Cessation of Grand Cycle Deposition in the Framework Of

Total Page:16

File Type:pdf, Size:1020Kb

Cessation of Grand Cycle Deposition in the Framework Of University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-1997 Cessation of Grand Cycle Deposition in the Framework of Passive Margin Evolution: Controlling Mechanisms and Effects on Carbonate Deposition and Diagenesis, Cambrian Maynardville Formation, Southern Appalachians Bosiljka Glumac University of Tennessee - Knoxville Recommended Citation Glumac, Bosiljka, "Cessation of Grand Cycle Deposition in the Framework of Passive Margin Evolution: Controlling Mechanisms and Effects on Carbonate Deposition and Diagenesis, Cambrian Maynardville Formation, Southern Appalachians. " PhD diss., University of Tennessee, 1997. https://trace.tennessee.edu/utk_graddiss/2644 This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Bosiljka Glumac entitled "Cessation of Grand Cycle Deposition in the Framework of Passive Margin Evolution: Controlling Mechanisms and Effects on Carbonate Deposition and Diagenesis, Cambrian Maynardville Formation, Southern Appalachians." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Geology. Kenneth R. Walker, Major Professor We have read this dissertation and recommend its acceptance: Steve Driese, Claudia Mora, George K. Schweitzer Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.) To the Graduate Council: I am submitting herewith a dissertation written by Bosiljka Glumac entitled "Cessation of Grand Cycle Deposition in the Framework of Passive Margin Evolution: Controlling Mechanisms and Effects on Carbonate Deposition and Diagenesis, Cambrian Maynardville Formation, Southern Appalachians." I have examined the final copy of this dissertation fo r fo rm and content and recommend that it be accepted in partial fulfillment of the requirements fo r the degree ofDoctor of Philosophy, with a major in Geology. enneth R. Walker, Major Professor We have read this dissertation Accepted fo r the Council: Associate Vice Chancellor and Dean of The Graduate School CESSATION OF GRAND CYCLE DEPOSITION IN THE FRAMEWORK OF PASSIVE MARGIN EVOLUTION: CONTROLLING MECHANISMS AND EFFECTS ON CARBONATE DEPOSITION AND DIAGENESIS, CAMBRIAN MAYNARDVILLE FORMATION, SOUTHERN APPALACHIANS A Dissertation Presented fo r the Doctor of Philosophy Degree The University of Tennessee, Knoxville Bosiljka Glumac May 1997 11 DEDICATION This dissertation is dedicated to my grandparents nona Albina (1913- 1988) & nono Pepo Josip Radovic (1903- 1976), and baka Koka Sofija (1914- 1992) & djed Milan Glumac (1911 - 1995), and to my parents Aurelija & Nikola Glumac who provided me and my brothers with valuable examples, and an inexhaustible source of encouragement. 111 ACKNOWLEDGMENTS First of all, I would like to thank my academic advisor, Dr. Kenneth R Walker, for being my teacher and mentor, and for his moral and financial support during my graduate studies at the University of Tennessee. Dr. Steven G. Driese and Dr. Claudia I. Mora from the Department of Geological Sciences are thanked for serving on my committee. I am also thankful to Dr. Driese for offering courses in various aspects of sedimentology fromwhich I learned a great deal. Dr. Mora's expertise in stable isotope geochemistry and access to laboratory facilities contributed towards some of the most exciting findings of this study. I would also like to thank my committee members fromthe Chemistry Department, Dr. Craig E. Barnes and Dr. George K. Schweitzer. I am grateful to the Department of Geological Sciences for providing me with financial support. My research was partially funded by a NSF grant to Dr. Walker, a Geological Society of America student research grant, the Faculty Senate Research Council Summer Graduate Research Assistantship, and the Mobil Carbonate Research Fund at the University of Tennessee. Assistance with the analytical aspects of this research was provided by Ken Tobin, Krishnan Srinivasan, Kevin Howard, Ian Richards, Andrew Stefaniak, Amy Halleran, and Allan Patchen. Strontium isotope analyses were performed by Dr. Steven Goldberg at the University of North Carolina, Chapel Hill. Field assistance was provided by Tony Caldanaro, Brian Freshour, Andrew Stefaniak, and Krishnan Srinivasan. I would also like to thank Mike Green for his help with statistical analysis, Bob Sepanski for developing photographs, and the departmental secretaries, Melody, Cindy and Denise for numerous favors. Inspiring discussions with members of the Carbonate Research Group, Krishnan Srinivasan, Ken Tobin, Andrew Stefaniak, Stan Dunagan, Gary Ottinger, Chris Foster, Mark Steinhauff, and Gene Rankey were an invaluable part of my experience at UT. Numerous other people are responsible for making my stay in Knoxville very enjoyable: IV Mike and Barb Green, Kevin and Kathy Smart, Chris Olson and Kelly Gardener, Brent Couzens, Michael Neton, Greg Yanagihara, Marta and Joe Corbin, RaNaye Dreier and Kim Kasten, Ian and Maria Richards, Landon and Alison Davidson, Jeffand Kelly Connelly, Tim and Sally Davis, Ellen Williams, Marvin Bennett, Mike Caudill, Jim Heller, Janee Ansley; my "internationalfriends" Ronnie Minniti and Leticia Pibida +Melissa, Abir and Ehab Abourashed, Daniela and Kole Kovac; and many others. Thank you all! I am truly grateful to my parents, Aurelija and Nikola Glumac, for their love, support and encouragement. Thank you for understanding the unusual requests of your only daughter, for your unlimited confidence in me, for letting me believe that dreams can come true, and for teaching me, by your examples, the importance of hard work, honesty, tolerance, and sacrifice. I would like to thank my parents simply, in the language they understand, with verses of a song that I used to sing to them as a child: "Hvala mama, hvala tata, hvala vam za sve." My brothers also deserve special recognition. My older brother Miodrag for his expertise in solving computer and math problems, ski trips, and for just talking to me. It is so nice to have someone like you around! My younger brother Ranko for the summers we spent together in the States, for his sincere sense of humor, and for reminding us what being a teenager is all about. Thanks to all other relatives and friends for their thoughts and words of support. At the end, my most sincere gratitude goes to my very best friend, Anthony J. Caldanaro, Jr., for his love, patience, and reassurance. Words cannot express my feelings and deep appreciation for Tony's help with countless "little" things without which it would have been difficult (if not impossible) to accomplish so much. Thank you Tony for joining me in my journey, and for sharing very special moments with me. Reflections on the landscapes and beaches of the Istrian peninsula, the pristine mountains and meadows of Lika, and thoughts and memories of people I love provided me with unending inspiration. v ABSTRACT The Middle and Upper Cambrian deposits of the southern Appalachians reveal the existence of a broad carbonate platform that was facing the Iapetus Ocean to the east and was separated from the exposed craton to the west by the Conasauga intrashelf basin. This study focuses on the Maynardville Formation, which was deposited during the early Late Cambrian along the western carbonate platform margin. As the uppermost carbonate unit of the alternating shale and carbonate units or Grand Cycles of the Conasauga Group (M iddle to Upper Cambrian), the Maynardville marks a change in style of passive-margin deposition reflected in the cessation of Grand Cycle deposition. The Maynardville is a transitional interval between the largely subtidal carbonate and siliciclastic deposits of the Conasauga Group, and the peritidal carbonate deposits of the overlying Knox Group (Upper Cambrian to Lower Ordovician). The Maynardville consists of a lower subtidal package, underlain by the Nolichucky Shale, and an upper peritidal package, overlain by the Copper Ridge Dolomite. Mixed carbonate/siliciclastic deposition took place in a deep ramp (upper Nolichucky) to shallow-ramp and lagoonal (subtidal Maynardville) setting. To the east was a broad, semi-arid carbonate tidal flat with a variety of peritidal environments (upper Maynardville/Copper Ridge). The Nolichucky represents a retrogradational depositional package that formed in response to an increase in the rate of relative sea-level rise. Deposition of a shallowing-upward succession of the Maynardville reflects carbonate platform aggradation and progradation favored by a subsequent decrease in the rate of relative sea-level rise. Stacking patterns of theMaynardville are a result of the interplay between intrinsic factors of carbonate depositional systems, the mechanisms related to the history of the adjacent siliciclastic basin, and possible eustatic sea-level changes. The cessation of Grand Cycle deposition is a consequence of passive-margin V1 evolution. The abrupt change from carbonate to shale deposition in the Grand Cycles may have been caused by short-term, episodic,
Recommended publications
  • IC-29 Geology and Ground Water Resources of Walker County, Georgia
    IC 29 GEORGIA STATE DIVISION OF CONSERVATION DEPARTMENT OF MINES, MINING AND GEOLOGY GARLAND PEYTON, Director THE GEOLOGICAL SURVEY Information Circular 29 GEOLOGY AND GROUND-WATER RESOURCES OF WALKER COUNTY, GEORGIA By Charles W. Cressler U.S. Geological Survey Prepared in cooperation with the U.S. Geological Survey ATLANTA 1964 CONTENTS Page Abstract _______________________________________________ -··---------------------------- _____________________ ----------------·----- _____________ __________________________ __ 3 In trodu ction ------------------------------------------ ________________________________ --------------------------------------------------------------------------------- 3 Purpose and scope ------------------------------"--------------------------------------------------------------------------------------------------------- 3 Previous inv es tigati o ns ____ _____ ________ _______ __________ ------------------------------------------------------------------------------------------ 5 Geo Io gy _________________________________________________________________ --- ___________________ -- ___________ ------------- __________________ ---- _________________ ---- _______ 5 Ph ys i ogr a p hy ______________________________________________________ ---------------------------------------- __________________ -------------------------------- 5 Geo Io gi c his tory __________________________ _ __ ___ ___ _______ _____________________________________________ ------------------------------------------------- 5 Stratigraphy -·· __________________
    [Show full text]
  • Geologic Cross Section C–C' Through the Appalachian Basin from Erie
    Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p.
    [Show full text]
  • Overview of the Strategic and Structural Evolution of the Talladega Slate Belt, Alabama Appalachians
    fl d029-08 1st pgs page 1 The Geological Society of America Field Guide 29 2012 Overview of the stratigraphic and structural evolution of the Talladega slate belt, Alabama Appalachians James F. Tull* Department of Earth, Ocean, and Atmospheric Science, Florida State University Clinton I. Barineau* Department of Earth and Space Sciences, Columbus State University ABSTRACT The allochthonous Talladega belt of eastern-northeastern Alabama and north- western Georgia is a northeast striking, fault bounded block of lower greenschist facies metasedimentary and metaigneous rocks that formed along the margin of Lau- rentia at or outboard of the seaward edge of the Alabama promontory. Bounded by metamorphic rocks of the higher grade Neoproterozoic(?) to Carboniferous eastern Blue Ridge on the southeast and unmetamorphosed to anchimetamorphic Paleozoic rocks of the Appalachian foreland on the northwest, the Talladega belt includes shelf facies rocks of the latest Neoproterozoic/earliest Cambrian Kahatchee Mountain Group, Cambrian-Ordovician Sylacauga Marble Group, and the latest Silurian(?) to uppermost Devonian/earliest Mississippian Talladega Group. Along the southeast- ern fl ank of these metasedimentary sequences, a Middle Ordovician back-arc terrane (Hillabee Greenstone) was tectonically emplaced along a cryptic pre-metamorphic thrust fault (Hillabee thrust) and subsequently dismembered with units of the upper Talladega Group along the post-metamorphic Hollins Line fault system. Importantly, strata within the Talladega belt are critical for understanding the tectonic evolution of the southern Appalachian orogen when coupled with the geologic history of adjacent terranes. Rocks of the lower Talladega Group, the Lay Dam Formation, suggest latest Silurian-earliest Devonian tectonism that is only now being recognized in other areas of the southern Appalachians.
    [Show full text]
  • U.S. Geological Survey Bulletin 1839-G, H
    Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Morrow County, Ohio, to Pendleton County, West Virginia Depositional Environment of the Fincastle Conglomerate near Roanoke, Virginia U.S. GEOLOGICAL SURVEY BULLETIN 1839-G, H i i i I ' i ' i ' X- »-v l^,:^ Stratigraphic Framework of Cambrian and Ordovician Rocks in the Central Appalachian Basin from Morrow County, Ohio, to Pendleton County, West Virginia By ROBERT T. RYDER Depositional Environment of the Fincastle Conglomerate near Roanoke, Virginia By CHRYSA M. CULLATHER Chapters G and H are issued as a single volume and are not available separately U.S. GEOLOGICAL SURVEY BULLETIN 1839-G, H EVOLUTION OF SEDIMENTARY BASINS-APPALACHIAN BASIN U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY DALLAS L. PECK, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government UNITED STATES GOVERNMENT PRINTING OFFICE: 1992 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging in Publication Data (revised for vol. G-H) Evoluation of sedimentary basins Appalachian basin. (U.S. Geological Survey bulletin ; 1839 A-D, G-H) Includes bibliographies. Supt. of Docs. no.:19.3:1839-G Contents: Horses in fensters of the Pulaski thrust sheet, southwestern Virginia / by Arthur P. Schultz [etc.] Stratigraphic framework of Cam­ brian and Ordovician rocks in central Appalachian basin from Morrow County, Ohio, to Pendleton County, West Virginia / by Robert T.
    [Show full text]
  • Lithofacies and Paleogeography of the Conasauga Group, (Middle and Late Cambrian) in the Valley and Ridge Province of East Tennessee
    Lithofacies and paleogeography of the Conasauga Group, (Middle and Late Cambrian) in the Valley and Ridge province of east Tennessee KENNETH O. HASSON Department of Geography/Geology, East Tennessee State University, Johnson City, Tennessee 37614, and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 C. STEPHEN HAASE Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 ABSTRACT A sub-basin within the regional intrashelf basin has been identi- fied. The axis of this sub-basin is oriented northwest, perpendicular to A comprehensive data base for the Conasauga Group (Middle the regional trend of the shelf and Appalachian structure. Approxi- and Late Cambrian) throughout the Valley and Ridge province in east mately 2,900 ft (883 m) of Conasauga strata accumulated in the sub- Tennessee was compiled from published and unpublished sources. basin, which first appeared during Pumpkin Valley Shale deposition Lithofacies and isopach maps and stratigraphic cross sections were and persisted through Maynardville Limestone deposition. We inter- constructed from this data base on both present-day and palinspastic pret the abrupt thickening at the margin of this basin to result from bases to define regional depositional patterns of the Conasauga basement faulting, which produced a graben that subsided intermit- Group. tently during basin filling. This structure may have economic signifi- Isopach and lithofacies trends recognized on present-day base cance in that there is an apparent correlation between the margin of maps are generally consistent with those previously recognized. Litho- this second-order basin and zinc mineralization in overlying carbon- facies data are consistent with a shelf-intrashelf-basin-carbonate- ates of the Knox Group.
    [Show full text]
  • Newsletter No. 70
    Newsletter Winter 2006 No. 70 Commission Internationale de Microflore du Paléozoïque CIMP homepage: President: John Marshall http://www.cimp.ulg.ac.be Past President: Florentin Paris Secretary General & Newsletter Editor: Mike Stephenson Treasurer: Philippe Steemans Webmaster: Philippe Steemans I.F.P.S. representatives: Thomas Servais, Ken Higgs Contents Opinion: How do we sell Deep Time? ............................................................................. 2 New President’s message .................................................................................................. 4 Palynos News ..................................................................................................................... 4 Meetings and conferences................................................................................................. 5 CIMP Prague.....................................................................................................................9 CIMP General Meeting minutes.................................................................................... 58 Election of President of CIMP ....................................................................................... 59 New subcommission positions in CIMP ........................................................................ 59 Next CIMP Conference: Cracow 2010?........................................................................ 59 Gallery of Prague photos...............................................................................................
    [Show full text]
  • Regional Seismic Lines Across the Rome Trough and Allegheny Plateau of Northern West Virginia, Western Maryland, and Southwestern Pennsylvania
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I–2791 U.S. GEOLOGICAL SURVEY REGIONAL SEISMIC LINES ACROSS THE ROME TROUGH AND ALLEGHENY PLATEAU OF NORTHERN WEST VIRGINIA, WESTERN MARYLAND, AND SOUTHWESTERN PENNSYLVANIA By Christopher S. Kulander 1 and Robert T. Ryder 2 INTRODUCTION having thin-skinned structures with greater tectonic shortening. These provinces meet at a physiographic and structural boundary The study area for this investigation is the central Appalachian called the Allegheny structural front. The Rome trough, a north­ basin (see index map below). The northern West Virginia, west­ east-trending graben that involves basement, underlies the ern Maryland, and southwestern Pennsylvania parts of the cen­ Allegheny Plateau (fig. 2). Commonly, basement rocks in the tral Appalachian basin consist of complex structural geometries Rome trough are buried beneath at least 20,000 feet (ft) of and a thick Paleozoic sequence. Here, the basin coincides with Paleozoic strata (Shumaker, 1996). Little has been published that is related to the deep structure of 80˚ the Rome trough in northern West Virginia, western Maryland, and southwestern Pennsylvania. Wells drilled to basement are absent here and most of the multi-fold seismic data are propri­ etary. Although Ryder (1991) and Ryder and others (1992) con­ NY structed several detailed stratigraphic cross sections of Cambrian and Ordovician strata across parts of the Rome trough and Shumaker (1996) mapped basement structure along the entire PA NJ 40˚ Rome trough from central Kentucky to northeastern Pennsylvania, few interpreted, regional seismic-based geologic OH MD DE cross sections have been published in this area. The objective of this investigation is to interpret the structure and stratigraphy of 40˚ WV the Rome trough and Allegheny Plateau of northern West VA Virginia, western Maryland, and southwestern Pennsylvania KY based on three multi-fold seismic lines acquired by Amoco in the early 1980s.
    [Show full text]
  • Italic Page Numbers Indicate Major References]
    Index [Italic page numbers indicate major references] Abbott Formation, 411 379 Bear River Formation, 163 Abo Formation, 281, 282, 286, 302 seismicity, 22 Bear Springs Formation, 315 Absaroka Mountains, 111 Appalachian Orogen, 5, 9, 13, 28 Bearpaw cyclothem, 80 Absaroka sequence, 37, 44, 50, 186, Appalachian Plateau, 9, 427 Bearpaw Mountains, 111 191,233,251, 275, 377, 378, Appalachian Province, 28 Beartooth Mountains, 201, 203 383, 409 Appalachian Ridge, 427 Beartooth shelf, 92, 94 Absaroka thrust fault, 158, 159 Appalachian Shelf, 32 Beartooth uplift, 92, 110, 114 Acadian orogen, 403, 452 Appalachian Trough, 460 Beaver Creek thrust fault, 157 Adaville Formation, 164 Appalachian Valley, 427 Beaver Island, 366 Adirondack Mountains, 6, 433 Araby Formation, 435 Beaverhead Group, 101, 104 Admire Group, 325 Arapahoe Formation, 189 Bedford Shale, 376 Agate Creek fault, 123, 182 Arapien Shale, 71, 73, 74 Beekmantown Group, 440, 445 Alabama, 36, 427,471 Arbuckle anticline, 327, 329, 331 Belden Shale, 57, 123, 127 Alacran Mountain Formation, 283 Arbuckle Group, 186, 269 Bell Canyon Formation, 287 Alamosa Formation, 169, 170 Arbuckle Mountains, 309, 310, 312, Bell Creek oil field, Montana, 81 Alaska Bench Limestone, 93 328 Bell Ranch Formation, 72, 73 Alberta shelf, 92, 94 Arbuckle Uplift, 11, 37, 318, 324 Bell Shale, 375 Albion-Scioio oil field, Michigan, Archean rocks, 5, 49, 225 Belle Fourche River, 207 373 Archeolithoporella, 283 Belt Island complex, 97, 98 Albuquerque Basin, 111, 165, 167, Ardmore Basin, 11, 37, 307, 308, Belt Supergroup, 28, 53 168, 169 309, 317, 318, 326, 347 Bend Arch, 262, 275, 277, 290, 346, Algonquin Arch, 361 Arikaree Formation, 165, 190 347 Alibates Bed, 326 Arizona, 19, 43, 44, S3, 67.
    [Show full text]
  • WV Generalized Stratigraphic Column/Chart
    Generalized Stratigraphic Chart for West Virginia Series/ Drillers’ Era System Stage Western WV Eastern WV Terminology CENOZOIC Paleogene Eocene Igneous Intrusives MESOZOIC Jurassic Igneous Intrusives PERMIAN Dunkard Group Carroll, Minshall, Murphy, Moundsville, Upper Monongahela Fm. 1st Cow Run, Little Conemaugh Group Dunkard, Big Dunkard Burning Springs, Middle Allegheny Fm. 2nd Cow Run, Kanawha Fm. Gas Sands, Horseneck (Subsystem) New River Fm. Pottsville PENNSYLVANIAN Lower Pocahontas Fm. Group Salt Sands Bluestone Fm. Pride, Ravencliff, Avis, Princeton Ss. Mauch Chunk Maxton, Little Lime, Upper Hinton Fm. Group Pencil Cave, Blue Monday Bluefield Fm. CARBONIFEROUS Greenbrier Group Big Lime, Keener, Middle Big Injun (Subsystem) Maccrady Fm. (south) MISSISSIPPIAN Lower Big Injun, Squaw, Sunbury Sh. Price Fm. Weir, Coffee (Sunbury) Sh. Berea Ss. Cleveland Sh. Gantz, 50’, 30’, Ohio Sh. Chagrin Sh. Hampshire Group Huron Sh. Gordon Stray, Gordon, Hanover Sh. bed 4th, 5th, Bayard, Java Fm. Pipe Creek Sh. bed Greenland Foreknobs Fm. Elizabeth, Warren, Upper West Falls Fm. Angola Sh. Gap Group Scherr Fm. Speechley, Balltown, Rhinestreet Sh. Bradford, Riley, Cashaqua Sh. Sonyea Fm. Middlesex Sh. Benson, Alexander, Elk, Haverty, Genesee Fm./ West River Sh. Brallier Fm. Geneseo Sh./Burket Sh. Fox, Sycamore Harrell Sh. Harrell Sh. DEVONIAN Tully Ls. Millboro Sh. Hamilton Group Mahantango Fm. Mahantango Fm. Marcellus Sh. Marcellus Sh. Middle Tioga ash beds Tioga ash beds Huntersville Chert Needmore Sh. Onondaga Ls. Oriskany Ss. “Corniferous” Lower (west only) Helderberg Group Bass Islands Fm. Big Mountain Sh. Clifton Forge Ss. Keyser Fm. PALEOZOIC Lower Keyser Mbr. PHANEROZOIC Salina Fm. Tonoloway Fm. Newburg Wills Creek Fm. Upper Bloomsburg Williamsport Fm. Fm.
    [Show full text]
  • Geology of the Elkton Area Virginia
    Geology of the Elkton area Virginia GEOLOGICAL SURVEY PROFESSIONAL PAPER 230 Geology of the Elkton area Virginia By PHILIP B. KING GEOLOGICAL SURVEY PROFESSIONAL PAPER 230 A detailed report on an area containing interesting problems of stratigraphy', structure, geomorphology, and economic geology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1950 UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1.75 (paper cover) CONTENTS Page Page Abstract-- _ ________________________________________ 1 Stratigraphy—Continued Introduction. ______________________________________ 1 Cambrian system—Continued Previous work. _ ____________________________________ 2 Elbrook dolomite.________-_____._--_-__-__. 32 Present work. ______________________________________ 3 Name._ _____________-_-_-____---_____- 32 Acknowledgments. _________________________________ 3 Outcrop.____-___-------_--___----.-___ 32 Geography.. _ ______________________________________ 4 Character, _____________________________ 32 Stratigraphy _______________________________________ 6 Age_.____-_..-__-_---_--___------_-_._ 32 Pre-Cambrian rocks__ . __________________________ 7 Residuum of Elbrook dolomite ___________ 33 Injection complex. __________________________ 8 Stratigraphic relations-__________________ 33 Name. _ ----_-______----________-_-_-__ 8 Conococheague limestone.___________________ 33 Outcrop. ______________________________
    [Show full text]
  • Eastern Section American Association of Petroleum Geologists 46Th Annual Meeting Morgantown, West Virginia September 24-27, 2017
    Eastern Section American Association of Petroleum Geologists 46th Annual Meeting Morgantown, West Virginia September 24-27, 2017 Program with Abstracts Hosted by: Appalachian Geological Society West Virginia University Department of Geology and Geography With support from the West Virginia Geological and Economic Survey Meeting Sponsors We appreciate your support! Marcellus Level Meeting Sponsors Utica Level Rogersville Level We appreciate your support! Eastern Section American Association of Petroleum Geologists 46th Annual Meeting Morgantown, West Virginia September 24-27, 2017 Program with Abstracts Hosted by: Appalachian Geological Society West Virginia University Department of Geology and Geography With support from the West Virginia Geological and Economic Survey Cover photo used with permission from Jacob Everhart, Canary, LLC Contents Welcome………………………………………………………………………………………………………………………………………1 2017 Meeting Organizing Committee……………………………………………………………………………….1 Eastern Section AAPG Officers………………………………………………………………………………………….2 Appalachian Geological Society Officers……………………………………………………………………………2 General Information…………………………………………………………………………………………………………………….3 Registration Hours……………………………………………………………………………………………………………3 Parking………………………………………………………………………………………………………………………….….3 Maps………………………………………………………………………………………………………………………………..3 Exhibits……………………………………………………………………………………………………………………….……3 Presenters and Judges Room……………………………………………………………………………………..….…3 Presenters, Judges and Session Chairs Breakfast and Information……………………………………3
    [Show full text]
  • Structural Evolution and Petroleum Potential of a Cambrian Intracratonic Rift Yss Tem: Mississippi Valley Graben, Rough Creek Graben, and Rome Trough John B
    University of Kentucky UKnowledge Kentucky Geological Survey Report of Kentucky Geological Survey Investigations 9-25-2018 Structural Evolution and Petroleum Potential of a Cambrian Intracratonic Rift ysS tem: Mississippi Valley Graben, Rough Creek Graben, and Rome Trough John B. Hickman University of Kentucky, [email protected] David C. Harris University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/kgs_ri Part of the Tectonics and Structure Commons Repository Citation Hickman, John B. and Harris, David C., "Structural Evolution and Petroleum Potential of a Cambrian Intracratonic Rift ysS tem: Mississippi Valley Graben, Rough Creek Graben, and Rome Trough" (2018). Kentucky Geological Survey Report of Investigations. 40. https://uknowledge.uky.edu/kgs_ri/40 This Report is brought to you for free and open access by the Kentucky Geological Survey at UKnowledge. It has been accepted for inclusion in Kentucky Geological Survey Report of Investigations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Kentucky Geological Survey William C. Haneberg, State Geologist and Director University of Kentucky, Lexington Structural Evolution and Petroleum Potential of a Cambrian Intracratonic Rift System: Mississippi Valley Graben, Rough Creek Graben, and Rome Trough John B. Hickman and David C. Harris Report of Investigations 4 doi.org/10.13023/kgs.ri04.13 Series XIII, 2018 Our Mission The Kentucky Geological Survey is a state-supported research center and public resource within the University of Kentucky.
    [Show full text]