1 Physics of Color
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Impact of Properties of Thermochromic Pigments on Knitted Fabrics
International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1693 ISSN 2229-5518 Impact of Properties of Thermochromic Pigments on Knitted Fabrics 1Dr. Jassim M. Abdulkarim, 2Alaa K. Khsara, 3Hanin N. Al-Kalany, 4Reham A. Alresly Abstract—Thermal dye is one of the important indicators when temperature is changed. It is used in medical, domestic and electronic applications. It indicates the change in chemical and thermal properties. In this work it is used to indicate the change in human body temperature where the change in temperature between (30 – 41 oC) is studied .The change in color begin to be clear at (30 oC). From this study it is clear that heat flux increased (81%) between printed and non-printed clothes which is due to the increase in heat transfer between body and the printed cloth. The temperature has been increased to the maximum level that the human body can reach and a gradual change in color is observed which allow the use of this dye on baby clothes to indicate the change in baby body temperature and monitoring his medical situation. An additional experiment has been made to explore the change in physical properties to the used clothe after the printing process such as air permeability which shows a clear reduction in this property on printed region comparing with the unprinted region, the reduction can reach (70%) in this property and in some type of printing the reduction can reach (100%) which give non permeable surface. Dye fitness can also be increased by using binders and thickeners and the reduction in dyes on the surface of cloth is reached (15%) after (100) washing cycle. -
An Evaluation of Color Differences Across Different Devices Craitishia Lewis Clemson University, [email protected]
Clemson University TigerPrints All Theses Theses 12-2013 What You See Isn't Always What You Get: An Evaluation of Color Differences Across Different Devices Craitishia Lewis Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Communication Commons Recommended Citation Lewis, Craitishia, "What You See Isn't Always What You Get: An Evaluation of Color Differences Across Different Devices" (2013). All Theses. 1808. https://tigerprints.clemson.edu/all_theses/1808 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. What You See Isn’t Always What You Get: An Evaluation of Color Differences Across Different Devices A Thesis Presented to The Graduate School of Clemson University In Partial Fulfillment Of the Requirements for the Degree Master of Science Graphic Communications By Craitishia Lewis December 2013 Accepted by: Dr. Samuel Ingram, Committee Chair Kern Cox Dr. Eric Weisenmiller Dr. Russell Purvis ABSTRACT The objective of this thesis was to examine color differences between different digital devices such as, phones, tablets, and monitors. New technology has always been the catalyst for growth and change within the printing industry. With gadgets like the iPhone and the iPad becoming increasingly more popular in the recent years, printers have yet another technological advancement to consider. Soft proofing strategies use color management technology that allows the client to view their proof on a monitor as a duplication of how the finished product will appear on a printed piece of paper. -
Package 'Colorscience'
Package ‘colorscience’ October 29, 2019 Type Package Title Color Science Methods and Data Version 1.0.8 Encoding UTF-8 Date 2019-10-29 Maintainer Glenn Davis <[email protected]> Description Methods and data for color science - color conversions by observer, illuminant, and gamma. Color matching functions and chromaticity diagrams. Color indices, color differences, and spectral data conversion/analysis. License GPL (>= 3) Depends R (>= 2.10), Hmisc, pracma, sp Enhances png LazyData yes Author Jose Gama [aut], Glenn Davis [aut, cre] Repository CRAN NeedsCompilation no Date/Publication 2019-10-29 18:40:02 UTC R topics documented: ASTM.D1925.YellownessIndex . .5 ASTM.E313.Whiteness . .6 ASTM.E313.YellownessIndex . .7 Berger59.Whiteness . .7 BVR2XYZ . .8 cccie31 . .9 cccie64 . 10 CCT2XYZ . 11 CentralsISCCNBS . 11 CheckColorLookup . 12 1 2 R topics documented: ChromaticAdaptation . 13 chromaticity.diagram . 14 chromaticity.diagram.color . 14 CIE.Whiteness . 15 CIE1931xy2CIE1960uv . 16 CIE1931xy2CIE1976uv . 17 CIE1931XYZ2CIE1931xyz . 18 CIE1931XYZ2CIE1960uv . 19 CIE1931XYZ2CIE1976uv . 20 CIE1960UCS2CIE1964 . 21 CIE1960UCS2xy . 22 CIE1976chroma . 23 CIE1976hueangle . 23 CIE1976uv2CIE1931xy . 24 CIE1976uv2CIE1960uv . 25 CIE1976uvSaturation . 26 CIELabtoDIN99 . 27 CIEluminanceY2NCSblackness . 28 CIETint . 28 ciexyz31 . 29 ciexyz64 . 30 CMY2CMYK . 31 CMY2RGB . 32 CMYK2CMY . 32 ColorBlockFromMunsell . 33 compuphaseDifferenceRGB . 34 conversionIlluminance . 35 conversionLuminance . 36 createIsoTempLinesTable . 37 daylightcomponents . 38 deltaE1976 -
Photometric Modelling for Efficient Lighting and Display Technologies
Sinan G Sinan ENÇ PHOTOMETRIC MODELLING FOR PHOTOMETRIC MODELLING FOR EFFICIENT LIGHTING LIGHTING EFFICIENT FOR MODELLING PHOTOMETRIC EFFICIENT LIGHTING AND DISPLAY TECHNOLOGIES AND DISPLAY TECHNOLOGIES DISPLAY AND A MASTER’S THESIS By Sinan GENÇ December 2016 AGU 2016 ABDULLAH GÜL UNIVERSITY PHOTOMETRIC MODELLING FOR EFFICIENT LIGHTING AND DISPLAY TECHNOLOGIES A THESIS SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF ABDULLAH GÜL UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE By Sinan GENÇ December 2016 i SCIENTIFIC ETHICS COMPLIANCE I hereby declare that all information in this document has been obtained in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all materials and results that are not original to this work. Sinan GENÇ ii REGULATORY COMPLIANCE M.Sc. thesis titled “PHOTOMETRIC MODELLING FOR EFFICIENT LIGHTING AND DISPLAY TECHNOLOGIES” has been prepared in accordance with the Thesis Writing Guidelines of the Abdullah Gül University, Graduate School of Engineering & Science. Prepared By Advisor Sinan GENÇ Asst. Prof. Evren MUTLUGÜN Head of the Electrical and Computer Engineering Program Assoc. Prof. Vehbi Çağrı GÜNGÖR iii ACCEPTANCE AND APPROVAL M.Sc. thesis titled “PHOTOMETRIC MODELLING FOR EFFICIENT LIGHTING AND DISPLAY TECHNOLOGIES” and prepared by Sinan GENÇ has been accepted by the jury in the Electrical and Computer Engineering Graduate Program at Abdullah Gül University, Graduate School of Engineering & Science. 26/12/2016 (26/12/2016) JURY: Prof. Bülent YILMAZ :………………………………. Assoc. Prof. M. Serdar ÖNSES :……………………………… Asst. -
PRODUCT GUIDE CONCEALED FASTENER PANELS 2 Design Span® Hp 3 Span-Lok™ Hp 4 Select Seam® 5 Flex Series 6 Prestige Series® 7 Perception Collection® 8 Flush Panel
ARCHITECTURAL METAL ROOFING AND SIDING PRODUCT GUIDE CONCEALED FASTENER PANELS 2 Design Span® hp 3 Span-Lok™ hp 4 Select Seam® 5 Flex Series 6 Prestige Series® 7 Perception Collection® 8 Flush Panel EXPOSED FASTENER PANELS 9 HR-36® 10 Box Rib™ 11 Nu-Wave® Corrugated 12 Mini-V-Beam™ 13 PBR Panel 14 U-Panel ADDITIONAL INFORMATION 15 Purlins and EZ-Form® 16 Sustainability 16 Graffiti-Resistant Coating System 17 Product Index and Application Guide 18 AEP Span Color Offering © Fine Line CAD Home Design, Boswell Photography, Bryan Wilkinson Design/Build 1 Call today 888-733-4955 for architectural support. Design Span® hp Design Span hp is a performance-rated structural standing seam metal roof system which does not require field seaming. Recommended as a roof over metal or wood decking, and as a fascia or mansard over plywood or supports. FEATURES AND BENEFITS: • 12", 16", 17" & 18" net coverage metal roof panel. • Minimum recommended slope 2:12. • 22ga and 24ga in standard finishes. • See page 18 for full range of color options and paint systems. • Custom manufactured panel lengths: 5'-3" to 45'-0". • Wide batten cap available for a bold appearance. • Panel is acceptable for use in metal wall applications. • Factory applied sealant is a standard offer. • Subtle striations available on 16", 17" & 18" panels. • Factory notching available for turn under at the eave. • Snap-together panel; no field seaming required. • See page 17 for testing and certifications. • Manufactured in Tacoma, WA. Visit aepspan.com for additional product information. 2 Span-Lok™ hp, Curved Span-Lok™ and SpanSeam™ © Doug Walker Photography Performance-rated architectural standing seam metal roof systems that have a mechanically seamed 2" high rib, providing aesthetic appeal and weathertightness and can be used in a wide variety of new construction or retrofit applications. -
Chapter 6 COLOR and COLOR VISION
Chapter 6 – page 1 You need to learn the concepts and formulae highlighted in red. The rest of the text is for your intellectual enjoyment, but is not a requirement for homework or exams. Chapter 6 COLOR AND COLOR VISION COLOR White light is a mixture of lights of different wavelengths. If you break white light from the sun into its components, by using a prism or a diffraction grating, you see a sequence of colors that continuously vary from red to violet. The prism separates the different colors, because the index of refraction n is slightly different for each wavelength, that is, for each color. This phenomenon is called dispersion. When white light illuminates a prism, the colors of the spectrum are separated and refracted at the first as well as the second prism surface encountered. They are deflected towards the normal on the first refraction and away from the normal on the second. If the prism is made of crown glass, the index of refraction for violet rays n400nm= 1.59, while for red rays n700nm=1.58. From Snell’s law, the greater n, the more the rays are deflected, therefore violet rays are deflected more than red rays. The infinity of colors you see in the real spectrum (top panel above) are called spectral colors. The second panel is a simplified version of the spectrum, with abrupt and completely artificial separations between colors. As a figure of speech, however, we do identify quite a broad range of wavelengths as red, another as orange and so on. -
Computer Graphicsgraphics -- Weekweek 1212
ComputerComputer GraphicsGraphics -- WeekWeek 1212 Bengt-Olaf Schneider IBM T.J. Watson Research Center Questions about Last Week ? Computer Graphics – Week 12 © Bengt-Olaf Schneider, 1999 Overview of Week 12 Graphics Hardware Output devices (CRT and LCD) Graphics architectures Performance modeling Color Color theory Color gamuts Gamut matching Color spaces (next week) Computer Graphics – Week 12 © Bengt-Olaf Schneider, 1999 Graphics Hardware: Overview Display technologies Graphics architecture fundamentals Many of the general techniques discussed earlier in the semester were developed with hardware in mind Close similarity between software and hardware architectures Computer Graphics – Week 12 © Bengt-Olaf Schneider, 1999 Display Technologies CRT (Cathode Ray Tube) LCD (Liquid Crystal Display) Computer Graphics – Week 12 © Bengt-Olaf Schneider, 1999 CRT: Basic Structure (1) Top View Vertical Deflection Collector Control Grid System Electrode Phosphor Electron Beam Cathode Electron Lens Horizontal Deflection System Computer Graphics – Week 12 © Bengt-Olaf Schneider, 1999 CRT: Basic Structure (2) Deflection System Typically magnetic and not electrostatic Reduces the length of the tube and allows wider Vertical Deflection Collector deflection angles Control Grid System Electrode Phosphor Phospor Electron Beam Cathode Electron Lens Horizontal Fluorescence: Light emitted Deflection System after impact of electrons Persistence: Duration of emission after beam is turned off. Determines flicker properties of the CRT. Computer Graphics – Week -
A Theoretical Understanding of 2 Base Color Codes and Its
WHITE PAPER SOLiD™ System A Theoretical Understanding of 2 Base Color Codes and Its Application to Annotation, Error Detection, and Error Correction Methods for Annotating 2 Base Color Encoded Reads in the SOLiD™ System Introduction Constructing the 2 Base Color Code The SOLiD™ System enables massively parallel sequencing of The SOLiD System’s 2 base color coding scheme is shown clonally amplified DNA fragments linked to beads. This unique in Figure 1. sequencing methodology is based on sequential ligation [code] 0 1 2 3 of dye-labeled oligonucleotide probes whereby each probe [dye] FAM Cy3 TXR Cy5 assays two base positions at a time. The system uses four (XY) AA AC AG AT fluorescent dyes to encode for the sixteen possible two-base 1 (XY) CC CA GA TA combinations. This unique approach employs a scheme that 2 (XY) GG GT CT CG represents a fragment of DNA as an initial base followed by 3 (XY) TT TG TC GC a sequence of overlapping dimers (adjacent pairs of bases). 4 The system encodes each dimer with one of four colors using Figure 1: SOLiD™ System’s 2 base Coding Scheme. The column under code i a degenerate coding scheme that satisfies a number of rules. lists the corresponding dye and the di-bases (adjacent nucleotides) encoded by color i. For example, GT is labeled with Cy3 and coded as “1”. A single color in the read can represent any of four dimers, but the overlapping properties of the dimers and the nature Use the following steps to encode a DNA sequence of the color code allow for error-correcting properties. -
Color Names Across Languages: Salient Colors and Term Translation in Multilingual Color Naming Models
EUROVIS 2019/ J. Johansson, F. Sadlo, and G. E. Marai Short Paper Color Names Across Languages: Salient Colors and Term Translation in Multilingual Color Naming Models Younghoon Kim, Kyle Thayer, Gabriella Silva Gorsky and Jeffrey Heer University of Washington orange brown red yellow green pink English gray black purple blue 갈 빨강 노랑 주황 연두 자주 초록 회 분홍 Korean 청록 보라 하늘 검정 남 연보라 파랑 Figure 1: Maximum probability maps of English and Korean color terms. Each point represents a 10 × 10 × 10 bin in CIELAB color space. Larger points have a greater likelihood of agreement on a single term. Each bin is colored using the average color of the most probable name term. Bins with insufficient data (< 4 terms) are left blank. English has 10 clusters corresponding to basic English color terms [BK69], whereas Korean exhibits additional clusters for ¨ ( ), ] ( ), 자주 ( ), X늘 ( ), 연P ( ), and 연보| ( ). Abstract Color names facilitate the identification and communication of colors, but may vary across languages. We contribute a set of human color name judgments across 14 common written languages and build probabilistic models that find different sets of nameable (salient) colors across languages. For example, we observe that unlike English and Chinese, Russian and Korean have more than one nameable blue color among fully-saturated RGB colors. In addition, we extend these probabilistic models to translate color terms from one language to another via a shared perceptual color space. We compare Korean-English trans- lations from our model to those from online translation tools and find that our method better preserves perceptual similarity of the colors corresponding to the source and target terms. -
Chapter 2 Fundamentals of Digital Imaging
Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation © 2016 Pearson Education, Inc., Hoboken, 1 NJ. All rights reserved. In this lecture, you will find answers to these questions • What is RGB color model and how does it represent colors? • What is CMY color model and how does it represent colors? • What is HSB color model and how does it represent colors? • What is color gamut? What does out-of-gamut mean? • Why can't the colors on a printout match exactly what you see on screen? © 2016 Pearson Education, Inc., Hoboken, 2 NJ. All rights reserved. Color Models • Used to describe colors numerically, usually in terms of varying amounts of primary colors. • Common color models: – RGB – CMYK – HSB – CIE and their variants. © 2016 Pearson Education, Inc., Hoboken, 3 NJ. All rights reserved. RGB Color Model • Primary colors: – red – green – blue • Additive Color System © 2016 Pearson Education, Inc., Hoboken, 4 NJ. All rights reserved. Additive Color System © 2016 Pearson Education, Inc., Hoboken, 5 NJ. All rights reserved. Additive Color System of RGB • Full intensities of red + green + blue = white • Full intensities of red + green = yellow • Full intensities of green + blue = cyan • Full intensities of red + blue = magenta • Zero intensities of red , green , and blue = black • Same intensities of red , green , and blue = some kind of gray © 2016 Pearson Education, Inc., Hoboken, 6 NJ. All rights reserved. Color Display From a standard CRT monitor screen © 2016 Pearson Education, Inc., Hoboken, 7 NJ. All rights reserved. Color Display From a SONY Trinitron monitor screen © 2016 Pearson Education, Inc., Hoboken, 8 NJ. -
Color Dictionaries and Corpora
Encyclopedia of Color Science and Technology DOI 10.1007/978-3-642-27851-8_54-1 # Springer Science+Business Media New York 2015 Color Dictionaries and Corpora Angela M. Brown* College of Optometry, Department of Optometry, Ohio State University, Columbus, OH, USA Definition In the study of linguistics, a corpus is a data set of naturally occurring language (speech or writing) that can be used to generate or test linguistic hypotheses. The study of color naming worldwide has been carried out using three types of data sets: (1) corpora of empirical color-naming data collected from native speakers of many languages; (2) scholarly data sets where the color terms are obtained from dictionaries, wordlists, and other secondary sources; and (3) philological data sets based on analysis of ancient texts. History of Color Name Corpora and Scholarly Data Sets In the middle of the nineteenth century, color-name data sets were primarily from philological analyses of ancient texts [1, 2]. Analyses of living languages soon followed, based on the reports of European missionaries and colonialists [3, 4]. In the twentieth century, influential data sets were elicited directly from native speakers [5], finally culminating in full-fledged empirical corpora of color terms elicited using physical color samples, reported by Paul Kay and his collaborators [6, 7]. Subsequently, scholarly data sets were published based on analyses of secondary sources [8, 9]. These data sets have been used to test specific hypotheses about the causes of variation in color naming across languages. From the study of corpora and scholarly data sets, it has been known for over 150 years that languages differ in the number of color terms in common use. -
Color Star Manual
Color Star Manual Brand: TABLE OF CONTENTS 1. INTRODUCTION 2 2. DESCRIPTION OF THE DEVICE 3 3. CHARGING THE BATTERY 4 4. HOW TO TURN ON/TURN OFF 5 5. FUNCTIONS OF THE COLOR STAR 5 5.1. COLOR MEASUREMENT 5 5.2. PATTERN RECOGNITION 6 5.3. LIGHT DETECTOR WITH LIGHT ANALYSIS 6 5.4. COLOR COMPARISON 7 5.5. COLOR ANALYSIS 7 5.6. REPEAT FUNCTION OF THE COLOR ANNOUNCEMENT 8 5.7. VOLUME CONTROL 8 6. SAFETY INSTRUCTIONS 8 7. TROUBLESHOOTING 8 8. CLEANING AND MAINTENANCE 9 9. TECHNICAL DETAILS 9 10. GUARANTEE AND SERVICE 10 11. LEGAL NOTICE ON THE DISPOSAL OF ELECTRONIC DEVICES 10 11.1. DISPOSAL OF USED ELECTRONIC DEVICES 10 11.2. RECYCLING BATTERIES 11 12. SYMBOLS USED 11 13. MANUFACTURER 12 1. INTRODUCTION Color Star is a powerful color identifier. With its clear spoken voice output it recognizes more than 1000 different color shades, identifies contrast measurements, recognizes the color of LED-lights, perceives the light intensity in the surrounding environment and recognizes patterns. 2 Note: There are several methods for measuring colors such as the spectral analysis or the three range color sensor procedure. Color Star is based on the color sensor method, where three sensors are used to measure colors the same way that receptors in human eyes function. Color Star offers two different types of announcement: Universal color names and Artistic color names. The universal color names are scientific and based on mathematical color-guideline tables, developed by the International Commission on Illumination (CIE) with lighting conditions D65 corresponding to average midday sunlight.