series; longer papers will be considered for the Ichthyological Bulletin series. Please follow the layout and format of a recent Bulletin or Special Publication. Manuscripts must be submitted in duplicate to the Editor, J.L.B. Smith Institute of Ichthyology, Private Bag 1015, Grahamstown 6140, South Africa. The typescript must be double-spaced throughout with 25 mm margins all round.
    [Show full text]
  • Parasites of Barbus Species (Cyprinidae) of Southern Africa
    Parasites of Barbus species (Cyprinidae) of southern Africa By Pieter Johannes Swanepoel Dissertation submitted in fulfilment of the requirements for the degree Magister Scientiae in the Faculty of Natural and Agricultural Sciences, Department of Zoology and Entomology, University of the Free State. Supervisor: Prof J.G. van As Co-supervisor: Prof L.L. van As Co-supervisor: Dr K.W. Christison July 2015 Table of Contents 1. Introduction ................................................................................................ 1 CYPRINIDAE .......................................................................................................... 6 BARBUS ............................................................................................................... 10 REFERENCES ..................................................................................................... 12 2. Study Sites ................................................................................................ 16 OKAVANGO RIVER SYSTEM .............................................................................. 17 Importance ................................................................................................................... 17 Hydrology .................................................................................................................... 17 Habitat and Vegetation ................................................................................................ 19 Leseding Research Camp...........................................................................................
    [Show full text]
  • Xenopus Laevis As Uberxl for Nematodes
    African Zoology ISSN: 1562-7020 (Print) 2224-073X (Online) Journal homepage: https://www.tandfonline.com/loi/tafz20 Xenopus laevis as UberXL for nematodes Anneke L Schoeman, Tracy-Lee Joubert, Louis H du Preez & Roman Svitin To cite this article: Anneke L Schoeman, Tracy-Lee Joubert, Louis H du Preez & Roman Svitin (2020): Xenopuslaevis as UberXL for nematodes, African Zoology, DOI: 10.1080/15627020.2019.1681295 To link to this article: https://doi.org/10.1080/15627020.2019.1681295 View supplementary material Published online: 17 Mar 2020. Submit your article to this journal Article views: 13 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tafz20 African Zoology 2020, 55(1): xxx–xxx Copyright © Zoological Society Printed in South Africa — All rights reserved of Southern Africa AFRICAN ZOOLOGY This is the final version of the article that is ISSN 1562-7020 EISSN 2224-073X published ahead of the print and online issue https://doi.org/10.1080/15627020.2019.1681295 Xenopus laevis as UberXL for nematodes Anneke L Schoeman1,2* , Tracy-Lee Joubert1, Louis H du Preez1,3 and Roman Svitin1,3,4 1 African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa 2 Centre of Excellence for Invasion Biology, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa 3 South African Institute for Aquatic Biodiversity, Grahamstown, South Africa 4 Department of Invertebrate Fauna and Systematics, II Schmalhausen Institute of Zoology, Kyiv, Ukraine *Corresponding author, email: [email protected] The effect of invasive species on local parasite dynamics is often overlooked.
    [Show full text]
  • Invasive Alien Species in Southern Africa
    GISP Global Invasive Species Programme Ministry of Tourism, Environment United States Government and Natural Resources Republic of Zambia Invasive Alien Species in Southern Africa National Reports & Directory of Resources Edited by Ian A.W. Macdonald, Jamie K. Reaser, Chris Bright, Laurie E. Neville, Geoffrey W. Howard, Sean J. Murphy, and Guy Preston 1 This report is a product of a workshop entitled Prevention and Management of Invasive Alien Species: Forging Cooperation throughout Southern Africa, held by the Global Invasive Species Programme (GISP) in Lusaka, Zambia on 10-12 June 2002. It was sponsored by the U.S. Department of State, Bureau of Oceans and International Environmental Affairs (OESI) grant S-LMAQM-00-H-0167. In-kind assistance was provided by the U.S. Environmental Protection Agency. Administrative and logistical assistance was provided by the Zambian Ministry of Tourism, Environment and Natural Resources, the U.S. Embassy in Lusaka, Zambia, the Scientific Committee on Problems of the Environment (SCOPE), and the National Fish and Wildlife Foundation (NFWF), as well as all Steering Committee members. The Smithsonian Institution National Museum of Natural History and National Botanical Institute, South Africa kindly provided support during report production. The editors thank Dr Phoebe Barnard of the GISP Secretariat for her very extensive work to finalize the report. The workshop was co-chaired by the Governments of the Republic of Zambia and the United States of America, and by the Global Invasive Species Programme. Members of the Steering Committee included: Mr Lubinda Aongola (Ministry of Tourism, Environment and Natural Resources, Zambia), Mr Troy Fitrell (U.S.
    [Show full text]
  • Conference Proceedings 2006
    FOSAF THE FEDERATION OF SOUTHERN AFRICAN FLYFISHERS PROCEEDINGS OF THE 10 TH YELLOWFISH WORKING GROUP CONFERENCE STERKFONTEIN DAM, HARRISMITH 07 – 09 APRIL 2006 Edited by Peter Arderne PRINTING & DISTRIBUTION SPONSORED BY: sappi 1 CONTENTS Page List of participants 3 Press release 4 Chairman’s address -Bill Mincher 5 The effects of pollution on fish and people – Dr Steve Mitchell 7 DWAF Quality Status Report – Upper Vaal Management Area 2000 – 2005 - Riana 9 Munnik Water: The full picture of quality management & technology demand – Dries Louw 17 Fish kills in the Vaal: What went wrong? – Francois van Wyk 18 Water Pollution: The viewpoint of Eco-Care Trust – Mornē Viljoen 19 Why the fish kills in the Vaal? –Synthesis of the five preceding presentations 22 – Dr Steve Mitchell The Elands River Yellowfish Conservation Area – George McAllister 23 Status of the yellowfish populations in Limpopo Province – Paul Fouche 25 North West provincial report on the status of the yellowfish species – Daan Buijs & 34 Hermien Roux Status of yellowfish in KZN Province – Rob Karssing 40 Status of the yellowfish populations in the Western Cape – Dean Impson 44 Regional Report: Northern Cape (post meeting)– Ramogale Sekwele 50 Yellowfish conservation in the Free State Province – Pierre de Villiers 63 A bottom-up approach to freshwater conservation in the Orange Vaal River basin – 66 Pierre de Villiers Status of the yellowfish populations in Gauteng Province – Piet Muller 69 Yellowfish research: A reality to face – Dr Wynand Vlok 72 Assessing the distribution & flow requirements of endemic cyprinids in the Olifants- 86 Doring river system - Bruce Paxton Yellowfish genetics projects update – Dr Wynand Vlok on behalf of Prof.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • Baseline Aquatic Ecology Assessment for Bakubung Platinum Mine
    Prepared by Knight Piésold (Pty) Ltd 4 De La Rey Road Rivonia, Johannesburg South Africa, 2128 Prepared for Bakubung Minerals Proprietary Limited Farm 259, R565, JQ Bultfontein Ledig Rustenburg North West Province RSA Project Number RI 301-00509/14 BASELINE AQUATIC ECOLOGY ASSESSMENT FOR BAKUBUNG PLATINUM MINE Rev Description Date A Issued in Final 03 April 2020 B Specialist Reports and Reports on Specialist Processes - Checklist NEMA Regulations (2014) – Appendix 6 Reference to section in report 1 A specialist report or a report on a specialised process prepared in terms of these Regulations must contain - (a) i The person who prepared the report; and Section (a) ii The expertise of that specialist to compile a specialist Annexure A reports including a curriculum vitae; (b) A declaration that the specialist is independent in a Next page form as may be specified by the competent authority (c) An indication of the scope of, and the purpose for Section 1.4 which the report was prepared (d) Duration, date and season of the site investigation and the relevance of the season to the outcome of the Section 3.2 assessment (e) Description of the methodology adopted in preparing the report or carrying out the specialised process Section 3.0 inclusive of equipment and modelling used (f) The specific identified sensitivity of the site related to the proposed activity or activities and its associated Section 2.1 structures and infrastructure, inclusive of a site plan identifying site alternatives (g) An identification of any areas to be avoided, including
    [Show full text]
  • Biodiversity Impact Assessment
    March 2020 19121900-328397-9 APPENDIX H Biodiversity Impact Assessment REPORT Specialist Assessment for the Proposed Surface Pipeline and Associated Infrastructure - Biodiversity Impact Assessment AngloGold Ashanti (Pty) Limited South African Operations Submitted to: Anglo Gold Ashanti (Pty) Limited South African Operations Mr J van Wyk Carletonville - Fochville Road R500 Carletonville Gauteng 2501 Submitted by: Golder Associates Africa (Pty) Ltd. Building 1, Maxwell Office Park, Magwa Crescent West, Waterfall City, Midrand, 1685, South Africa P.O. Box 6001, Halfway House, 1685 +27 11 254 4800 19121900-327695-6 February 2020 February 2020 19121900-327695-6 Distribution List 1 eCopy to Anglo Gold Ashanti (Pty) Limited South African Operations 1 eCopy to [email protected] i February 2020 19121900-327695-6 Executive Summary Project overview The AGA operations in the West Wits mining lease areas are at risk of flooding due to ingress of fissure water from surrounding mining operations. Approximately 25 Mℓ/day of fissure water flows into the underground workings of the defunct Blyvooruitzicht Mine, which spans a strike of 6 km along the boundary with AGA. If dewatering at the Old Blyvooruitzicht Shafts (#4, #5 & 6#) shafts were to cease, uncontrolled fissure water would report to the AGA operations, which would pose both a flood and safety risk of AGA personnel and the mining operations. This report provides a professional opinion regarding the anticipated terrestrial, wetland and aquatic impacts from this proposed project. Location The proposed water pipeline and associated infrastructure is located approximately 80 km west of Johannesburg. It originates at CWC 4#, approximately 3.3 km south east of Carletonville and ends at the North Boundary Dam (NBD) approximately 6 km south-south-west of Carletonville in Blyvooruitzicht, Merafong City Local Municipality, West Rand District Municipality in the Gauteng Province of South Africa.
    [Show full text]
  • Barbus Sensitivus, a New Species with Extensive Pitlines from the Sanaga River (Teleostei: Cyprinidae)
    aqua, International Journal of Ichthyology Barbus sensitivus, a new species with extensive pitlines from the Sanaga River (Teleostei: Cyprinidae) Tyson R. Roberts Research Associate, Smithsonian Tropical Research Institute. Email: [email protected] Received: 29 June 2010 – Accepted: 10 August 2010 Abstract vergleichende Studien unter Einbeziehung von REM- Barbus sensitivus new species, from the Sanaga River in Bildern, die Vergleich und Bestimmung ermöglichen. Keine Cameroon, West Africa, has a much more slender caudal der bisher beschriebenen Arten ähnelt dieser neuen Art peduncle than any other small African barb. It also has besonders. Die pitline organelles von B. sensitivus n. sp. extensively distributed exposed pitline organelles in pit lines haben freiliegende oder freie Neuromasten. Ihre Funktion- on the head and scales, illustrated here by scanning electron sweise ist vermutlich mechanosensorisch. Bei der erwachse- micrographs. Similar pit lines and pitline organelles evi- nen B. sensitivus n. sp. sind sie in großen Grubenreihen auf dently occur in various other Old World barbs assigned to Kopf und Rumpf extensiv verteilt; sie ähneln Seitenlinien- various genera in Africa and Asia but adequate comparative Neuromasten bei weit entwickelten Larven von Cyprinus car- studies including SEM observations are not available to pio, Gnathopogon elongatus caerulescens und Danio rerio. permit their comparison and identification. None of the Hauptsächlich sind die Neuromasten auf den ventrolateralen species previously described are very similar to this new Teil des Kopfes konzentriert, wo ihre Zahl rund 30.000 species. The pitline organelles of B. sensitivus n. sp. have beträgt, jeweils mit 20 bis 100 Kinozilien (Flimmerhärchen) exposed or free neuromasts. Their sensory modality pre- mit einer Länge von 7 Mikrometern und 0,4 Mikrometern sumably is mechanosensory.
    [Show full text]