Large but Finite

Total Page:16

File Type:pdf, Size:1020Kb

Large but Finite Department of Mathematics MathClub@WMU Michigan Epsilon Chapter of Pi Mu Epsilon Large but Finite Drake Olejniczak Department of Mathematics, WMU What is the biggest number you can imagine? Did you think of a million? a billion? a septillion? Perhaps you remembered back to the time you heard the term googol or its show-off of an older brother googolplex. Or maybe you thought of infinity. No. Surely, `infinity' is cheating. Large, finite numbers, truly monstrous numbers, arise in several areas of mathematics as well as in astronomy and computer science. For instance, Euclid defined perfect numbers as positive integers that are equal to the sum of their proper divisors. He is also credited with the discovery of the first four perfect numbers: 6, 28, 496, 8128. It may be surprising to hear that the ninth perfect number already has 37 digits, or that the thirteenth perfect number vastly exceeds the number of particles in the observable universe. However, the sequence of perfect numbers pales in comparison to some other sequences in terms of growth rate. In this talk, we will explore examples of large numbers such as Graham's number, Rayo's number, and the limits of the universe. As well, we will encounter some fast-growing sequences and functions such as the TREE sequence, the busy beaver function, and the Ackermann function. Through this, we will uncover a structure on which to compare these concepts and, hopefully, gain a sense of what it means for a number to be truly large. 4 p.m. Friday October 12 6625 Everett Tower, WMU Main Campus All are welcome! http://www.wmich.edu/mathclub/ Questions? Contact Patrick Bennett ([email protected]) .
Recommended publications
  • Grade 7/8 Math Circles the Scale of Numbers Introduction
    Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 7/8 Math Circles November 21/22/23, 2017 The Scale of Numbers Introduction Last week we quickly took a look at scientific notation, which is one way we can write down really big numbers. We can also use scientific notation to write very small numbers. 1 × 103 = 1; 000 1 × 102 = 100 1 × 101 = 10 1 × 100 = 1 1 × 10−1 = 0:1 1 × 10−2 = 0:01 1 × 10−3 = 0:001 As you can see above, every time the value of the exponent decreases, the number gets smaller by a factor of 10. This pattern continues even into negative exponent values! Another way of picturing negative exponents is as a division by a positive exponent. 1 10−6 = = 0:000001 106 In this lesson we will be looking at some famous, interesting, or important small numbers, and begin slowly working our way up to the biggest numbers ever used in mathematics! Obviously we can come up with any arbitrary number that is either extremely small or extremely large, but the purpose of this lesson is to only look at numbers with some kind of mathematical or scientific significance. 1 Extremely Small Numbers 1. Zero • Zero or `0' is the number that represents nothingness. It is the number with the smallest magnitude. • Zero only began being used as a number around the year 500. Before this, ancient mathematicians struggled with the concept of `nothing' being `something'. 2. Planck's Constant This is the smallest number that we will be looking at today other than zero.
    [Show full text]
  • WRITING and READING NUMBERS in ENGLISH 1. Number in English 2
    WRITING AND READING NUMBERS IN ENGLISH 1. Number in English 2. Large Numbers 3. Decimals 4. Fractions 5. Power / Exponents 6. Dates 7. Important Numerical expressions 1. NUMBERS IN ENGLISH Cardinal numbers (one, two, three, etc.) are adjectives referring to quantity, and the ordinal numbers (first, second, third, etc.) refer to distribution. Number Cardinal Ordinal In numbers 1 one First 1st 2 two second 2nd 3 three third 3rd 4 four fourth 4th 5 five fifth 5th 6 six sixth 6th 7 seven seventh 7th 8 eight eighth 8th 9 nine ninth 9th 10 ten tenth 10th 11 eleven eleventh 11th 12 twelve twelfth 12th 13 thirteen thirteenth 13th 14 fourteen fourteenth 14th 15 fifteen fifteenth 15th 16 sixteen sixteenth 16th 17 seventeen seventeenth 17th 18 eighteen eighteenth 18th 19 nineteen nineteenth 19th 20 twenty twentieth 20th 21 twenty-one twenty-first 21st 22 twenty-two twenty-second 22nd 23 twenty-three twenty-third 23rd 1 24 twenty-four twenty-fourth 24th 25 twenty-five twenty-fifth 25th 26 twenty-six twenty-sixth 26th 27 twenty-seven twenty-seventh 27th 28 twenty-eight twenty-eighth 28th 29 twenty-nine twenty-ninth 29th 30 thirty thirtieth 30th st 31 thirty-one thirty-first 31 40 forty fortieth 40th 50 fifty fiftieth 50th 60 sixty sixtieth 60th th 70 seventy seventieth 70 th 80 eighty eightieth 80 90 ninety ninetieth 90th 100 one hundred hundredth 100th 500 five hundred five hundredth 500th 1,000 One/ a thousandth 1000th thousand one thousand one thousand five 1500th 1,500 five hundred, hundredth or fifteen hundred 100,000 one hundred hundred thousandth 100,000th thousand 1,000,000 one million millionth 1,000,000 ◊◊ Click on the links below to practice your numbers: http://www.manythings.org/wbg/numbers-jw.html https://www.englisch-hilfen.de/en/exercises/numbers/index.php 2 We don't normally write numbers with words, but it's possible to do this.
    [Show full text]
  • Parameter Free Induction and Provably Total Computable Functions
    Parameter free induction and provably total computable functions Lev D. Beklemishev∗ Steklov Mathematical Institute Gubkina 8, 117966 Moscow, Russia e-mail: [email protected] November 20, 1997 Abstract We give a precise characterization of parameter free Σn and Πn in- − − duction schemata, IΣn and IΠn , in terms of reflection principles. This I − I − allows us to show that Πn+1 is conservative over Σn w.r.t. boolean com- binations of Σn+1 sentences, for n ≥ 1. In particular, we give a positive I − answer to a question, whether the provably recursive functions of Π2 are exactly the primitive recursive ones. We also characterize the provably − recursive functions of theories of the form IΣn + IΠn+1 in terms of the fast growing hierarchy. For n = 1 the corresponding class coincides with the doubly-recursive functions of Peter. We also obtain sharp results on the strength of bounded number of instances of parameter free induction in terms of iterated reflection. Keywords: parameter free induction, provably recursive functions, re- flection principles, fast growing hierarchy Mathematics Subject Classification: 03F30, 03D20 1 Introduction In this paper we shall deal with the first order theories containing Kalmar ele- mentary arithmetic EA or, equivalently, I∆0 + Exp (cf. [11]). We are interested in the general question how various ways of formal reasoning correspond to models of computation. This kind of analysis is traditionally based on the con- cept of provably total recursive function (p.t.r.f.) of a theory. Given a theory T containing EA, a function f(~x) is called provably total recursive in T , iff there is a Σ1 formula φ(~x, y), sometimes called specification, that defines the graph of f in the standard model of arithmetic and such that T ⊢ ∀~x∃!y φ(~x, y).
    [Show full text]
  • Simple Statements, Large Numbers
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2007 Simple Statements, Large Numbers Shana Streeks University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Streeks, Shana, "Simple Statements, Large Numbers" (2007). MAT Exam Expository Papers. 41. https://digitalcommons.unl.edu/mathmidexppap/41 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Master of Arts in Teaching (MAT) Masters Exam Shana Streeks In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Gordon Woodward, Advisor July 2007 Simple Statements, Large Numbers Shana Streeks July 2007 Page 1 Streeks Simple Statements, Large Numbers Large numbers are numbers that are significantly larger than those ordinarily used in everyday life, as defined by Wikipedia (2007). Large numbers typically refer to large positive integers, or more generally, large positive real numbers, but may also be used in other contexts. Very large numbers often occur in fields such as mathematics, cosmology, and cryptography. Sometimes people refer to numbers as being “astronomically large”. However, it is easy to mathematically define numbers that are much larger than those even in astronomy. We are familiar with the large magnitudes, such as million or billion.
    [Show full text]
  • 1 Powers of Two
    A. V. GERBESSIOTIS CS332-102 Spring 2020 Jan 24, 2020 Computer Science: Fundamentals Page 1 Handout 3 1 Powers of two Definition 1.1 (Powers of 2). The expression 2n means the multiplication of n twos. Therefore, 22 = 2 · 2 is a 4, 28 = 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 is 256, and 210 = 1024. Moreover, 21 = 2 and 20 = 1. Several times one might write 2 ∗ ∗n or 2ˆn for 2n (ˆ is the hat/caret symbol usually co-located with the numeric-6 keyboard key). Prefix Name Multiplier d deca 101 = 10 h hecto 102 = 100 3 Power Value k kilo 10 = 1000 6 0 M mega 10 2 1 9 1 G giga 10 2 2 12 4 T tera 10 2 16 P peta 1015 8 2 256 E exa 1018 210 1024 d deci 10−1 216 65536 c centi 10−2 Prefix Name Multiplier 220 1048576 m milli 10−3 Ki kibi or kilobinary 210 − 230 1073741824 m micro 10 6 Mi mebi or megabinary 220 40 n nano 10−9 Gi gibi or gigabinary 230 2 1099511627776 −12 40 250 1125899906842624 p pico 10 Ti tebi or terabinary 2 f femto 10−15 Pi pebi or petabinary 250 Figure 1: Powers of two Figure 2: SI system prefixes Figure 3: SI binary prefixes Definition 1.2 (Properties of powers). • (Multiplication.) 2m · 2n = 2m 2n = 2m+n. (Dot · optional.) • (Division.) 2m=2n = 2m−n. (The symbol = is the slash symbol) • (Exponentiation.) (2m)n = 2m·n. Example 1.1 (Approximations for 210 and 220 and 230).
    [Show full text]
  • Big Numbers Tom Davis [email protected] September 21, 2011
    Big Numbers Tom Davis [email protected] http://www.geometer.org/mathcircles September 21, 2011 1 Introduction The problem is that we tend to live among the set of puny integers and generally ignore the vast infinitude of larger ones. How trite and limiting our view! — P.D. Schumer It seems that most children at some age get interested in large numbers. “What comes after a thousand? After a million? After a billion?”, et cetera, are common questions. Obviously there is no limit; whatever number you name, a larger one can be obtained simply by adding one. But what is interesting is just how large a number can be expressed in a fairly compact way. Using the standard arithmetic operations (addition, subtraction, multiplication, division and exponentia- tion), what is the largest number you can make using three copies of the digit “9”? It’s pretty clear we should just stick to exponents, and given that, here are some possibilities: 999, 999, 9 999, and 99 . 9 9 Already we need to be a little careful with the final one: 99 . Does this mean: (99)9 or 9(9 )? Since (99)9 = 981 this interpretation would gain us very little. If this were the standard definition, then why c not write ab as abc? Because of this, a tower of exponents is always interpreted as being evaluated from d d c c c (c ) right to left. In other words, ab = a(b ), ab = a(b ), et cetera. 9 With this definition of towers of exponents, it is clear that 99 is the best we can do.
    [Show full text]
  • Primality Testing for Beginners
    STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker http://dx.doi.org/10.1090/stml/070 Primality Testing for Beginners STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell Gerald B. Folland (Chair) Serge Tabachnikov The cover illustration is a variant of the Sieve of Eratosthenes (Sec- tion 1.5), showing the integers from 1 to 2704 colored by the number of their prime factors, including repeats. The illustration was created us- ing MATLAB. The back cover shows a phase plot of the Riemann zeta function (see Appendix A), which appears courtesy of Elias Wegert (www.visual.wegert.com). 2010 Mathematics Subject Classification. Primary 11-01, 11-02, 11Axx, 11Y11, 11Y16. For additional information and updates on this book, visit www.ams.org/bookpages/stml-70 Library of Congress Cataloging-in-Publication Data Rempe-Gillen, Lasse, 1978– author. [Primzahltests f¨ur Einsteiger. English] Primality testing for beginners / Lasse Rempe-Gillen, Rebecca Waldecker. pages cm. — (Student mathematical library ; volume 70) Translation of: Primzahltests f¨ur Einsteiger : Zahlentheorie - Algorithmik - Kryptographie. Includes bibliographical references and index. ISBN 978-0-8218-9883-3 (alk. paper) 1. Number theory. I. Waldecker, Rebecca, 1979– author. II. Title. QA241.R45813 2014 512.72—dc23 2013032423 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • The Notion Of" Unimaginable Numbers" in Computational Number Theory
    Beyond Knuth’s notation for “Unimaginable Numbers” within computational number theory Antonino Leonardis1 - Gianfranco d’Atri2 - Fabio Caldarola3 1 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy e-mail: [email protected] 2 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy 3 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy e-mail: [email protected] Abstract Literature considers under the name unimaginable numbers any positive in- teger going beyond any physical application, with this being more of a vague description of what we are talking about rather than an actual mathemati- cal definition (it is indeed used in many sources without a proper definition). This simply means that research in this topic must always consider shortened representations, usually involving recursion, to even being able to describe such numbers. One of the most known methodologies to conceive such numbers is using hyper-operations, that is a sequence of binary functions defined recursively starting from the usual chain: addition - multiplication - exponentiation. arXiv:1901.05372v2 [cs.LO] 12 Mar 2019 The most important notations to represent such hyper-operations have been considered by Knuth, Goodstein, Ackermann and Conway as described in this work’s introduction. Within this work we will give an axiomatic setup for this topic, and then try to find on one hand other ways to represent unimaginable numbers, as well as on the other hand applications to computer science, where the algorith- mic nature of representations and the increased computation capabilities of 1 computers give the perfect field to develop further the topic, exploring some possibilities to effectively operate with such big numbers.
    [Show full text]
  • World Happiness REPORT Edited by John Helliwell, Richard Layard and Jeffrey Sachs World Happiness Report Edited by John Helliwell, Richard Layard and Jeffrey Sachs
    World Happiness REPORT Edited by John Helliwell, Richard Layard and Jeffrey Sachs World Happiness reporT edited by John Helliwell, richard layard and Jeffrey sachs Table of ConTenTs 1. Introduction ParT I 2. The state of World Happiness 3. The Causes of Happiness and Misery 4. some Policy Implications references to Chapters 1-4 ParT II 5. Case study: bhutan 6. Case study: ons 7. Case study: oeCd 65409_Earth_Chapter1v2.indd 1 4/30/12 3:46 PM Part I. Chapter 1. InTrodUCTIon JEFFREY SACHS 2 Jeffrey D. Sachs: director, The earth Institute, Columbia University 65409_Earth_Chapter1v2.indd 2 4/30/12 3:46 PM World Happiness reporT We live in an age of stark contradictions. The world enjoys technologies of unimaginable sophistication; yet has at least one billion people without enough to eat each day. The world economy is propelled to soaring new heights of productivity through ongoing technological and organizational advance; yet is relentlessly destroying the natural environment in the process. Countries achieve great progress in economic development as conventionally measured; yet along the way succumb to new crises of obesity, smoking, diabetes, depression, and other ills of modern life. 1 These contradictions would not come as a shock to the greatest sages of humanity, including Aristotle and the Buddha. The sages taught humanity, time and again, that material gain alone will not fulfi ll our deepest needs. Material life must be harnessed to meet these human needs, most importantly to promote the end of suffering, social justice, and the attainment of happiness. The challenge is real for all parts of the world.
    [Show full text]
  • 36 Scientific Notation
    36 Scientific Notation Scientific notation is used to express extremely large or extremely small numbers efficiently. The main idea is to write the number you want as a number between 1 and 10 multiplied by an integer power of 10. Fill in the blanks in the table below. Write the decimal form of the number given in scientific notation. Then give the calculator’s notation for the scientific notation. This is the only time you should write this calculator notation. Calculator notation is not acceptable in your written work; use a human language! The last column is for a word name for the number. In a few rows, you will write the scientific notation yourself. Scientific Decimal Notation Calculator Word name for the notation notation number One billion one billion dollars dollars 1.0 ×10 9 dollars One year 3.16 ×10 7 seconds Distance from earth to moon 3.8 ×10 8 meters 6.24 ×10 23 Mass of Mars 624 sextillion kg kilograms 1.0 ×10 -9 Nanosecond seconds 8 Speed of tv 3.0 ×10 signals meters/second -27 -27 Atomic mass 1.66 ×10 Just say, “1.66 ×10 unit kilograms kg”! × 12 Light year 6 10 miles 15 Light year 9.5 ×10 meters One billion light years meters 16 Parsec 3.1 ×10 meters 6 Megaparsec 10 parsecs Megabyte = 220 = 1,048,576 20 2 bytes bytes bytes Micron One millionth of a meter The number of About one hundred stars in the billion Milky Way -14 Diameter of a 7.5 ×10 carbon-12 meters atom Rosalie A.
    [Show full text]
  • Ackermann and the Superpowers
    Ackermann and the superpowers Ant´onioPorto and Armando B. Matos Original version 1980, published in \ACM SIGACT News" Modified in October 20, 2012 Modified in January 23, 2016 (working paper) Abstract The Ackermann function a(m; n) is a classical example of a total re- cursive function which is not primitive recursive. It grows faster than any primitive recursive function. It is usually defined by a general recurrence together with two \boundary" conditions. In this paper we obtain a closed form of a(m; n), which involves the Knuth superpower notation, namely m−2 a(m; n) = 2 " (n + 3) − 3. Generalized Ackermann functions, that is functions satisfying only the general recurrence and one of the bound- ary conditions are also studied. In particular, we show that the function m−2 2 " (n + 2) − 2 also belongs to the \Ackermann class". 1 Introduction and definitions The \arrow" or \superpower" notation has been introduced by Knuth [1] as a convenient way of expressing very large numbers. It is based on the infinite sequence of operators: +, ∗, ",... We shall see that the arrow notation is closely related to the Ackermann function (see, for instance, [2]). 1.1 The Superpowers Let us begin with the following sequence of integer operators, where all the operators are right associative. a × n = a + a + ··· + a (n a's) a " n = a × a × · · · × a (n a's) 2 a " n = a " a "···" a (n a's) m In general we define a " n as 1 Definition 1 m m−1 m−1 m−1 a " n = a " a "··· " a | {z } n a's m The operator " is not associative for m ≥ 1.
    [Show full text]
  • 53 More Algorithms
    Eric Roberts Handout #53 CS 106B March 9, 2015 More Algorithms Outline for Today • The plan for today is to walk through some of my favorite tree More Algorithms and graph algorithms, partly to demystify the many real-world applications that make use of those algorithms and partly to for Trees and Graphs emphasize the elegance and power of algorithmic thinking. • These algorithms include: – Google’s Page Rank algorithm for searching the web – The Directed Acyclic Word Graph format – The union-find algorithm for efficient spanning-tree calculation Eric Roberts CS 106B March 9, 2015 Page Rank Page Rank Algorithm The heart of the Google search engine is the page rank algorithm, The page rank algorithm gives each page a rating of its importance, which was described in a 1999 by Larry Page, Sergey Brin, Rajeev which is a recursively defined measure whereby a page becomes Motwani, and Terry Winograd. important if other important pages link to it. The PageRank Citation Ranking: One way to think about page rank is to imagine a random surfer on Bringing Order to the Web the web, following links from page to page. The page rank of any page is roughly the probability that the random surfer will land on a January 29, 1998 particular page. Since more links go to the important pages, the Abstract surfer is more likely to end up there. The importance of a Webpage is an inherently subjective matter, which depends on the reader’s interests, knowledge and attitudes. But there is still much that can be said objectively about the relative importance of Web pages.
    [Show full text]