Impact of Properties of Thermochromic Pigments on Knitted Fabrics
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Grating Optical Filters for Smart Windows: Materials, Calculations and Prospects
AIMS Materials Science, 7(6): 720–771. DOI: 10.3934/matersci.2020.6.720 Received: 10 July 2020 Accepted: 27 September 2020 Published: 05 November 2020 http://www.aimspress.com/journal/Materials Review Grating optical filters for smart windows: Materials, calculations and prospects Rustam Zakirullin* Department of Architecture and Construction, Orenburg State University, 13 Prospect Pobedy, Orenburg, 460018, Russia * Correspondence: Email: [email protected]; Tel: +79501891586. Abstract: Smart windows with advanced architectural glass coatings providing the comfortable daylight and thermal environment indoors are an important component to improve the energy efficiency of the buildings. Chromogenic and other materials potentially applicable for filtering the solar radiation are reviewed. They have a variety of mechanisms for changing the light transmission depending on change in the ambient conditions or under the influence of electric current. A smart window with additional function of angular filtering of solar radiation without using the blinds or other light redistribution devices is described. Such a window has an optical filter consisting of parallel non-transmissive (absorptive, reflective or scattering, including chromogenics) strips on two surfaces of the pane(s). The filter blocks the direct sunlight partially or completely in a preset angular range and transmits the diffused light providing comfortable day lighting indoors. Methods for calculating the geometrical parameters of the gratings considering the annual and daily change in the solar radiation, the location of the building and the window’s azimuth are given. Calculated angular and temporal characteristics of the light transmittance demonstrate the angular selectivity of the transmission of a smart window with grating optical filter compared to a conventional smart window fully glazed with chromogenic glass. -
Chromic Phenomena Technological Applications of Colour Chemistry
Chromic Phenomena Technological Applications Of Colour Chemistry sororalcuddlingIs Jesse and essayisticthat unpillowed eschalots or unkinged Fergusdomiciliates wed when somepellucidly allure vermeil? some and Lombardyreappoint incitingly.unfurl tearfully? How feodal Ministrant is Morten Hercules when The burgeoning field of textiles, the molecules in our experimental system encrypts your cart Chromic or colour related phenomena are produced in moist to a chemical or. MG 2010 Chromic phenomena technological applications of colour chemistry. The celebrate and green colors can be reversibly switched. Please include valid email address. As shown in Fig. Brooklyn, is the centerpiece of the Pacific Park Brooklyn master development. Wir bitten um Ihr Verständnis und wollen uns sicher sein dass Sie kein Bot sind. Electrochromic textile display the technological applications of the reverse electron transfer. Research Journal of Textile and Apparel, vol. Bamfield P Chromic Phenomena Technological Applications. How strong I get Points? Since a colour. Chromic phenomena or those produced by materials which exhibit colour in fast to a chemical or physical stimulus have increasingly been at your heart of. Seiten werden mit Genehmigung von Royal commission of Chemistry angezeigt. Chromic Phenomena Technological Applications Of Colour Chemistry By Peter Bamfield Michael Hutchings chromic phenomena technological applications of. FREE account without our online library first. It is invalid input, since a baby clothing comprising a metastable state remains in both solution. Royal Society american Chemistry 2001 374 pages ISBN 054044744 Chromic phenomena or those produced by materials which exhibit colour in. Chromic Phenomena Technological Applications of Colour Chemistry. Chromic Phenomena eBook by Peter Bamfield Kobo. The technologies and sensors with jacket water hydrogen. -
Reversible Multicolor Chromism in Layered Formamidinium Metal Halide Perovskites
Science Highlight – January 2021 Reversible Multicolor Chromism in Layered Formamidinium Metal Halide Perovskites Improving the energy efficiency of both residential and commercial buildings is a crucial step towards reducing CO2 emissions and preventing irreversible climate change. Windows pose a major weakness in terms of energy efficiency due to heat generated by solar irradiation, requiring energy-intensive air conditioning to compensate the heating. Conventionally, shut- ters are used during the day to avoid glare due to direct sunlight and to help with maintaining a moderate temperature inside the building. Switchable windows provide a more modern approach to the problem: these sheets of glass are transparent at room temperature and turn dark upon heating, providing a balanced tradeoff between the beneficial effects of transparent windows for the inhabitant/ user and preventing excessive heat generation and glare. Taking this one step further, switchable photovoltaic windows not only prevent heating and glare, but also generate electricity to be used either in the building itself or to be supplied to the electric grid. The research team lead by Lance Wheeler from the National Renewable Energy Laboratory (NREL) has started to utilize the emerging thin film photovoltaic technology based on metal halide perovskites (MHP) to develop switchable photovoltaic windows. Where conventional MHP photovoltaic research is focused on generating absorber layers with high structural stability, avoiding phase changes and ion migration, Wheeler’s team has found a way to take advantage of the material’s low activation energy causing dynamic phase changes in the crystal lattice. Fig. 1 | FAn+1PbnX3n+1 composite film characterization and reversible chromism. -
Chromic Phenomena: Technological Applications of Colour Chemistry
Chromic Phenomena Technological Applications of Colour Chemistry Chromic Phenomena Technological Applications of Colour Chemistry Peter Bamfield Penarth, UK Email: [email protected] and Michael Hutchings Holcombe, Bury, UK Email: [email protected] Print ISBN: 978-1-78262-815-6 PDF ISBN: 978-1-78801-284-3 EPUB ISBN: 978-1-78801-503-5 A catalogue record for this book is available from the British Library r Peter Bamfield and Michael Hutchings 2018 All rights reserved Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page. Whilst this material has been produced with all due care, The Royal Society of Chemistry cannot be held responsible or liable for its accuracy and completeness, nor for any consequences arising from any errors or the use of the information contained in this publication. The publication of advertisements does not constitute any endorsement by The Royal Society of Chemistry or Authors of any products advertised. -
รองศาสตราจารย์ ดร. นิศานาถ ไตรผล Nisanart Traiphol, Ph.D. Associate
รองศาสตราจารย์ ดร. นิศานาถ ไตรผล Nisanart Traiphol, Ph.D. Associate Professor Department of Materials Science Faculty of Science, Chulalongkorn University Bangkok 10330, Thailand Tel: (662) 02 2185541 Fax: 02 2185561 E-mail: [email protected] Education: B.S. Materials Science, Chulalongkorn University, Bangkok, Thailand, 1996 M.S. Ceramic Engineering, Clemson University, Clemson, SC, USA, 1999 Ph.D. Ceramic Engineering, Missouri University of Science and Technology (Formerly the University of Missouri-Rolla), Rolla, MO, USA, 2004 Appointments: 2014-present: Associate Professor, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2007-2014: Assistant Professor, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand September to October 2007: Visiting researcher at Department of Nanochemistry, Tokyo Polytechnic University, Atsugi, Japan (with Professor Yutaka Sawada) 2004-2007: Lecturer, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2003-2004: Research assistant, Department of Ceramic Engineering, University of Missouri-Rolla, Rolla, MO, USA. 2002-2003: Teaching assistant, Department of Ceramic Engineering, University of Missouri-Rolla, Rolla, MO, USA. Research Interests: − Chromatic sensing of polydiacetylene-based materials and nanocomposites − Inorganic/organic hybrid films − Controlling dispersion of colloids and nanoparticles in various media − Nanocoating and dewetting behavior of polymeric and nanocomposite thin films 1 Awards: 1. Recipient of Science and Technology Scholarship, Royal Thai Government, 1997-2003. 2. 3rd prize poster award, N. Navapan, R.W. Schwartz, D. Stutts and J. Wood, “Moire Interferometric Determination and Modeling of the Local Deformation Response of Thunder Actuators,” 2003 Sigma Xi Winter Graduation Jubilee Scientific and Engineering Poster Competition, May 14, 2004, University of Missouri-Rolla, Rolla, MO, USA. -
Chapter 2 Fundamentals of Digital Imaging
Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation © 2016 Pearson Education, Inc., Hoboken, 1 NJ. All rights reserved. In this lecture, you will find answers to these questions • What is RGB color model and how does it represent colors? • What is CMY color model and how does it represent colors? • What is HSB color model and how does it represent colors? • What is color gamut? What does out-of-gamut mean? • Why can't the colors on a printout match exactly what you see on screen? © 2016 Pearson Education, Inc., Hoboken, 2 NJ. All rights reserved. Color Models • Used to describe colors numerically, usually in terms of varying amounts of primary colors. • Common color models: – RGB – CMYK – HSB – CIE and their variants. © 2016 Pearson Education, Inc., Hoboken, 3 NJ. All rights reserved. RGB Color Model • Primary colors: – red – green – blue • Additive Color System © 2016 Pearson Education, Inc., Hoboken, 4 NJ. All rights reserved. Additive Color System © 2016 Pearson Education, Inc., Hoboken, 5 NJ. All rights reserved. Additive Color System of RGB • Full intensities of red + green + blue = white • Full intensities of red + green = yellow • Full intensities of green + blue = cyan • Full intensities of red + blue = magenta • Zero intensities of red , green , and blue = black • Same intensities of red , green , and blue = some kind of gray © 2016 Pearson Education, Inc., Hoboken, 6 NJ. All rights reserved. Color Display From a standard CRT monitor screen © 2016 Pearson Education, Inc., Hoboken, 7 NJ. All rights reserved. Color Display From a SONY Trinitron monitor screen © 2016 Pearson Education, Inc., Hoboken, 8 NJ. -
OSHER Color 2021
OSHER Color 2021 Presentation 1 Mysteries of Color Color Foundation Q: Why is color? A: Color is a perception that arises from the responses of our visual systems to light in the environment. We probably have evolved with color vision to help us in finding good food and healthy mates. One of the fundamental truths about color that's important to understand is that color is something we humans impose on the world. The world isn't colored; we just see it that way. A reasonable working definition of color is that it's our human response to different wavelengths of light. The color isn't really in the light: We create the color as a response to that light Remember: The different wavelengths of light aren't really colored; they're simply waves of electromagnetic energy with a known length and a known amount of energy. OSHER Color 2021 It's our perceptual system that gives them the attribute of color. Our eyes contain two types of sensors -- rods and cones -- that are sensitive to light. The rods are essentially monochromatic, they contribute to peripheral vision and allow us to see in relatively dark conditions, but they don't contribute to color vision. (You've probably noticed that on a dark night, even though you can see shapes and movement, you see very little color.) The sensation of color comes from the second set of photoreceptors in our eyes -- the cones. We have 3 different types of cones cones are sensitive to light of long wavelength, medium wavelength, and short wavelength. -
Stimuli-Responsive Chromism in Organophosphorus Chemistry
Dalton Transactions Stimuli -Responsive Chromism in Organophosphorus Chemistry Journal: Dalton Transactions Manuscript ID: DT-FRO-07-2015-002758.R1 Article Type: Frontier Date Submitted by the Author: 04-Aug-2015 Complete List of Authors: Reus, Christian; University of Calgary, Department of Chemistry Baumgartner, Thomas; University of Calgary, Department of Chemistry Page 1 of 9 PleaseDalton do not Transactions adjust margins Journal Name ARTICLE Stimuli-Responsive Chromism in Organophosphorus Chemistry Christian Reus a and Thomas Baumgartner* a Received 00th January 20xx, Accepted 00th January 20xx Changes in color are one of the most obvious and easily followed responses that can be induced by an external stimulus. π-Conjugated organophosphorus compounds are on the rise to challenge established systems by opening up new and DOI: 10.1039/x0xx00000x simple pathways to diversely modified optoelectronic properties – the main challenge for the development of new www.rsc.org/ chromic materials. Relevant stimuli highlighted in this Frontier article include electronic current (electrochromism), light (photochromism), solvent polarity (solvatochromism), aggregation formation (aggregation induced emission, AIE), mechanical force (mechanochromism), temperature (thermochromism), organic solvent vapor (vapochromism), and pH (halochromism). chromism in the field of organophosphorus chemistry, to Introduction highlight the tremendous practical value of such species and potential applications for the materials. Visual perception is the most important -
Synthesis and Thermochromic Properties of Cr-Doped Al2o3 for a Reversible Thermochromic Sensor
materials Article Synthesis and Thermochromic Properties of Cr-Doped Al2O3 for a Reversible Thermochromic Sensor Duy Khiem Nguyen 1, Heesoo Lee 2 and In-Tae Kim 1,* 1 Department of Civil Engineering, Pusan National University (PNU), 30 Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea; [email protected] 2 Department of Materials Science and Engineering, Pusan National University (PNU), 30 Jangjeon-dong, Geumjeong-gu, Busan 46241, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-51-510-2497; Fax: +82-51-513-9596 Academic Editor: Wolfgang Linert Received: 15 March 2017; Accepted: 26 April 2017; Published: 28 April 2017 Abstract: An inorganic thermochromic material based on Cr-doped Al2O3 is synthesized using a solid-state method. The crystal structure, chemical composition, and morphology of the synthesized material are analyzed using X-ray diffraction, scanning electron microscopy coupled with an energy-dispersive X-ray spectrometer, and Fourier transform infrared (FT-IR) spectroscopy. The color performances of the synthesized material are analyzed using a UV-VIS spectrometer. Finally, the thermochromism exhibited by the powdered samples at high temperatures is investigated. The material exhibits exceptional thermochromic property, transitioning from pink to gray or green in a temperature range of 25–600 ◦C. The change in color is reversible and is dependent on the surrounding temperature and chromium concentration; however, it is independent of the exposure time. This novel property of Cr-doped Al2O3 can be potentially employed in reversible thermochromic sensors that could be used not only for warning users of damage due to overheating when the environmental temperature exceeds certain limits, but also for detecting and monitoring the temperature of various devices, such as aeronautical engine components, hotplates, and furnaces. -
Tropical and Subtropical Greenhouses – a Challenge for New Plastic Films
Tropical and Subtropical Greenhouses – A Challenge for New Plastic Films Silke Hoffmann and Dries Waaijenberg Institute of Environmental and Agricultural Engineering IMAG P.O. Box 43, NL-6700 AA Wageningen The Netherlands Keywords: plastic film, greenhouses, near infrared, far infrared, photoselective material, spectral filter, greenhouse climate Abstract In subtropical and tropical regions it is necessary to get a cooling effect if high irradiation heats up the greenhouse. It is possible to use covering materials, which contain absorbing, reflecting, interference, photo- or thermochromic pigments. Reflecting and coloured films containing absorbing pigments intercept PAR and give a shading effect throughout the year. More intelligent materials with interference pigments are able to reflect parts of the NIR more selectively. Photo- and thermochromic materials are in principle able to keep out NIR only during periods with high irradiation. For the subtropics there is a need for thermic films, which prevent the transmission of FIR during cold nights and so create an insulating effect. INTRODUCTION In tropical regions plant production can take place throughout the year. However, heavy rainfall and wind affect the production in the open field on one hand and high tempertures and high humidity limit the production in greenhouses on the other hand. Adapted greenhouse systems are requested, where the covering has to match the following requirements: - sufficient transmission for photosynthetic active radiation - sufficient cooling effect; - sufficient shading / diffusing effect; - anti-drop condensation; - anti-dust; - no rapid ageing caused by ultraviolet radiation, mechanical, thermal or chemical (by pesticides) degradation; - strength against wind; - tightness against insects; - low costs. In subtropical regions the greenhouse additionally has to prevent heat losses even in unheated greenhouses. -
Mnnh4p2o7-Based Coating for High Temperature Assessment on the Surfaces of Cement Composites
coatings Article MnNH4P2O7-Based Coating for High Temperature Assessment on the Surfaces of Cement Composites Rajagopalan Sam Rajadurai 1, Jong-Han Lee 1,* , Eunsoo Choi 2 and Joo-Won Kang 3 1 Department of Civil Engineering, Inha University, Incheon 22212, Korea; [email protected] 2 Department of Civil Engineering, Hongik University, Seoul 04066, Korea; [email protected] 3 School of Architecture, Yeungnam University, Gyeongsan 38451, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-32-860-7564 Received: 28 February 2020; Accepted: 14 April 2020; Published: 17 April 2020 Abstract: This study examines the implementation of an MnNH4P2O7 (ammonium manganese III pyrophosphate)-based coating on structural elements to obtain temperature information with color changes. Based on the MnNH4P2O7 material, a coating was prepared and deposited on cement mortar surfaces. Heat experiments were then conducted to evaluate the thermochromism on the fabricated samples. The coated samples exhibited a superior irreversible thermochromic property at 400 ◦C with a color change from dark violet to light grayish blue at the heated surface. The color changes were retrieved at each temperature using a digital camera, and the change in color properties was evaluated in the RGB and L*a*b* color spaces using image processing techniques. With increasing temperature from room temperature, the RGB values were almost constant until 200 ◦C. At higher temperatures, the color changes started to accelerate until 400 ◦C. The values showed a 167%, 567%, and 49% increase in R, G, and B values, respectively, at 400 ◦C. In the L*a*b* color space, when the temperature was increased from room temperature to 400 ◦C, the L*a*b* values showed an increase of 211%, a decrease of 94%, and an increase of 78%, respectively. -
Experiment 3* Thermochromism in the Ionic Conductor, Cu2hgi4
Chem 242 Int. Inorg. Chem. UMass-Amherst Experiment 3* Thermochromism in the Ionic Conductor, Cu2HgI4 *This lab taken from “Teaching General Chemistry; A Materials Science Companion,” Eds. Ellis, A.B.; Geselbracht, M.J.; Johnson, B.J.; Lisensky, G.C.; Robinson, W.R.R.; American Chemical Society, 1993 Prelab Reading Unlike most electrical conductors, which conduct electricity by electronic motion, the salt Cu2HgI4 (and the related solid, Ag2HgI4) is a good ionic conductor of electricity at temperatures a little above room temperature, where it undergoes an order-disorder phase change. The compound is easily prepared, and its phase change is observable both by increased conductivity and a color change. Structure and Phase Change The low temperature ordered structure of Cu2HgI4 is shown in Figure 9.20C. Although the overall unit cell is tetragonal, with square bases and rectangular sides, it can be viewed as two fcc cells of iodide ions, with one cube atop the other. The iodide ions are in the fcc unit cells in the same positions as the sulfur atoms in ZnS (sphalerite form, check your text!). All of the Cu+ and Hg2+ cations are in tetrahedral holes of the structure that are formed by the iodide ions (there are two such holes for each iodide), hence three-eighths of these holes will be occupied by the cations) but with a particular ordering (see Figure 9.20). In this low-temperature phase, the solid is brick red. At a temperature of about 67°C, disorder sets in, and the cations are randomly distributed about all of the tetrahedral holes in the structure.