NBPF7 Promotes the Proliferation of Α-Catenin-Knockdown Hacat Cells Via Functional Interaction with the NF-Κb Pathway
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Universidade Estadual De Campinas Instituto De Biologia
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso. -
Downregulation of Nuclear and Cytoplasmic Chibby Is Associated with Advanced Cervical Cancer
6632 ONCOLOGY LETTERS 14: 6632-6644, 2017 Downregulation of nuclear and cytoplasmic Chibby is associated with advanced cervical cancer MING-CHANG YANG1,2*, SHANG-TAO CHIEN3,4*, TZU-FENG YANG2,5, SHIH-YI LIN3, TAI-MIN LEE3 and YI-REN HONG1,6,7 1 2 Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424; Laboratory of 3 Medical Research; Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284; 4Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102; 5Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284; 6Department of Biochemistry, Faculty of Medicine, College of Medicine; 7Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C. Received March 11, 2014; Accepted June 9, 2017 DOI: 10.3892/ol.2017.7050 Abstract. Chibby has been identified as a putative tumor tumors, in which a significantly increased level of protein suppressor and antagonist to β-catenin, thereby controlling expression was detected. Chibby may be a tumor suppressor in the Wnt signaling pathway. Chibby is typically downregulated cervical cancer, since the dysregulation of Chibby expression is in numerous types of cancer and may be associated with associated with tumorigenesis in cervical cancer. Chibby and tumorigenesis. The present study aimed at clarifying the β-catenin expression together may potentially to a biomarker following: i) Whether Chibby antagonizes β-catenin in cervical for disease progression in cervical cancer. cancer; ii) whether Chibby and β-catenin mRNA expression is associated with cancer progression; and iii) whether Chibby Introduction and β-catenin expression may be used as a biomarker. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis
Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis Deepti Verma, Anna-Karin Ekman, Cecilia Bivik Eding and Charlotta Enerbäck The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-147791 N.B.: When citing this work, cite the original publication. Verma, D., Ekman, A., Bivik Eding, C., Enerbäck, C., (2018), Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis, Journal of Investigative Dermatology, 138(5), 1088-1093. https://doi.org/10.1016/j.jid.2017.11.036 Original publication available at: https://doi.org/10.1016/j.jid.2017.11.036 Copyright: Elsevier http://www.elsevier.com/ Genome-Wide DNA Methylation Profiling Identifies Differential Methylation in Uninvolved Psoriatic Epidermis Deepti Verma*a, Anna-Karin Ekman*a, Cecilia Bivik Edinga and Charlotta Enerbäcka *Authors contributed equally aIngrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden Corresponding author: Charlotta Enerbäck Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Linköping University SE-581 85 Linköping, Sweden Phone: +46 10 103 7429 E-mail: [email protected] Short title Differential methylation in psoriasis Abbreviations CGI, CpG island; DMS, differentially methylated site; RRBS, reduced representation bisulphite sequencing Keywords (max 6) psoriasis, epidermis, methylation, Wnt, susceptibility, expression 1 ABSTRACT Psoriasis is a chronic inflammatory skin disease with both local and systemic components. Genome-wide approaches have identified more than 60 psoriasis-susceptibility loci, but genes are estimated to explain only one third of the heritability in psoriasis, suggesting additional, yet unidentified, sources of heritability. -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
In a Neuroblastoma Patient Disrupts NBPF1, a Novel Putative Tumor
A Constitutional Translocation t(1;17)(p36.2;q11.2) in a Neuroblastoma Patient Disrupts NBPF1 , a novel putative tumor suppressor gene Vanessa Andries , Karl Vandepoele , Katrien Staes, and Frans van Roy Molecular Cell Biology Unit, Dept. for Molecular Biomedical Research, VIB/Ghent University, Technologiepark 927, B-9052 Ghent (Zwijnaarde) E-mail: [email protected], [email protected] Neuroblastoma (NB) is the most common extracranial solid tumor in children and is characterized by a number of recurrent genetic alterations: gain of chromosome 17q, amplification of MYCN , and deletion of 1p36. We found that a constitutional translocation t(1;17)(p36.2;q11.2) in a neuroblastoma patient (Laureys et al., 1995) resulted in the disruption of a novel gene, NBPF1 (Neuroblastoma Breakpoint Family, member 1). This gene is built of repetitive elements and is subject of structural variation in the human population. Thorough analysis of genomic sequences revealed that NBPF1 is a member of a recently expanded gene family, with gene copies located on segmental duplications of chromosome 1 (Vandepoele et al., 2005). Both in silico and in vitro analysis failed to identify any rodent orthologs for the human NBPF genes. The members of the NBPF gene family are widely expressed, both in normal and cancerous tissues, including neuroblastoma cells. Our identification of NBPF-interacting proteins may link these genes to important signalling pathways such as the Wnt and NF-kappaB signalling pathways. The high sequence identity between different NBPF paralogs has thus far disabled the analysis of gene-specific expression patterns, but the development of an NBPF1 -specific qRT-PCR assay is in progress. -
Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol . -
Progressive Modulation of the Human Olfactory Bulb
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 41), pp: 69663-69679 Research Paper Progressive modulation of the human olfactory bulb transcriptome during Alzheimer´s disease evolution: novel insights into the olfactory signaling across proteinopathies Mercedes Lachen-Montes1,2, María Victoria Zelaya1,2,3, Víctor Segura2,4, Joaquín Fernández-Irigoyen1,2,5,* and Enrique Santamaría1,2,5,* 1Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain 2IDISNA, Navarra Institute for Health Research, Pamplona, Spain 3Pathological Anatomy Department, Navarra Hospital Complex, Pamplona, Spain 4Bioinformatics Unit, Center for Applied Medical Research, University of Navarra, Pamplona, Spain 5Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain *These authors share senior authorship Correspondence to: Enrique Santamaría, email: [email protected] Keywords: Alzheimer, neurodegeneration, dementia, olfactory bulb, transcriptomics Received: January 21, 2017 Accepted: May 07, 2017 Published: May 23, 2017 Copyright: Lachen-Montes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Alzheimer´s disease (AD) is characterized by progressive dementia, initially presenting olfactory dysfunction. Despite the olfactory bulb (OB) is the first central structure of the olfactory pathway, we lack a complete molecular characterization of the transcriptional events that occurs in this olfactory area during AD progression. To address this gap in knowledge, we have assessed the genome-wide expression in postmortem OBs from subjects with varying degree of AD pathology. -
Precise, Pan-Cancer Discovery of Gene Fusions Reveals a Signature Of
bioRxiv preprint doi: https://doi.org/10.1101/178061; this version posted August 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Precise, pan-cancer discovery of gene fusions reveals a signature of selection in primary 2 tumors 3 4 Donald Eric Freeman1,3,Gillian Lee Hsieh1, Jonathan Michael Howard1, Erik Lehnert2, Julia 5 Salzman1,3,4* 6 7 Author affiliation 8 1Stanford University Department of Biochemistry, 279 Campus Drive, Stanford, CA 94305 9 2Seven Bridges Genomics, 1 Main Street, Suite 500, Cambridge MA 02142 10 3Stanford University Department of Biomedical Data Science, Stanford, CA 94305-5456 11 4Stanford Cancer Institute, Stanford, CA 94305 12 13 *Corresponding author [email protected] 14 15 Short Abstract: 16 The eXtent to which gene fusions function as drivers of cancer remains a critical open question 17 in cancer biology. In principle, transcriptome sequencing provided by The Cancer Genome 18 Atlas (TCGA) enables unbiased discovery of gene fusions and post-analysis that informs the 19 answer to this question. To date, such an analysis has been impossible because of 20 performance limitations in fusion detection algorithms. By engineering a new, more precise, 21 algorithm and statistical approaches to post-analysis of fusions called in TCGA data, we report 22 new recurrent gene fusions, including those that could be druggable; new candidate pan-cancer 23 oncogenes based on their profiles in fusions; and prevalent, previously overlooked, candidate 24 oncogenic gene fusions in ovarian cancer, a disease with minimal treatment advances in recent 25 decades. -
Hominin-Specific NOTCH2 Paralogs Expand Human Cortical Neurogenesis
bioRxiv preprint doi: https://doi.org/10.1101/221358; this version posted November 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Hominin-specific NOTCH2 paralogs expand human cortical neurogenesis through regulation of Delta/Notch interactions. Ikuo K. Suzuki1,2, David Gacquer1, Roxane Van Heurck1,2, Devesh Kumar1,2, Marta Wojno1,2, Angéline Bilheu1,2, Adèle Herpoel1,2, Julian Chéron1,2, Franck Polleux6, Vincent Detours1, and Pierre Vanderhaeghen1,2,3,4,5*. 1 Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), B-1070 Brussels, Belgium 2 ULB Institute of Neuroscience (UNI), B-1070 Brussels, Belgium 3 WELBIO, Université Libre de Bruxelles, B-1070 Brussels, Belgium 4 VIB, Center for Brain and Disease Research, B-3000 Leuven, Belgium 5 University of Leuven (KU Leuven), Department of Neurosciences, B-3000 Leuven, Belgium 6 Department of Neuroscience, Columbia University Medical Center, Columbia University, New York, NY 10027, USA *Correspondence and Lead Contact: [email protected] Keywords Human brain development, human brain evolution, neurogenesis, Notch pathway, cerebral cortex bioRxiv preprint doi: https://doi.org/10.1101/221358; this version posted November 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary The human cerebral cortex has undergone rapid expansion and increased complexity during recent evolution. Hominid-specific gene duplications represent a major driving force of evolution, but their impact on human brain evolution remains unclear. -
Molecular Signatures Differentiate Immune States in Type 1 Diabetes Families
Page 1 of 65 Diabetes Molecular signatures differentiate immune states in Type 1 diabetes families Yi-Guang Chen1, Susanne M. Cabrera1, Shuang Jia1, Mary L. Kaldunski1, Joanna Kramer1, Sami Cheong2, Rhonda Geoffrey1, Mark F. Roethle1, Jeffrey E. Woodliff3, Carla J. Greenbaum4, Xujing Wang5, and Martin J. Hessner1 1The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin Milwaukee, WI 53226, USA. 2The Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. 3Flow Cytometry & Cell Separation Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA. 4Diabetes Research Program, Benaroya Research Institute, Seattle, WA, 98101, USA. 5Systems Biology Center, the National Heart, Lung, and Blood Institute, the National Institutes of Health, Bethesda, MD 20824, USA. Corresponding author: Martin J. Hessner, Ph.D., The Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA Tel: 011-1-414-955-4496; Fax: 011-1-414-955-6663; E-mail: [email protected]. Running title: Innate Inflammation in T1D Families Word count: 3999 Number of Tables: 1 Number of Figures: 7 1 For Peer Review Only Diabetes Publish Ahead of Print, published online April 23, 2014 Diabetes Page 2 of 65 ABSTRACT Mechanisms associated with Type 1 diabetes (T1D) development remain incompletely defined. Employing a sensitive array-based bioassay where patient plasma is used to induce transcriptional responses in healthy leukocytes, we previously reported disease-specific, partially IL-1 dependent, signatures associated with pre and recent onset (RO) T1D relative to unrelated healthy controls (uHC). -
Interlocus Gene Conversion Events Introduce Deleterious Mutations Into at Least 1% of Human Genes Associated with Inherited Disease
Supplemental Material for: Interlocus gene conversion events introduce deleterious mutations into at least 1% of human genes associated with inherited disease Claudio Casola1, Ugne Zekonyte1, Andrew D. Phillips2, David N. Cooper2, and Matthew W. Hahn1,3 1Department of Biology and 3School of Informatics and Computing, Indiana University, Bloomington, IN 47405 2 Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom. Corresponding author: Claudio Casola Department of Biology, Indiana University 1001 East 3rd Street, Bloomington, IN 47405 Phone: 812-856-7016 Fax: 812-855-6705 Email: [email protected] 1 Methods Validation of disease alleles originating from interlocus gene conversion All candidate IGC-derived disease alleles identified by our BLAST searches were further examined to identify high-confidence IGC events. Such alleles required at least one disease-associated mutation plus another mutation to be shared by the IGC donor sequence. In addition, we excluded from our data set those cases where hypermutable CpG sites constituted all the diagnostic mutations. After careful examination of the available literature, we also disregarded several putative IGC events that were deemed likely to represent experimental artifacts. In particular, we identified several cases where primer pairs, which were originally considered to have amplified a single genomic locus or cDNA transcript, also appeared to be capable of amplifying sequences paralogous to the target genes. Such instances included disease alleles from the genes CFC1 (Bamford et al. 2000), GPD2 (Novials et al. 1997) and HLA-DRB1 (Velickovic et al. 2004). In the first two of these cases, we noted that the primer pairs that had been originally designed to amplify the genes specifically, also perfectly matched the paralogous gene CFC1B and an unlinked processed pseudogene of GPD2, respectively.