Phylogeny of the Ascomycetous Yeasts and the Renaming of Pichia Anomala to Wickerhamomyces Anomalus

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny of the Ascomycetous Yeasts and the Renaming of Pichia Anomala to Wickerhamomyces Anomalus Antonie van Leeuwenhoek (2011) 99:13–23 DOI 10.1007/s10482-010-9505-6 REVIEW PAPER Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus Cletus P. Kurtzman Received: 21 May 2010 / Accepted: 2 September 2010 / Published online: 14 September 2010 Ó U.S. Government 2010 Abstract In this review, the phylogeny of the placement in genera was dependent on phenotype, ascomycetous yeasts is discussed, with emphasis on i.e., cell morphology, ability to ferment sugars and the genus Pichia and its synonym Hansenula. The growth on various carbon and nitrogen compounds. It genus Pichia, as defined from phenotype, had nearly had been believed that characteristics such as asco- 100 assigned species, but the number of species has spore morphology or ability to utilize nitrate as a sole been reduced to 20 following phylogenetic circum- source of nitrogen predicted genetic relationships and scription on Pichia membranifaciens, the type species could serve as descriptors for defining genera. The of the genus. The remaining species of Pichia have use of nuclear DNA reassociation experiments intro- been reassigned to 20 different genera, many of which duced the first quantitative molecular biological are newly described, such as Wickerhamomyces. The technique to yeast classification, and comparisons of reason for reclassification of Pichia anomala in the DNA relatedness showed that glucose fermentation, genus Wickerhamomyces is discussed. nitrate assimilation and ascospore morphology can be variable among strains of a species (Price et al. 1978; Keywords Pichia anomala Á Wickerhamomyces Kurtzman 1984). Despite the great impact of DNA anomalus Á Biocontrol yeasts Á Phylogeny reassociation studies on yeast taxonomy, genetic resolution from this method extends no further than to closely related species. With the introduction of rapid DNA sequencing Introduction technologies, opportunity was provided to quickly and accurately identify species and to understand Gene sequence comparisons have had a profound broader species relationships. Initial work focused on effect on the taxonomy and systematics of yeasts. sequencing ribosomal RNA and the genes coding for Prior to the widespread application of gene sequence rRNA. Of particular interest were domains 1 and 2 comparisons, identification of species and their (D1/D2) of the large subunit RNA and its gene. This region is ca. 500–600 nucleotides in length and C. P. Kurtzman (&) shows sufficient substitutions to resolve most yeast Foodborne Bacterial Pathogens and Mycology Research species. Furthermore, the flanking regions are highly Unit, National Center for Agricultural Utilization conserved and one set of primers can be used to Research, Agricultural Research Service, U.S. amplify and to sequence this region for essentially all Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA known ascomycete and basidiomycete yeasts, as e-mail: [email protected] well as other fungi (Kurtzman and Robnett 1998; 123 14 Antonie van Leeuwenhoek (2011) 99:13–23 Fell et al. 2000). Certain other genes, such as actin Fig. 1 Phylogenetic relationships among ascomycetous yeast c (Daniel and Meyer 2003) and translation elongation genera, as represented by type species, were determined from neighbor-joining analysis of a concatenated dataset of gene factor-1a (Kurtzman and Robnett 2003) also provide sequences from LSU rRNA, SSU rRNA and translation good resolution of yeast species, but the priming elongation factor-1a. Published family designations are listed. regions for these genes are often not well conserved. Where known, coenzyme Q determinations are given in As a consequence of ease of use, the D1/D2 region brackets. Bootstrap values were determined from 1000 replicates. Y and YB prefixes are NRRL strain numbers. has been widely adopted, which has given diagnostic T = type strain, NT = neotype strain, A = authentic strain. sequences, a barcode, for essentially all known Type species of the genera Ascobotryozyma (anamorph, yeasts. Because of interspecific hybridization, differ- Botryozyma), Coccidiascus, Endomyces, Helicogonium, Phia- ences in nucleotide substitution rates among various loascus, Saitoella, Macrorhabdus, and Schizoblastosporon (teleomorph, Nadsonia), some of which do not grow on lineages and other genetic changes, reliance on a common laboratory media, were not included in the analysis single gene for species identification can lead to (CP Kurtzman, CJ Robnett, unpublished data) occasional errors (Peterson and Kurtzman 1991; Groth et al. 1999), which is one reason for the increased application of multi-locus sequence typing analyses will first be discussed followed by a (MLST). discussion of the reclassification of Pichia anomala. An overview of relationships among ascomycetous yeast genera is presented in Fig. 1 and was deter- Circumscription of yeast genera mined from phylogenetic analysis of concatenated gene sequences for nuclear large subunit rRNA, The question of what is a genus must be nearly as old as nuclear small subunit rRNA and translation elonga- the question of what is a species. The definition offered tion factor-1a. Although additional genes will be in the Dictionary of Fungi (Kirk et al. 2008) states that needed to provide well-supported basal lineages, there are ‘‘no universally applicable criteria by which support for the genera, which are represented by the genera are distinguished, but in general the emphasis is type species of each genus, is relatively strong. The now on there being several discontinuities in funda- analysis also shows that the ascomycetous yeasts are mental characters’’. The discontinuities that systema- members of a single lineage (Saccharomycotina), as tists now look for are those in phylogenetic trees. The indicated from other multigene phylogenetic studies polyphyly of many yeast genera was revealed from (e.g., Fitzpatrick et al. 2006; James et al. 2006). single gene phylogenetic analyses (e.g., Liu and Species assignments in the genus Pichia have been Kurtzman 1991; Cai et al. 1996; Kurtzman and markedly affected by gene sequence analysis, which Robnett 1998), but statistical support for the clades in retrospect is not too surprising. The diagnosis of as determined from bootstrap analysis was often quite the genus Pichia, based on phenotype, included the low for the short gene sequences initially compared, following: multilateral budding on a narrow base, and it was uncertain whether the clades really repre- presence or absence of hyphae and pseudohyphae, sented genera. Inclusion of several genes in an analysis ascospores may be hat-shaped, hemispheroidal, or often strengthens basal branches in phylogenetic trees spherical with or without a ledge, sugars may be allowing detection of clades that appear to be genera. fermented and nitrate is utilized by some species as a By analyzing the genes in various combinations, sole source of nitrogen. Using this definition, the last congruence of the gene trees can also be tested. From monographic treatment of Pichia included nearly 100 multigene analyses, it became clear that the earlier species (Kurtzman 1998), which then represented single-gene indications of widespread polyphyly about 20% of known ascomycetous yeasts. among genera were correct, and that phenotypic The polyphyletic nature of Pichia was shown by a characters such as glucose fermentation, nitrate utili- number of molecular comparisons, but was most zation, presence of septate hyphae and ascospore obvious from analysis of a dataset of D1/D2 LSU morphology often do not serve as descriptors for rRNA gene sequences that included all known genetically defined genera. ascomycetous yeasts (Kurtzman and Robnett 1998). In this review, changes in classification of the Species now accepted in Pichia are shown in Fig. 2. ascomycetous yeasts resulting from gene sequence Among them are species of Issatchenkia, a genus that 123 Antonie van Leeuwenhoek (2011) 99:13–23 15 81 Starmera amethionina Y-10978T [Q-7] 66 Barnettozyma populi Y-12728T [Q-7] 99 Wickerhamomyces canadensis Y-1888T [Q-7] Wickerhamomycetaceae Lindnera americana Y-2156T [Q-7] 53 99 Ogataea polymorpha Y-2214 [Q-7] 99 Ogataea methanolica Y-7685 T [Q-7] 96 Ambrosiozyma monospora Y-1484T [Q-7] 80 Candida boidinii Y-2332T [Q-7] Kuraishia capsulata Y-1842T [Q-8] 59 Saccharomycopsis capsularis Y-17639NT [Q-8] Saccharomycopsidaceae Ascoidea rubescens Y-17699A [Q-?] Ascoideaceae Cyniclomyces guttulatus Y-17561A [Q-6] Tetrapisispora phaffii Y-8282T [Q-6] 67 Nakaseomyces delphensis Y-2379T [Q-6] 73 61 Zygotorulaspora mrakii Y-12654T [Q-6] Zygosaccharomyces rouxii Y-229 T [Q-6] Saccharomyces cerevisiae Y-12632 NT [Q-6] Torulaspora delbrueckii Y-866T [Q-6] Saccharomycetaceae 71 66 Naumovozyma dairenensis Y-12639 T [Q-6] Kazachstania viticola Y-27206 T [Q-?] 81 Vanderwaltozyma polyspora Y-8283 T [Q-?] 54 Lachancea thermotolerans Y-8284 T [Q-6] 52 Kluyveromyces marxianus Y-8281T [Q-6] 80 Eremothecium cymbalariae Y-17582A [Q-7] Saccharomycodes ludwigii Y-12793T [Q-6] Hanseniaspora valbyensis Y-1626T [Q-6] Saccharomycodaceae 100 Candida sp. Y-11514 [Q-?] 100 Saturnispora dispora Y-1447T [Q-7] 99 Pichia membranifaciens Y-2026T [Q-7] 88 Pichiaceae Kregervanrija fluxuum YB-4273T [Q-7] Dekkera bruxellensis Y-12961T [Q-9] 98 Kodamaea ohmeri Y-1932 T [Q-9] T 82 Aciculoconidium aculeatum YB-4298 [Q-9] 100 Clavispora lusitaniae Y-11827T [Q-8] 100 Metschnikowia agaves Y-17915T [Q-?] Metschnikowiaceae Metschnikowia bicuspidata YB-4993NT [Q-9] 100 Hyphopichia
Recommended publications
  • Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)
    | YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina) Bernard A. Dujon*,†,1 and Edward J. Louis‡,§ *Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France, †University Pierre and Marie Curie UFR927, 75005 Paris, France, ‡Centre for Genetic Architecture of Complex Traits, and xDepartment of Genetics, University of Leicester, LE1 7RH, United Kingdom ORCID ID: 0000-0003-1157-3608 (E.J.L.) ABSTRACT Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs.
    [Show full text]
  • Expanding the Knowledge on the Skillful Yeast Cyberlindnera Jadinii
    Journal of Fungi Review Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii Maria Sousa-Silva 1,2 , Daniel Vieira 1,2, Pedro Soares 1,2, Margarida Casal 1,2 and Isabel Soares-Silva 1,2,* 1 Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; [email protected] (M.S.-S.); [email protected] (D.V.); [email protected] (P.S.); [email protected] (M.C.) 2 Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal * Correspondence: [email protected]; Tel.: +351-253601519 Abstract: Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials C4Y5P9|C4Y5P9_CLAL4 ------------------MS-EDLTKKTE------ELSLDSEKTVLSSKEEFTAKHPLNS 35 Q9P975|IF4E_CANAL ------------------MS-EELAQKTE------ELSLDS-KTVFDSKEEFNAKHPLNS 34 Q6BXX3|Q6BXX3_DEBHA --MKVF------TNKIAKMS-EELSKQTE------ELSLENKDTVLSNKEEFTAKHPLNN 45 C5DJV3|C5DJV3_LACTC ------------------MSVEEVTQKTG-D-----LNIDEKSTVLSSEKEFQLKHPLNT 36 P07260|IF4E_YEAST ------------------MSVEEVSKKFE-ENVSVDDTTATPKTVLSDSAHFDVKHPLNT 41 I2JS39|I2JS39_DEKBR MQMNLVGRTFPASERTRQSREEKPVE----AEVAKPEEEKKDVTVLENKEEFTVKHPLNS 56 A0A099P1Q5|A0A099P1Q5_PICKU ------------------MSTEELNN----ATKDLSLDEKKDVTALENPAEFNVKHPLNS 38 P78954|IF4E1_SCHPO ------------------MQTEQPPKESQTENTVSEPQEKALRTVFDDKINFNLKHPLAR 42 *. : *.:.. .* **** C4Y5P9|C4Y5P9_CLAL4 KWTLWYTKPQTNKSETWSDLLKPVITFSSVEEFWGIYNSIPVANQLPMKSDYHLFKEGIK 95 Q9P975|IF4E_CANAL RWTLWYTKPQTNKSENWHDLLKPVITFSSVEEFWGIYNSIPPANQLPLKSDYHLFKEGIR 94 Q6BXX3|Q6BXX3_DEBHA KWTLWYTKPQVNKSENWHDLLKPVITFSSVEEFWGIYNSIPQANQLPMKSDYHLFKEGIK 105 C5DJV3|C5DJV3_LACTC KWTLWYTKPPVDKSESWSDLLRPVTSFETVEEFWAIHNAIPKPRYLPLKSDYHLFRNDIR 96 P07260|IF4E_YEAST KWTLWYTKPAVDKSESWSDLLRPVTSFQTVEEFWAIIQNIPEPHELPLKSDYHVFRNDVR 101 I2JS39|I2JS39_DEKBR KWTLWYTKPAVDKNESWADLLKPIVSFDTVEEFWGIYHAVPKAVDLPLKSDYHLFRNDIK 116 A0A099P1Q5|A0A099P1Q5_PICKU TWTLWYTKPAVDNTESWADLLKPVVTFNTVEEFWGIFHAIPKVNELPLKSDYHLFRGDIK 98 P78954|IF4E1_SCHPO PWTLWFLMPPTPG-LEWNELQKNIITFNSVEEFWGIHNNINPASSLPIKSDYSFFREGVR 101 ****: * . * :* : : :*.:*****.* : : **:**** .*: .:: C4Y5P9|C4Y5P9_CLAL4 PEWEDEQNAKGGRWQYSFNNKRDVAQVINDLWLRGLLAVIGETIEDD---ENEVNGIVLN 152 Q9P975|IF4E_CANAL PEWEDEANSKGGKWQFSFNKKSEVNPIINDLWLRGLLAVIGETIEDE---ENEVNGIVLN
    [Show full text]
  • 42 Genome Scale Model Reconstruction of the Methylotrophic
    GENOME SCALE MODEL RECONSTRUCTION OF THE METHYLOTROPHIC YEAST OGATAEA POLYMORPHA Simone Schmitz, RWTH Aachen University, Germany [email protected] Ulf W. Liebal, RWTH Aachen University, Germany Aarthi Ravikrishnan, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences; Institute of Technology Madras, India Constantin V.L. Schedel, RWTH Aachen University, Germany Lars M. Blank, RWTH Aachen University, Germany Birgitta E. Ebert, RWTH Aachen University, Germany Key words: Ogataea (Hansenula) polymorpha, metabolic model, phenotype microarray experiments, methylotrophic yeast Ogataea polymorpha is a thermotolerant, methylotrophic yeast with significant industrial applications. It is a promising host to generate platform chemicals from methanol, derived e.g. from carbon capture and utilization streams. Full development of the organism into a production strain requires additional strain design, supported by metabolic modeling on the basis of a genome-scale metabolic model. However, to date, no genome-scale metabolic model is available for O. polymorpha. To overcome this limitation, we used a published reconstruction of the closely related yeast Pichia pastoris as reference and corrected reactions based on KEGG annotations. Additionally, we conducted phenotype microarray experiments to test O. polymorpha’s metabolic capabilities to grown on or respire 192 different carbon sources. Over three-quarter of the substrate usage was correctly reproduced by the model. However, O. polymorpha failed to metabolize eight substrates and gained 38 new substrates compared to the P. pastoris reference model. To enable the usage of these compounds, metabolic pathways were inferred from literature and database searches and potential enzymes and genes assigned by conducting BLAST searches. To facilitate strain engineering and identify beneficial mutants, gene-protein-reaction relationships need to be included in the model.
    [Show full text]
  • Identification and Phylogeny of Ascomycetous Yeasts from Analysis
    Antonie van Leeuwenhoek 73: 331–371, 1998. 331 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences Cletus P. Kurtzman∗ & Christie J. Robnett Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research Ser- vice, U.S. Department of Agriculture, Peoria, Illinois 61604, USA (∗ author for correspondence) E-mail: [email protected] Received 19 June 1998; accepted 19 June 1998 Key words: Ascomycetous yeasts, phylogeny, ribosomal DNA, systematics Abstract Approximately 500 species of ascomycetous yeasts, including members of Candida and other anamorphic genera, were analyzed for extent of divergence in the variable D1/D2 domain of large subunit (26S) ribosomal DNA. Divergence in this domain is generally sufficient to resolve individual species, resulting in the prediction that 55 currently recognized taxa are synonyms of earlier described species. Phylogenetic relationships among the ascomycetous yeasts were analyzed from D1/D2 sequence divergence. For comparison, the phylogeny of selected members of the Saccharomyces clade was determined from 18S rDNA sequences. Species relationships were highly concordant between the D1/D2 and 18S trees when branches were statistically well supported. Introduction lesser ranges of nDNA relatedness than those found among heterothallic species. Disadvantages of nDNA reassociation studies in- Procedures commonly used for yeast identification clude the need for pairwise comparisons of all isolates rely on the appearance of cellular morphology and dis- under study and that resolution is limited to the ge- tinctive reactions on a standardized set of fermentation netic distance of sister species, i.e., closely related and assimilation tests.
    [Show full text]
  • Pathogenicity Classification of Fungi Status December 2014 (CGM/141218-03)
    Classification of Organisms: Pathogenicity classification of fungi Status December 2014 (CGM/141218-03) COGEM advice CGM/141218-03 Pathogenicity classification of fungi COGEM advice CGM/141218-03 Dutch Regulations Genetically Modified Organisms In the Decree on Genetically Modified Organisms (GMO Decree) and its accompanying more detailed Regulations (GMO Regulations) genetically modified micro-organisms are grouped in four pathogenicity classes, ranging from the lowest pathogenicity Class 1 to the highest Class 4.1 The pathogenicity classifications are used to determine the containment level for working in laboratories with GMOs. A micro-organism of Class 1 should at least comply with one of the following conditions: a) the micro-organism does not belong to a species of which representatives are known to be pathogenic for humans, animals or plants, b) the micro-organism has a long history of safe use under conditions without specific containment measures, c) the micro-organism belongs to a species that includes representatives of class 2, 3 or 4, but the particular strain does not contain genetic material that is responsible for the virulence, d) the micro-organism has been shown to be non-virulent through adequate tests. A micro-organism is grouped in Class 2 when it can cause a disease in humans or animals whereby it is unlikely to spread within the population while an effective prophylaxis, treatment or control strategy exists, as well as an organism that can cause a disease in plants. A micro-organism is grouped in Class 3 when it can cause a serious disease in humans or animals whereby it is likely to spread within the population while an effective prophylaxis, treatment or control strategy exists.
    [Show full text]
  • A Report of Candida Blankii Fungemia and Possible Endocarditis in an Immunocompetent Individual and the Review of Literature
    Open Access Case Report DOI: 10.7759/cureus.14945 A Report of Candida blankii Fungemia and Possible Endocarditis in an Immunocompetent Individual and the Review of Literature Vidya S. Kollu 1 , Pramod K. Kalagara 2 , Shehla Islam 3 , Asmita Gupte 3 1. Department of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, USA 2. Department of Hospital Medicine, Covenant Healthcare, Saginaw, USA 3. Division of Infectious Diseases, Veterans Affairs Medical Center, Gainesville, USA Corresponding author: Vidya S. Kollu, [email protected] Abstract Candida blankii is an emerging pathogenic fungus, first identified in 1968 as a new species. In the past five years, it has been identified in cystic fibrosis patient's airways and as fungemia in immunocompromised patients (post lung transplant and preterm neonates). It has been postulated to be a possible opportunistic pathogen based on the published case reports. We report a case of C. blankii fungemia with possible endocarditis in an immunocompetent individual. To our knowledge, this is also the first case of C. blankii bloodstream infection reported in an adult patient (age > 18 years). The C. blankii isolate from our patient had high minimum inhibitory concentrations (MICs) to azoles similar to the published reports. There is a dearth of literature guiding the treatment of this organism, given the variable susceptibility pattern and lack of data. Here, we describe successful treatment of possible C. blankii endocarditis with a combination of polyene and echinocandin antifungal agents. Categories: Cardiology, Internal Medicine, Infectious Disease Keywords: candida blankii, fungal endocarditis, fungemia, antifungal resistance, antifungal duration Introduction C. blankii is an emerging fungal pathogen [1].
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Fungi Associated with Ips Acuminatus (Coleoptera: Curculionidae) in Ukraine with a Special Emphasis on Pathogenicity of Ophiostomatoid Species
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 77–85, 2017 http://www.eje.cz doi: 10.14411/eje.2017.011 ORIGINAL ARTICLE Fungi associated with Ips acuminatus (Coleoptera: Curculionidae) in Ukraine with a special emphasis on pathogenicity of ophiostomatoid species KATERYNA DAVYDENKO 1, 2, RIMVYDAS VASAITIS 2 and AUDRIUS MENKIS 2 1 Ukrainian Research Institute of Forestry & Forest Melioration, Pushkinska st. 86, 61024 Kharkiv, Ukraine; e-mail: [email protected] 2 Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden; e-mails: [email protected], [email protected] Key words. Coleoptera, Curculionidae, pine engraver beetle, Scots pine, Ips acuminatus, pathogens, Ophiostoma, Diplodia pinea, insect-fungus interaction Abstract. Conifer bark beetles are well known to be associated with fungal complexes, which consist of pathogenic ophiostoma- toid fungi as well as obligate saprotroph species. However, there is little information on fungi associated with Ips acuminatus in central and eastern Europe. The aim of the study was to investigate the composition of the fungal communities associated with the pine engraver beetle, I. acuminatus, in the forest-steppe zone in Ukraine and to evaluate the pathogenicity of six associated ophiostomatoid species by inoculating three-year-old Scots pine seedlings with these fungi. In total, 384 adult beetles were col- lected from under the bark of declining and dead Scots pine trees at two different sites. Fungal culturing from 192 beetles resulted in 447 cultures and direct sequencing of ITS rRNA from 192 beetles in 496 high-quality sequences.
    [Show full text]
  • GRAS Notice for Pichia Kudriavzevii ASCUSDY21 for Use As a Direct Fed Microbial in Dairy Cattle
    GRAS Notice for Pichia kudriavzevii ASCUSDY21 for Use as a Direct Fed Microbial in Dairy Cattle Prepared for: Division of Animal Feeds, (HFV-220) Center for Veterinary Medicine 7519 Standish Place Rockville, Maryland 20855 Submitted by: ASCUS Biosciences, Inc. 6450 Lusk Blvd Suite 209 San Diego, California 92121 GRAS Notice for Pichia kudriavzevii ASCUSDY21 for Use as a Direct Fed Microbial in Dairy Cattle TABLE OF CONTENTS PART 1 – SIGNED STATEMENTS AND CERTIFICATION ................................................................................... 9 1.1 Name and Address of Organization .............................................................................................. 9 1.2 Name of the Notified Substance ................................................................................................... 9 1.3 Intended Conditions of Use .......................................................................................................... 9 1.4 Statutory Basis for the Conclusion of GRAS Status ....................................................................... 9 1.5 Premarket Exception Status .......................................................................................................... 9 1.6 Availability of Information .......................................................................................................... 10 1.7 Freedom of Information Act, 5 U.S.C. 552 .................................................................................. 10 1.8 Certification ................................................................................................................................
    [Show full text]
  • The Species-Specific Acquisition and Diversification of a Novel Family Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.322909; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The Species-specific Acquisition and Diversification of a Novel 2 Family of Killer Toxins in Budding Yeasts of the Saccharomycotina. 3 4 Lance R. Fredericks1, Mark D. Lee1, Angela M. Crabtree1, Josephine M. Boyer1, Emily A. Kizer1, Nathan T. 5 Taggart1, Samuel S. Hunter2#, Courtney B. Kennedy1, Cody G. Willmore1, Nova M. Tebbe1, Jade S. Harris1, 6 Sarah N. Brocke1, Paul A. Rowley1* 7 8 1Department of Biological Sciences, University of Idaho, Moscow, ID, USA 9 2iBEST Genomics Core, University of Idaho, Moscow, ID 83843, USA 10 #currently at University of California Davis Genome Center, University of California, Davis, 451 Health Sciences Dr., Davis, CA 11 95616 12 *Correspondence: [email protected] 13 14 Abstract 15 Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, 16 including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been 17 previously identified, their evolutionary origins remain uncertain given that many of the se genes 18 have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the 19 Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity 20 produced by Saccharomyces paradoxus. The expression of this novel killer toxin is associated 21 with the presence of a dsRNA totivirus and a satellite dsRNA.
    [Show full text]
  • Clasificación Del Clado De Ogataea, Un Punto De Vista Integral
    INSTITUTO POLITÉCNICO NACIONAL ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS Clasificación del clado de Ogataea, un punto de vista integral. PROYECTO DE INVESTIGACIÓN (TESIS) QUE PARA OBTENER EL TÍTULO DE QUÍMICO BACTERIÓLOGO PARASITÓLOGO PRESENTA: ERIKA BERENICE MARTÍNEZ RUIZ MÉXICO, DF. 2013 El presente trabajo se realizó en el Laboratorio de Micología Médica del Departamento de Microbiología de la Escuela Nacional de Ciencias Biológicas, del IPN. Se llevó a cabo bajo la dirección de la Dra. Aída Verónica Rodríguez Tovar y el Dr. Néstor Octavio Pérez Ramírez. Se contó con la colaboración de la Dra. Paulina Estrada de los Santos del Laboratorio de Microbiología Industrial del Departamento de Microbiología de la ENCB, del IPN. AGRADECIMIENTOS Gracias al Instituto Politécnico Nacional, porque al ser una de las Instituciones de más alto Reconocimiento a Nivel Nacional y figurar entre las mejores a nivel Internacional, me brindó un lugar en su matrícula, una preparación académica de excelencia y una nueva sangre que con orgullo portaré día con día porque “Soy Politécnico por convicción y no por circunstancia”. Gracias a la Escuela Nacional de Ciencias Biológicas, que más que una escuela se volvió un segundo hogar en estos últimos 5 años para mí, porque me dio las armas para estar a la altura de los mejores, porque con orgullo intentaré seguir dejando en alto el nombre de mi escuela. Además de brindarnos el apoyo en equipos, instalaciones y materiales para llevar a cabo este proyecto. Dra. Aída y Dr. Néstor, mis asesores, ¡gracias! porque confiaron en mí en un momento de incertidumbre, porque me apoyaron, me escucharon, me impulsaron a seguir adelante y me transmitieron una parte de sus amplios conocimientos.
    [Show full text]