Synuclein Toxicity Using a Caenorhabditis Elegans

Total Page:16

File Type:pdf, Size:1020Kb

Synuclein Toxicity Using a Caenorhabditis Elegans IDENTIFICATION OF NEUROPROTECTIVE GENES AGAINST ALPHA- SYNUCLEIN TOXICITY USING A CAENORHABDITIS ELEGANS PARKINSON DISEASE MODEL by SHUSEI HAMAMICHI A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biological Sciences in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2009 Copyright Shusei Hamamichi 2009 ALL RIGHTS RESERVED ABSTRACT Recent functional analyses of nine gene products linked to familial forms of Parkinson disease (PD) have revealed several cellular mechanisms that are associated with PD pathogenesis. For example, α-synuclein ( α-syn), a primary component of Lewy bodies found in both familial and idiopathic forms of PD, has been shown to cause defects in proteasomal and lysosomal protein degradation machineries and induce mitochondrial/oxidative stress. These findings are further supported by the fact that additional gene products are involved in the same pathways. While these studies have been invaluable to elucidate the etiology of this disease, it has been reported that monogenic forms of PD only account for 5-10% of all PD cases, indicating that multiple genetic susceptibility factors and intrinsic metabolic changes associated with aging may play a significant role. Here we report the use of an organism, Caenorhabditis elegans , to model two central PD pathological features to rapidly identify genetic components that modify α-syn misfolding in body wall muscles and neurodegeneration in DA neurons. We determined that proteins that function in lysosomal protein degradation, signal transduction, vesicle trafficking, and glycolysis, when knocked down by RNAi, enhanced α-syn misfolding. Furthermore, these components, when overexpressed, rescued DA neurons from α-syn-induced neurodegeneration, and several of them have been validated using mammalian system. Taken together, this study represents a novel set of gene products that are putative genetic susceptibility loci and potential therapeutic targets for PD. ii LIST OF ABBREVIATIONS AND SYMBOLS 6-OHDA 6-Hydroxydopamine AD Alzheimer disease ADE Anterior deirid neuron bp Base pair °C Celsius cAMP Cyclic adenosine monophosphate cDNA Complementary DNA CEP Cephalic neuron cGMP Cyclic guanosine monophosphate COR C-terminal of Roc D2 Dopamine 2 D3 Dopamine 3 DA Dopamine DEPC Diethylpyrocarbonate DNA Deoxyribonucleic acid DOG 2-Deoxyglucose dsRNA Double-stranded RNA E1 Ubiquitin-activating enzyme E2 Ubiquitin-conjugating enzyme iii E3 Ubiquitin ligase ER Endoplasmic reticulum ERAD Endoplasmic reticulum-associated degradation FRAP Fluorescence recovery after photobleaching GAL4 Galactose metabolism 4 GFP Green fluorescent protein GO Gene ontology HD Huntington disease HMG-CoA 3-Hydroxy-3-methyl-glutaryl-Coenzyme A hr Hour IPTG Isopropyl β-D-thiogalactoside kDa Kilodalton KOG Eukaryotic orthologous group L3 Larval stage 3 L4 Larval stage 4 LB Luria-Bertani L-DOPA L-3,4-Dihydroxyphenylalanine MPP+ 1-Methyl-4-phenylpyridinium MPTP 1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine mRNA messenger RNA µg Microgram iv µl Microliter miRNA MicroRNA mg Milligram ml Milliliter mM Millimolar MAPK Mitogen-activated protein kinase MAPKK Mitogen-activated protein kinase kinase MAPKKK Mitogen-activated protein kinase kinase kinase n/a Not applicable NGM Nematode growth medium PARK Parkinson disease gene PCR Polymerase chain reaction PD Parkinson disease PDE Posterior deirid neuron RING Really interesting new gene RNA Ribonucleic acid RNAi RNA interference Roc Ras of complex ROS Reactive oxygen species rpm Revolutions per minute RT Room temperature (25 °C) v RT-PCR Reverse transcriptase polymerase chain reaction SAGE Serial analysis of gene expression SD Standard deviation SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis SNP Single nucleotide polymorphism UPR Unfolded protein response UPS Ubiquitin-proteasome system UTR Untranslated region C. elegans Proteins AGE-1 Aging alteration 1 (phosphoinositide 3-kinase) ATGR-7 Autophagy 7 BAR-1 Beta-catenin/armadillo related 1 CDK-5 Cyclin dependent kinase 5 CED-3 Cell death abnormality 3 (caspase) CLK-1 Clock 1 (demethoxyubiquinone hydroxylase) CMK-1 Calcium/calmodulin-dependent protein kinase 1 CSNK-1 Casein kinase 1 DAF-2 Abnormal dauer formation 2 (insulin receptor) DAF-16 Abnormal dauer formation 16 (forkhead Box 01A) DAT-1 Dopamine transporter 1 vi DJR-1 Oncogene DJ-1 DJR-2 Oncogene DJ-1 DOP-2 Dopamine receptor 2 (D2-like receptor) DPY-1 Dumpy 1 (collagen) DPY-5 Dumpy 5 (collagen) EAT-2 Eating 2 (nicotinic acetylcholine receptor) GPI-1 Glucose-6-phosphate isomerase 1 HRD-1 HRD 1 HRDL-1 HRD-like 1 HSF-1 Heat-shock factor 1 ISP-1 Rieske iron sulphur protein LRK-1 Leucine-rich repeats, Ras-like domain, kinase 1 (LRRK2) MOM-4 More of MS 4 (MAPKKK7) NHR-6 Nuclear hormone receptor family 6 (NURR1) NPR-1 Neuropeptide receptor family 1 OBR-1 Oxysterol binding protein 1 PDR-1 Parkinson’s disease related 1 (parkin) PINK-1 PTEN-induced putative kinase 1 PMK-1 p38 MAP kinase ROL-6 Roller 6 (collagen) SMF-1 Yeast SMF homolog (divalent metal transporter) vii TAG-278 Temporary assigned gene 278 TAP-1 TAK kinase/MOM-4 binding protein TOR-2 Torsin 2 (torsinA) TRX-1 Thioredoxin 1 UNC-32 Uncoordinated 32 (vacuolar proton-translocating ATPase) UNC-51 Uncoordinated 51 (unc-51-like kinase 2) UNC-54 Uncoordinated 54 (myosin class II heavy chain) UNC-75 Uncoordinated 75 (CELF/BrunoL protein) VPS-41 Vacuolar protein sorting 41 YKT-6 Yeast YKT6 homolog (v-SNARE) Mammalian Proteins α-Syn Alpha synuclein ALDOA Aldolase A AMF Autocrine motility factor AMFR Autocrine motility factor receptor Amyloid-β Amyloid beta ASK1 Apoptosis signal-regulating kinase 1 ATG7 Autophagy 7 ATP13A2 ATPase, Type 13A2 BAG5 BCL2-associated athanogene 5 viii CSNK1G3 Casein kinase 1, gamma-3 CHIP C-terminus of HSC70-interacting protein Daxx Death-associated protein 6 DJ-1 Oncogene DJ-1 ERV29 Surfeit 4 FBXW7 F-box and WD40 domain protein 7 GAIP G protein alpha-interacting protein GAPDH Glyceraldehyde-3-phosphate dehydrogenase GBA Glucocerebrosidase GIGYF2 GRB10-interacting GYF protein 2 GIPC GAIP C-terminus-interacting protein GPI Glucose-6-phosphate isomerase HDAC6 Histone deacetylase 6 HTRA2 HTRA serine peptidase 2 HSF1 Heat-shock factor 1 HSP70 Heat-shock protein, 70 kDa HSPC117 Hypothetical protein 117 IgG Immunoglobulin G INSR Insulin receptor LRRK2 Leucine-rich repeat kinase 2 NRB54 Nuclear RNA-binding protein, 54 kDa ix p38 Mitogen-activated protein kinase p38 Pael receptor Parkin-associated endothelin receptor PDE9A Phosphodiesterase 9A PI3K Phosphoinositide 3-kinase PINK1 PTEN-induced putative kinase 1 PLK2 Polo-like kinase 2 PRKN Parkin PSF Polypyrimidine tract-binding protein-associated splicing factor Q82 Polyglutamine 82 containing protein RAB1A Ras-associated protein 1A RAB3A Ras-associated protein 3A RAB8A Ras-associated protein 8A RGS Regulators of G protein signaling SEC22 Secretion deficient 22 SNCA Synuclein, alpha SYVN1 Synoviolin 1 Ub Ubiquitin Ubch7 Ubiquitin-conjugating enzyme 7 Ubch8 Ubiquitin-conjugating enzyme 8 UCHL Ubiquitin C-terminal hydrolase UCHL1 Ubiquitin C-terminal hydrolase 1 x USP10 Ubiquitin-specific protein 10 VMAT2 Vesicular monoamine transporter 2 VPS41 Vacuolar protein sorting 41 XIAP X-linked inhibitor of apoptosis xi ACKNOWLEDGMENTS First and foremost, I would like to thank Drs. Guy and Kim Caldwell, and the former and present members of the Caldwell lab. Among them, I wish to especially recognize highly motivated undergraduate students who undertook the enormous challenge of working in the PD research field. Most notably, I want to thank Renee Rivas, Adam “Deuce” Knight, Susan DeLeon, and Paige Dexter. Without their help and contribution, I guarantee that none of our projects would have worked as smoothly as they did. Furthermore, I want to thank Cody Locke for making science intellectually stimulating. Among the former and present non-undergraduates, I would like to acknowledge Dr. Laura Berkowitz, Michelle Norris, Lindsay Faircloth, and Jenny Schieltz for their assistance in many untold and underappreciated areas of research. I also want to thank the usual Wilhagans gang including Jafa Armagost, Adam “Ace” Harrington, and AJ Burdette for making my life as a graduate student more enjoyable and fulfilling. I wish all of them good luck for their future endeavors. Outside of the Caldwell lab, I would like to thank my graduate committee members, Dr. Janis O’Donnell, Dr. Katrina Ramonell, and Dr. Jianhua Zhang for their continuous support and encouragement. Furthermore, I wish to acknowledge other faculty members and staff of the Department of Biological Sciences including Dr. Martha Powell, Dr. Harriett Smith-Somerville, and many others for their assistance whenever I xii needed it and their enthusiasm toward my research. It has been a pleasure sharing research ideas and data annually, and receiving tremendously kind responses from all of you. I also would like to express my gratitude to research collaborators, Dr. Susan Lindquist (Whitehead Institute/MIT), Dr. David Standaert (UAB), Dr. Ted Dawson (Johns Hopkins University), and Dr. Antonio Miranda Vizuete (Universidad Pablo de Olavide). Thank you so much for allowing me to work on multiple influential research projects. Most notably, I would like to thank Dr. Joshua Kritzer and Dr. Chris Pacheco, both post-docs at the Lindquist lab, for believing in me. Outside of the current research world, I want to thank my parents and my brother who are currently in Japan as well as my former PIs, Dr. Hideo Nishigori (Teikyo University) and Dr. Mike Shipley (Midwestern State University). Furthermore, I wish to recognize all of my friends from all over the world. Thank you for our friendship and understanding of what we wish to achieve in our lives. I am who I am, and I do what I do because of you. Lastly, I would like to acknowledge Sylvester Stallone for making a classic movie, Rocky, the ultimate source of my inspiration while working on my PNAS article, presentation slides used for my post-doc interview at Whitehead Institute, and this current dissertation. I only wanted to go the distance, but I had never thought I would have an opportunity to go to Boston.
Recommended publications
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Binnenwerk Cindy Postma.Indd
    CHAPTER 6 Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression Gut 2009, 58: 79-89 Beatriz Carvalho Cindy Postma Sandra Mongera Erik Hopmans Sharon Diskin Mark A. van de Wiel Wim van Criekinge Olivier Thas Anja Matthäi Miguel A. Cuesta Jochim S. Terhaar sive Droste Mike Craanen Evelin Schröck Bauke Ylstra Gerrit A. Meijer 104 | Chapter 6 Abstract Objective: This study aimed to identify the oncogenes at 20q involved in colorectal adenoma to carcinoma progression by measuring the effect of 20q gain on mRNA expression of genes in this amplicon. Methods: Segmentation of DNA copy number changes on 20q was performed by array CGH in 34 non-progressed colorectal adenomas, 41 progressed adenomas (i.e. adenomas that present a focus of cancer) and 33 adenocarcinomas. Moreover, a robust analysis of altered expression of genes in these segments was performed by microarray analysis in 37 adenomas and 31 adenocarcinomas. Protein expression was evaluated by immunohistochemistry on tissue microarrays. Results: The genes C20orf24, AURKA, RNPC1, TH1L, ADRM1, C20orf20 and TCFL5, mapping at 20q were signifi cantly overexpressed in carcinomas compared to adenomas as consequence of copy number gain of 20q. Conclusion: This approach revealed C20orf24, AURKA, RNPC1, TH1L, ADRM1, C20orf20 and TCFL5 genes to be important in chromosomal instability-related adenoma to carcinoma progression. These genes therefore may serve as highly specifi c biomarkers for colorectal cancer with potential clinical applications. Putative oncogenes at chromosome 20q in colorectal carcinogenesis | 105 Introduction The majority of cancers are epithelial in origin and arise through a stepwise progression from normal cells, through dysplasia, into malignant cells that invade surrounding tissues and have metastatic potential.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Two Locus Inheritance of Non-Syndromic Midline Craniosynostosis Via Rare SMAD6 and 4 Common BMP2 Alleles 5 6 Andrew T
    1 2 3 Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and 4 common BMP2 alleles 5 6 Andrew T. Timberlake1-3, Jungmin Choi1,2, Samir Zaidi1,2, Qiongshi Lu4, Carol Nelson- 7 Williams1,2, Eric D. Brooks3, Kaya Bilguvar1,5, Irina Tikhonova5, Shrikant Mane1,5, Jenny F. 8 Yang3, Rajendra Sawh-Martinez3, Sarah Persing3, Elizabeth G. Zellner3, Erin Loring1,2,5, Carolyn 9 Chuang3, Amy Galm6, Peter W. Hashim3, Derek M. Steinbacher3, Michael L. DiLuna7, Charles 10 C. Duncan7, Kevin A. Pelphrey8, Hongyu Zhao4, John A. Persing3, Richard P. Lifton1,2,5,9 11 12 1Department of Genetics, Yale University School of Medicine, New Haven, CT, USA 13 2Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA 14 3Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA 15 4Department of Biostatistics, Yale University School of Medicine, New Haven, CT, USA 16 5Yale Center for Genome Analysis, New Haven, CT, USA 17 6Craniosynostosis and Positional Plagiocephaly Support, New York, NY, USA 18 7Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA 19 8Child Study Center, Yale University School of Medicine, New Haven, CT, USA 20 9The Rockefeller University, New York, NY, USA 21 22 ABSTRACT 23 Premature fusion of the cranial sutures (craniosynostosis), affecting 1 in 2,000 24 newborns, is treated surgically in infancy to prevent adverse neurologic outcomes. To 25 identify mutations contributing to common non-syndromic midline (sagittal and metopic) 26 craniosynostosis, we performed exome sequencing of 132 parent-offspring trios and 59 27 additional probands.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • WO 2017/147196 Al 31 August 2017 (31.08.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/147196 Al 31 August 2017 (31.08.2017) P O P C T (51) International Patent Classification: Kellie, E. [US/US]; 70 Lanark Road, Maiden, MA 02148 C12Q 1/68 (2006.01) (US). COLE, Michael, B. [US/US]; 233 1 Eunice Street, Berkeley, CA 94708 (US). YOSEF, Nir [IL/US]; 1520 (21) International Application Number: Laurel Ave., Richmond, CA 94805 (US). GAYO, En¬ PCT/US20 17/0 18963 rique, Martin [ES/US]; 115 Peterborough Street, Boston, (22) International Filing Date: MA 022 15 (US). OUYANG, Zhengyu [CN/US]; 15 Vas- 22 February 2017 (22.02.2017) sar Street, Medford, MA 02155 (US). YU, Xu [CN/US]; 6 Whittier Place, Apt. 16j, Boston, MA 02 114 (US). (25) Filing Language: English (74) Agents: KOWALSKI, Thomas, J. et al; Vedder Price English (26) Publication Language: P.C., 1633 Broadway, New York, NY 1001 9 (US). (30) Priority Data: (81) Designated States (unless otherwise indicated, for every 62/298,349 22 February 2016 (22.02.2016) US kind of national protection available): AE, AG, AL, AM, (71) Applicants: MASSACHUSETTS INSTITUTE OF AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, TECHNOLOGY [US/US]; 77 Massachusetts Ave., Cam BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, bridge, MA 02139 (US). THE REGENTS OF THE UNI¬ DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, VERSITY OF CALIFORNIA [US/US]; 1111 Franklin HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, Street, 12th Floor, Oakland, CA 94607 (US).
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Predicting Clinical Response to Treatment with a Soluble Tnf-Antagonist Or Tnf, Or a Tnf Receptor Agonist
    (19) TZZ _ __T (11) EP 2 192 197 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 02.06.2010 Bulletin 2010/22 C12Q 1/68 (2006.01) (21) Application number: 08170119.5 (22) Date of filing: 27.11.2008 (84) Designated Contracting States: (72) Inventor: The designation of the inventor has not AT BE BG CH CY CZ DE DK EE ES FI FR GB GR yet been filed HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR (74) Representative: Habets, Winand Designated Extension States: Life Science Patents AL BA MK RS PO Box 5096 6130 PB Sittard (NL) (71) Applicant: Vereniging voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek en Patiëntenzorg 1081 HV Amsterdam (NL) (54) Predicting clinical response to treatment with a soluble tnf-antagonist or tnf, or a tnf receptor agonist (57) The invention relates to methods for predicting a clinical response to a therapy with a soluble TNF antagonist, TNF or a TNF receptor agonist and a kit for use in said methods. EP 2 192 197 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 192 197 A1 Description [0001] The invention relates to methods for predicting a clinical response to a treatment with a soluble TNF antagonist, with TNF or a TNF receptor agonist using expression levels of genes of the Type I INF pathway and a kit for use in said 5 methods. In another aspect, the invention relates to a method for evaluating a pharmacological effect of a treatment with a soluble TNF antagonist, TNF or a TNF receptor agonist.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Consequences of Mutations in the Genes of the ER Export Machinery COPII in Vertebrates
    Biomedical Sciences Publications Biomedical Sciences 1-22-2020 Consequences of mutations in the genes of the ER export machinery COPII in vertebrates Chung-Ling Lu Iowa State University, [email protected] Jinoh Kim Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/bms_pubs Part of the Cellular and Molecular Physiology Commons, Molecular Biology Commons, and the Molecular Genetics Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ bms_pubs/81. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Biomedical Sciences at Iowa State University Digital Repository. It has been accepted for inclusion in Biomedical Sciences Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Consequences of mutations in the genes of the ER export machinery COPII in vertebrates Abstract Coat protein complex II (COPII) plays an essential role in the export of cargo molecules such as secretory proteins, membrane proteins, and lipids from the endoplasmic reticulum (ER). In yeast, the COPII machinery is critical for cell viability as most COPII knockout mutants fail to survive. In mice and fish, homozygous knockout mutants of most COPII genes are embryonic lethal, reflecting the essentiality of the COPII machinery in the early stages of vertebrate development. In humans, COPII mutations, which are often hypomorphic, cause diseases having distinct clinical features. This is interesting as the fundamental cellular defect of these diseases, that is, failure of ER export, is similar.
    [Show full text]