North Shore Scenic Drive Corridor Management Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lake Superior South Watershed Monitoring and Assessment Report
Summary Monitoring and Assessment Lake Superior-South Watershed Why is it The undeveloped nature of the Lake Superior-South Watershed, along Minnesota’s North Shore within the Lake Superior Basin, is undoubtedly a key reason for the high important? water quality found in most parts of the watershed. This watershed covers 624 square miles of St. Louis and Lake counties, with nearly half of the land under state ownership (42%). Almost 90% is forested. The watershed is home to several small cities and supports diverse species of wildlife and fish populations. It contains 1,067 miles of streams of which 800 are designated as coldwater. Its immaculate waters produce some of the state’s highest-quality stream trout fisheries. The watershed is a valuable resource for drinking water, habitat for aquatic life, recreational opportunities and timber production. Key issues Overall, water quality conditions are good and can be attributed to the forest and wetlands that dominate the watershed’s land cover. Many stream segments have exceptional biological, chemical, and physical characteristics and should be considered for additional protections to preserve their high quality. The top five stream resources include: McCarthy Creek, Unnamed Creek (West Branch Little Knife River), Gooseberry River, Stewart River and Captain Jacobson Creek. Problem areas do occur but are typically limited to the lower reaches of streams where stressors from land use practices may accumulate. Impairments are likely a function of both natural and human-caused stressors. Historical and recent forest cover changes, along with urban/industrial development, draining of wetlands and damming of streams are likely stressors affecting biological communities within the watershed. -
Ecological Regions of Minnesota: Level III and IV Maps and Descriptions Denis White March 2020
Ecological Regions of Minnesota: Level III and IV maps and descriptions Denis White March 2020 (Image NOAA, Landsat, Copernicus; Presentation Google Earth) A contribution to the corpus of materials created by James Omernik and colleagues on the Ecological Regions of the United States, North America, and South America The page size for this document is 9 inches horizontal by 12 inches vertical. Table of Contents Content Page 1. Introduction 1 2. Geographic patterns in Minnesota 1 Geographic location and notable features 1 Climate 1 Elevation and topographic form, and physiography 2 Geology 2 Soils 3 Presettlement vegetation 3 Land use and land cover 4 Lakes, rivers, and watersheds; water quality 4 Flora and fauna 4 3. Methods of geographic regionalization 5 4. Development of Level IV ecoregions 6 5. Descriptions of Level III and Level IV ecoregions 7 46. Northern Glaciated Plains 8 46e. Tewaukon/BigStone Stagnation Moraine 8 46k. Prairie Coteau 8 46l. Prairie Coteau Escarpment 8 46m. Big Sioux Basin 8 46o. Minnesota River Prairie 9 47. Western Corn Belt Plains 9 47a. Loess Prairies 9 47b. Des Moines Lobe 9 47c. Eastern Iowa and Minnesota Drift Plains 9 47g. Lower St. Croix and Vermillion Valleys 10 48. Lake Agassiz Plain 10 48a. Glacial Lake Agassiz Basin 10 48b. Beach Ridges and Sand Deltas 10 48d. Lake Agassiz Plains 10 49. Northern Minnesota Wetlands 11 49a. Peatlands 11 49b. Forested Lake Plains 11 50. Northern Lakes and Forests 11 50a. Lake Superior Clay Plain 12 50b. Minnesota/Wisconsin Upland Till Plain 12 50m. Mesabi Range 12 50n. Boundary Lakes and Hills 12 50o. -
Inventory of Aquatic and Semiaquatic Coleoptera from the Grand Portage Indian Reservation, Cook County, Minnesota
The Great Lakes Entomologist Volume 46 Numbers 1 & 2 - Spring/Summer 2013 Numbers Article 7 1 & 2 - Spring/Summer 2013 April 2013 Inventory of Aquatic and Semiaquatic Coleoptera from the Grand Portage Indian Reservation, Cook County, Minnesota David B. MacLean Youngstown State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation MacLean, David B. 2013. "Inventory of Aquatic and Semiaquatic Coleoptera from the Grand Portage Indian Reservation, Cook County, Minnesota," The Great Lakes Entomologist, vol 46 (1) Available at: https://scholar.valpo.edu/tgle/vol46/iss1/7 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. MacLean: Inventory of Aquatic and Semiaquatic Coleoptera from the Grand Po 104 THE GREAT LAKES ENTOMOLOGIST Vol. 46, Nos. 1 - 2 Inventory of Aquatic and Semiaquatic Coleoptera from the Grand Portage Indian Reservation, Cook County, Minnesota David B. MacLean1 Abstract Collections of aquatic invertebrates from the Grand Portage Indian Res- ervation (Cook County, Minnesota) during 2001 – 2012 resulted in 9 families, 43 genera and 112 species of aquatic and semiaquatic Coleoptera. The Dytisci- dae had the most species (53), followed by Hydrophilidae (20), Gyrinidae (14), Haliplidae (8), Chrysomelidae (7), Elmidae (3) and Curculionidae (5). The families Helodidae and Heteroceridae were each represented by a single spe- cies. Seventy seven percent of species were considered rare or uncommon (1 - 10 records), twenty percent common (11 - 100 records) and only three percent abundant (more than 100 records). -
Indiana Glaciers.PM6
How the Ice Age Shaped Indiana Jerry Wilson Published by Wilstar Media, www.wilstar.com Indianapolis, Indiana 1 Previiously published as The Topography of Indiana: Ice Age Legacy, © 1988 by Jerry Wilson. Second Edition Copyright © 2008 by Jerry Wilson ALL RIGHTS RESERVED 2 For Aaron and Shana and In Memory of Donna 3 Introduction During the time that I have been a science teacher I have tried to enlist in my students the desire to understand and the ability to reason. Logical reasoning is the surest way to overcome the unknown. The best aid to reasoning effectively is having the knowledge and an understanding of the things that have previ- ously been determined or discovered by others. Having an understanding of the reasons things are the way they are and how they got that way can help an individual to utilize his or her resources more effectively. I want my students to realize that changes that have taken place on the earth in the past have had an effect on them. Why are some towns in Indiana subject to flooding, whereas others are not? Why are cemeteries built on old beach fronts in Northwest Indiana? Why would it be easier to dig a basement in Valparaiso than in Bloomington? These things are a direct result of the glaciers that advanced southward over Indiana during the last Ice Age. The history of the land upon which we live is fascinating. Why are there large granite boulders nested in some of the fields of northern Indiana since Indiana has no granite bedrock? They are known as glacial erratics, or dropstones, and were formed in Canada or the upper Midwest hundreds of millions of years ago. -
Final Report
2011 Project Abstract For the Period Ending June 30, 2014 PROJECT TITLE: Scientific and Natural Areas Acquisition and Restoration PROJECT MANAGER: Margaret (Peggy) Booth AFFILIATION: DNR Scientific & Natural Area Program MAILING ADDRESS: 500 Lafayette Rd N, Box 25 CITY/STATE/ZIP: St. Paul, MN 55155-4025 PHONE: 651-259-5088 E-MAIL: [email protected] WEBSITE: www.mndnr.gov/snas FUNDING SOURCE: Environment and Natural Resources Trust Fund) LEGAL CITATION: M.L. 2011, First Special Session, Chp. 2, Art.3, Sec. 2, Subd. 04e APPROPRIATION AMOUNT: $1,640,000 Overall Project Outcome and Results The biologically significant 900-acre Badoura Jack Pine Forest SNA was acquired in part through appropriation. Twenty-two conservation easement baseline property reports at 11 SNAs are completed. The SNA Strategic Land Protection Plan has been completed which prioritizes places of ecological importance for protection as SNAs and by partners. Habitat restoration and enhancement actions are increasing the quality of habitat on SNAs through achieving: restoration of about 30 acres at 4 SNAs; woody invasive species control on 610 acres at 19 SNAs, herbaceous invasive species treatment on 487 acres at 33 SNAs, and installation of invasives control bootbrush kiosks at 6 SNAs; about 36 miles of burn breaks at 21 SNAs and completion of 1,190 acres of prescribed burns at 25 SNAs; and site development work (e.g. entry and boundary signs, new gates, and site cleanup) at 35 SNAs. Conservation Corps Minnesota was involved in 51 of these projects. Substantial monitoring was completed of pollinators at 10 SNAs, of snakes at 1 SNA, and of native plant communities at 2 SNAs. -
St. Louis River Natural Area to the DULUTH NATURAL AREAS PROGRAM DATE: 3/7/19
NOMINATION OF THE St. Louis River Natural Area TO THE DULUTH NATURAL AREAS PROGRAM DATE: 3/7/19 Nominated by: City of Duluth Parks & Recreation Division This report was produced by the Minnesota Land Trust under contract to the City of Duluth and funded by U.S. Environmental Protection Agency Great Lakes Restoration Initiative grant number GL00E02202. Many organizations and individuals participated in a variety of ways as collaborators to the report. St. Louis River Natural Area Nomination DRAFT 3/7/19 Table of Contents Executive Summary ..................................................................................................................... iii Introduction ................................................................................................................................1 Eligibility ......................................................................................................................................2 − Land Ownership ......................................................................................................................... 2 − Scientific Criteria ........................................................................................................................ 3 References ................................................................................................................................. 10 Figures .......................................................................................................................................12 Appendices ................................................................................................................................36 -
Quarrernary GEOLOGY of MINNESOTA and PARTS of ADJACENT STATES
UNITED STATES DEPARTMENT OF THE INTERIOR Ray Lyman ,Wilbur, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director P~ofessional Paper 161 . QUArrERNARY GEOLOGY OF MINNESOTA AND PARTS OF ADJACENT STATES BY FRANK LEVERETT WITH CONTRIBUTIONS BY FREDERICK w. SARDE;30N Investigations made in cooperation with the MINNESOTA GEOLOGICAL SURVEY UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1932 ·For sale by the Superintendent of Documents, Washington, D. C. CONTENTS Page Page Abstract ________________________________________ _ 1 Wisconsin red drift-Continued. Introduction _____________________________________ _ 1 Weak moraines, etc.-Continued. Scope of field work ____________________________ _ 1 Beroun moraine _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 47 Earlier reports ________________________________ _ .2 Location__________ _ __ ____ _ _ __ ___ ______ 47 Glacial gathering grounds and ice lobes _________ _ 3 Topography___________________________ 47 Outline of the Pleistocene series of glacial deposits_ 3 Constitution of the drift in relation to rock The oldest or Nebraskan drift ______________ _ 5 outcrops____________________________ 48 Aftonian soil and Nebraskan gumbotiL ______ _ 5 Striae _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 48 Kansan drift _____________________________ _ 5 Ground moraine inside of Beroun moraine_ 48 Yarmouth beds and Kansan gumbotiL ______ _ 5 Mille Lacs morainic system_____________________ 48 Pre-Illinoian loess (Loveland loess) __________ _ 6 Location__________________________________ -
More Than Just a Lake! TOPIC Great Lake Drainage Basins AUDIENCE Grades 1-6; 10-30 Students
More Than Just a Lake! TOPIC Great Lake drainage basins AUDIENCE Grades 1-6; 10-30 students SETTING By creating a map of the rivers flowing into your Great Lake, Large, open indoor space is learn how rivers form a watershed. required GOAL To understand the concept of a drainage basin or watershed, and how that concept relates to the BACKGROUND around the lake as gravity pulls water local Great Lake watershed. All lakes and rivers have a set area to the lowest point. Water draining of land that water drains into them to the lowest common point is the OBJECTIVES • Students will understand the from, called the “watershed” or simplest definition of a watershed. defining role that rivers have “drainage basin.” Drainage basins are in watershed activity important environmentally because 2. Introduction to the model • Students will be able to state whether they live inside or whatever happens within the basin of watershed outside the drainage basin of the lake can happen to the lake itself. Students gather around the “shore” their Great Lake Toxic substances spilled or placed of the lake. Explain that the blue • Older students will be able to identify the river drainage on the land or in watershed rivers yarn represents rivers. With younger basin in which they live can end up in the lake. See the Great students, demonstrate how one river Lakes Watershed Fact Sheets for ad- might look on the map as it flows MATERIALS ditional information about your local into your Great Lake. • Large floor map of your Great Lake (or an outline on the watershed. -
Table of Contents. Letter of Transmittal. Officers 1910
TWELFTH REPORT OFFICERS 1910-1911. OF President, F. G. NOVY, Ann Arbor. THE MICHIGAN ACADEMY OF SCIENCE Secretary-Treasurer, GEO. D. SHAFER, East Lansing. Librarian, A. G. RUTHVEN, Ann Arbor. CONTAINING AN ACCOUNT OF THE ANNUAL MEETING VICE-PRESIDENTS. HELD AT Agriculture, CHARLES E. MARSHALL, East Lansing. Geography and Geology, W. H. SHERZER, Ypsilanti. ANN ARBOR, MARCH 31, APRIL 1 AND 2, 1910. Zoology, A. S. PEARSE, Ann Arbor. Botany, C. H. KAUFFMAN, Ann Arbor. PREPARED UNDER THE DIRECTION OF THE Sanitary and Medical Science, GUY KIEFER, Detroit. COUNCIL Economics, H. S. SMALLEY, Ann Arbor. BY PAST-PRESIDENTS. GEO. D. SHAFER DR. W. J. BEAL, East Lansing. Professor W. H. SHERZER, Ypsilanti. BRYANT WALKER, ESQ. Detroit. BY AUTHORITY Professor V. M. SPALDING, Tucson, Arizona. LANSING, MICHIGAN DR. HENRY B. BAKER, Holland. WYNKOOP HALLENBECK CRAWFORD CO., STATE PRINTERS Professor JACOB REIGHARD, Ann Arbor. 1910 Professor CHARLES E. BARR, Albion. Professor V. C. VAUGHAN, Ann Arbor. Professor F. C. NEWCOMBE, Ann Arbor. TABLE OF CONTENTS. DR. A. C. LANE, Tuft's College, Mass. Professor W. B. BARROWS, East Lansing. DR. J. B. POLLOCK, Ann Arbor. Letter of Transmittal .......................................................... 1 Professor M. H. W. JEFFERSON, Ypsilanti. DR. CHARLES E. MARSHALL, East Lansing. Officers for 1910-1911. ..................................................... 1 Professor FRANK LEVERETT, Ann Arbor. Life of William Smith Sayer. .............................................. 1 COUNCIL. Life of Charles Fay Wheeler.............................................. 2 The Council is composed of the above named officers Papers published in this report: and all Resident Past-Presidents. President's Address—Outline of the History of the Great Lakes, Frank Leverett.......................................... 3 On the Glacial Origin of the Huronian Rocks of WILLIAM SMITH SAYER. -
The Handbook of Environmental Chemistry
The Handbook of Environmental Chemistry Editors-in-Chief:O.Hutzinger·D.Barceló·A.Kostianoy Volume 5 Water Pollution Part T Advisory Board: D.Barceló·P.Fabian·H.Fiedler·H.Frank·J.P.Giesy·R.A.Hites M. A. K. Khalil · D. Mackay · A. H. Neilson · J. Paasivirta · H. Parlar S. H. Safe · P.J. Wangersky The Handbook of Environmental Chemistry Recently Published and Forthcoming Volumes Degradation of Synthetic Chemicals Persistent Organic Pollutants in the Environment in the Great Lakes VolumeEditor:A.Boxall Volume Editor: R. A. Hites Vol. 2/P, 2009 Vol. 5/N, 2006 Contaminated Sediments Antifouling Paint Biocides Volume Editors: T. A. Kassim and D. Barceló VolumeEditor:I.Konstantinou Vol. 5/T, 2009 Vol. 5/O, 2006 Environmental Specimen Banking Estuaries Volume Editors: S. A. Wise and P.P.R. Becker VolumeEditor:P.J.Wangersky Vol. 3/S, 2009 Vol. 5/H, 2006 Polymers: Chances and Risks The Caspian Sea Environment Volume Editors: P. Eyerer, M. Weller Volume Editors: A. Kostianoy and A. Kosarev and C. Hübner Vol. 5/P, 2005 Vol. 3/V, 2009 Marine Organic Matter: Biomarkers, The Black Sea Environment Isotopes and DNA Volume Editors: A. Kostianoy and A. Kosarev Volume Editor: J. K. Volkman Vol. 5/Q, 2008 Vol. 2/N, 2005 Emerging Contaminants from Industrial and Environmental Photochemistry Part II Municipal Waste Volume Editors: P. Boule, D. Bahnemann Removal Technologies and P. Robertson Volume Editors: D. Barceló and M. Petrovic Vol. 2/M, 2005 Vol. 5/S/2, 2008 Air Quality in Airplane Cabins Emerging Contaminants from Industrial and and Similar Enclosed Spaces Municipal Waste VolumeEditor:M.B.Hocking Occurrence, Analysis and Effects Vol. -
Acid Rain and Transported Air Pollutants: Implications for Public Policy
Acid Rain and Transported Air Pollutants: Implications for Public Policy May 1984 NTIS order #PB84-222967 Recommended Citation: Acid Rain and Transported Air Pollutants: Implications for Public Policy (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA-O-204, June 1984). Library of Congress Catalog Card Number 84-601073 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, D.C. 20402 Foreword Transported air pollutants have been the topic of much debate during the Clean Air Act delibera- tions of the 97th and 98th Congresses. The current controversy over acid rain—the most publicized example of transported pollutants—focuses on the risks to our environment and ourselves versus the costs of cleanup. Since 1980, the committees responsible for reauthorizing the Clean Air Act—the House Committee on Energy and Commerce and the Senate Committee on Environment and Public Works—have called on OTA many times for information about the movements, fate, and effects of airborne pollutants, the risks that these transported air pollutants pose to sensitive resources, and the likely costs of various proposals to control them. Over the course of the debate, OTA has provided extensive testimony and staff memoranda to the requesting committees, and published a two-volume technical analysis, The Regional Implications of Transported Air Pollutants, in July 1982. This report synthesizes OTA’s technical analyses of acid rain and other transported pollut- ants, and presents policy alternatives for congressional consideration. OTA’s work over the last several years has enabled us to forecast with reasonable accuracy the cost of controlling pollutant emissions, and, for each of the many pending legislative proposals, who will pay those costs. -
Water Quality Trends at Minnesota Milestone Sites
Water Quality Trends for Minnesota Rivers and Streams at Milestone Sites Five of seven pollutants better, two getting worse June 2014 Author The MPCA is reducing printing and mailing costs by using the Internet to distribute reports and David Christopherson information to wider audience. Visit our website for more information. MPCA reports are printed on 100% post- consumer recycled content paper manufactured without chlorine or chlorine derivatives. Minnesota Pollution Control Agency 520 Lafayette Road North | Saint Paul, MN 55155-4194 | www.pca.state.mn.us | 651-296-6300 Toll free 800-657-3864 | TTY 651-282-5332 This report is available in alternative formats upon request, and online at www.pca.state.mn.us . Document number: wq-s1-71 1 Summary Long-term trend analysis of seven different water pollutants measured at 80 locations across Minnesota for more than 30 years shows consistent reductions in five pollutants, but consistent increases in two pollutants. Concentrations of total suspended solids, phosphorus, ammonia, biochemical oxygen demand, and bacteria have significantly decreased, but nitrate and chloride concentrations have risen, according to data from the Minnesota Pollution Control Agency’s (MPCA) “Milestone” monitoring network. Recent, shorter-term trends are consistent with this pattern, but are less pronounced. Pollutant concentrations show distinct regional differences, with a general pattern across the state of lower levels in the northeast to higher levels in the southwest. These trends reflect both the successes of cleaning up municipal and industrial pollutant discharges during this period, and the continuing challenge of controlling the more diffuse “nonpoint” polluted runoff sources and the impacts of increased water volumes from artificial drainage practices.