Functional Investigations of Duf1220 Protein Domains

Total Page:16

File Type:pdf, Size:1020Kb

Functional Investigations of Duf1220 Protein Domains FUNCTIONAL INVESTIGATIONS OF DUF1220 PROTEIN DOMAINS by JONATHON G. KEENEY B.A., University of Colorado Boulder, 2006 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Neuroscience Program 2014 ii This thesis for the Doctor of Philosophy degree by Jonathon G. Keeney has been approved for the Neuroscience Program by S. Rock Levinson, Chair Thomas Finger David Pollock Diego Restrepo Matthew Taylor James Sikela, Advisor Date __5/9/14__ iii Keeney, Jonathon G. (Ph.D., Neuroscience) Functional Investigations of DUF1220 Protein Domains Thesis directed by Professor James Sikela ABSTRACT Copy number expansion of genetic content is a powerful way in which species adapt to environments, and a powerful mechanism by which novel genes are generated. DUF1220 domains were previously identified as showing the largest human lineage- specific increase in copy number of any protein coding sequence with the human genome. While the function of DUF1220 domains remains obscure, the Sikela lab has identified a strong correlation between increasing DUF1220 copy number and increases in both brain size and cortical neuron number within great apes. In addition, a significant association has been reported between reduction and gain of DUF1220 copy number and brain size in microcephaly and macrocephaly, respectively . This thesis investigates the function of DUF1220 domains by further investigating the correlation between DUF1220 copy number and several physical brain measurements within anthropoid primates (monkey, ape and human). The spatiotemporal expression pattern in human fetal brain tissue was then evaluated, and suggested a role in neural progenitor expansion. In vitro cell culture experiments were then used to demonstrate the ability of DUF1220 to promote proliferation of human neural stem cells. Transcriptomics and proteomics studies both suggested a role in down regulating mitochondrial function, and this result was confirmed by live cell imaging using a iv mitochondrial dye. Finally, a functional evaluation of mitochondrial output in DUF1220 over expressing cells was performed, and found to slightly reduce metabolic output. I offer potential explanations linking the ability of DUF1220 to promote proliferation with the apparent reduction in mitochondrial output. The form and content of this abstract are approved. I recommend its publication. Approved: Jim Sikela v DEDICATION I would like to dedicate this thesis to my sisters, Julia Morgan, Josie Keeney and Chelsea Keeney, for all of their steady, incredible support over many difficult years. Through many chaotic and unpredictable events, I have found in them the unconditional love and support I needed to overcome challenges and become a better person. vi ACKNOWLEDGEMENTS I would like to acknowledge Jack Davis for statistical analysis of data pertaining to my cell proliferation experiment (Figure III.7). I would also like to thank Miriam Post for providing human fetal brain tissue, Boye Schnack Nielson for in situ hybridization using LNA probes, and Julie Siegenthaler for her expert advice in analyzing these samples. I’d like to thank David Astling for his analysis of my RNAseq data and for providing me with Figure III. and Table III.1, Table III.2, Table III.3 and Table III.4 based on this data. Additionally, I’d like to thank Karl Vandepoele, Vanessa Andries and Frans van Roy for their DLD1Tr/NBPF1 and DLD1Tr/Mock cell lines, as well as a proteomic analysis of these cells (not included). I would like to thank Pamela Lopert and Manisha Patel for access to the Seahorse XF24 bioanalyzer, and for help in analyzing my results (Figure III.). Thank you very much to Suzana Herculano-Houzel and Mariana Gabi for evaluating the cellular composition of transgenic mice I developed during this project, and for their thoughtful analysis of this data, which was used to generate Figure III.. Finally, I would like to thank the Coleman Institute for Cognitive Disabilities for their generous support over four years of productive research. vii TABLE OF CONTENTS CHAPTER I. BACKGROUND ............................................................................................................ 1 Copy Number Variations ............................................................................................ 1 Developmental Neuroscience in Primates .............................................................. 18 II. SCOPE OF THE PROJECT ........................................................................................... 35 III. ORIGINAL RESEARCH ................................................................................................ 36 Additional Associations ............................................................................................ 36 DUF1220 Domains Are Associated with Increased Neural Stem Cell Proliferation in Simian Primates and Drive Proliferation in Human Neurons .................................................................................................................... 37 DUF1220 Domain Expression Down Regulates Mitochondrial Pathways .................................................................................................................. 53 A Mouse Model of DUF1220 in vivo ........................................................................ 76 IV. SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS ........................................... 86 Summary .................................................................................................................. 86 Conclusions .............................................................................................................. 90 Future Directions ..................................................................................................... 99 REFERENCES .................................................................................................................... 104 viii LIST OF TABLES TABLE III.1: Pathways associated with genes down regulated in our RNAseq analysis after exogenous expression of NBPF1 in DLD1Tr/NBPF1 cells .................................................. 59 III.2: Pathways associated with genes down regulated in our RNAseq analysis after exogenous expression of NBPF1 in DLD1Tr/Mock cells ................................................... 60 III.3: Pathways associated with genes up regulated in our RNAseq analysis after exogenous expression of NBPF1 in DLD1Tr/NBPF1 cells .................................................. 61 III.4: Pathways associated with genes up regulated in our RNAseq analysis after exogenous expression of NBPF1 in DLD1Tr/Mock cells ................................................... 62 III.5: Raw values generated by the Seahorse XF24 ........................................................... 67 ix LIST OF FIGURES FIGURE I.1: Mechanism of Copy Number Variations ....................................................................... 1 I.2: The Fate of Duplicated Genetic Content ...................................................................... 3 I.3: Array-Based CGH Setup ................................................................................................ 7 I.4: Compilation of Primate Lineage Specific Copy Number Variations ............................. 9 I.5: Graphical Depiction of DUF1220 Organization Within Genes .................................... 12 I.6: Graphical Depiction of the Evolutionary Expansion of DUF1220 Domains ................ 15 I.7: Summary of genomic copy number variations known to be associated with cognitive diseases ............................................................................................................................. 17 I.8: Proposed Mechanism Linking DUF1220, Brain Evolution and Disease. ..................... 19 I.9: Specification of transitory, developmental zones in the neocortex .......................... 23 I.10: The trajectory of cells within a radial unit expands the neocortex .......................... 25 I.11: Graphical Description of the Neuronal Scaling Rules Within the Cerebral Cortex of the Primate and Rodent Lineages ..................................................................................... 33 III.1: Probe Quantification ................................................................................................. 41 III.2: Manual Inspection of Cell Coverage ......................................................................... 43 III.3: In situ hybridization results of human fetal brain tissues throughout development, part I: Stages 6 - 15 ........................................................................................................... 44 III.4: In situ hybridization results of human fetal brain tissues throughout development, Part II: Stages 16 - 25 ........................................................................................................ 45 III.5: In situ hybridization results of human fetal brain tissues throughout development, Part III: Stages 28 - 39 ....................................................................................................... 46 III.6: Timeline of DUF1220 Expression and Human Fetal Brain Development ................. 47 III.7: Exogenous Expression of DUF1220 promotes Neural Progenitor Cell Number ....... 50 III.8: Histogram of False Discovery Rates .......................................................................... 62 III.9: Induction of NBPF1 over expression decreases
Recommended publications
  • Universidade Estadual De Campinas Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso.
    [Show full text]
  • Precise, Pan-Cancer Discovery of Gene Fusions Reveals a Signature Of
    bioRxiv preprint doi: https://doi.org/10.1101/178061; this version posted August 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Precise, pan-cancer discovery of gene fusions reveals a signature of selection in primary 2 tumors 3 4 Donald Eric Freeman1,3,Gillian Lee Hsieh1, Jonathan Michael Howard1, Erik Lehnert2, Julia 5 Salzman1,3,4* 6 7 Author affiliation 8 1Stanford University Department of Biochemistry, 279 Campus Drive, Stanford, CA 94305 9 2Seven Bridges Genomics, 1 Main Street, Suite 500, Cambridge MA 02142 10 3Stanford University Department of Biomedical Data Science, Stanford, CA 94305-5456 11 4Stanford Cancer Institute, Stanford, CA 94305 12 13 *Corresponding author [email protected] 14 15 Short Abstract: 16 The eXtent to which gene fusions function as drivers of cancer remains a critical open question 17 in cancer biology. In principle, transcriptome sequencing provided by The Cancer Genome 18 Atlas (TCGA) enables unbiased discovery of gene fusions and post-analysis that informs the 19 answer to this question. To date, such an analysis has been impossible because of 20 performance limitations in fusion detection algorithms. By engineering a new, more precise, 21 algorithm and statistical approaches to post-analysis of fusions called in TCGA data, we report 22 new recurrent gene fusions, including those that could be druggable; new candidate pan-cancer 23 oncogenes based on their profiles in fusions; and prevalent, previously overlooked, candidate 24 oncogenic gene fusions in ovarian cancer, a disease with minimal treatment advances in recent 25 decades.
    [Show full text]
  • Hominin-Specific NOTCH2 Paralogs Expand Human Cortical Neurogenesis
    bioRxiv preprint doi: https://doi.org/10.1101/221358; this version posted November 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Hominin-specific NOTCH2 paralogs expand human cortical neurogenesis through regulation of Delta/Notch interactions. Ikuo K. Suzuki1,2, David Gacquer1, Roxane Van Heurck1,2, Devesh Kumar1,2, Marta Wojno1,2, Angéline Bilheu1,2, Adèle Herpoel1,2, Julian Chéron1,2, Franck Polleux6, Vincent Detours1, and Pierre Vanderhaeghen1,2,3,4,5*. 1 Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), B-1070 Brussels, Belgium 2 ULB Institute of Neuroscience (UNI), B-1070 Brussels, Belgium 3 WELBIO, Université Libre de Bruxelles, B-1070 Brussels, Belgium 4 VIB, Center for Brain and Disease Research, B-3000 Leuven, Belgium 5 University of Leuven (KU Leuven), Department of Neurosciences, B-3000 Leuven, Belgium 6 Department of Neuroscience, Columbia University Medical Center, Columbia University, New York, NY 10027, USA *Correspondence and Lead Contact: [email protected] Keywords Human brain development, human brain evolution, neurogenesis, Notch pathway, cerebral cortex bioRxiv preprint doi: https://doi.org/10.1101/221358; this version posted November 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary The human cerebral cortex has undergone rapid expansion and increased complexity during recent evolution. Hominid-specific gene duplications represent a major driving force of evolution, but their impact on human brain evolution remains unclear.
    [Show full text]
  • Interlocus Gene Conversion Events Introduce Deleterious Mutations Into at Least 1% of Human Genes Associated with Inherited Disease
    Supplemental Material for: Interlocus gene conversion events introduce deleterious mutations into at least 1% of human genes associated with inherited disease Claudio Casola1, Ugne Zekonyte1, Andrew D. Phillips2, David N. Cooper2, and Matthew W. Hahn1,3 1Department of Biology and 3School of Informatics and Computing, Indiana University, Bloomington, IN 47405 2 Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom. Corresponding author: Claudio Casola Department of Biology, Indiana University 1001 East 3rd Street, Bloomington, IN 47405 Phone: 812-856-7016 Fax: 812-855-6705 Email: [email protected] 1 Methods Validation of disease alleles originating from interlocus gene conversion All candidate IGC-derived disease alleles identified by our BLAST searches were further examined to identify high-confidence IGC events. Such alleles required at least one disease-associated mutation plus another mutation to be shared by the IGC donor sequence. In addition, we excluded from our data set those cases where hypermutable CpG sites constituted all the diagnostic mutations. After careful examination of the available literature, we also disregarded several putative IGC events that were deemed likely to represent experimental artifacts. In particular, we identified several cases where primer pairs, which were originally considered to have amplified a single genomic locus or cDNA transcript, also appeared to be capable of amplifying sequences paralogous to the target genes. Such instances included disease alleles from the genes CFC1 (Bamford et al. 2000), GPD2 (Novials et al. 1997) and HLA-DRB1 (Velickovic et al. 2004). In the first two of these cases, we noted that the primer pairs that had been originally designed to amplify the genes specifically, also perfectly matched the paralogous gene CFC1B and an unlinked processed pseudogene of GPD2, respectively.
    [Show full text]
  • The Driver of Extreme Human-Specific Olduvai Repeat Expansion Remains Highly Active in the Human
    Genetics: Early Online, published on November 21, 2019 as 10.1534/genetics.119.302782 1 The Driver of Extreme Human-Specific Olduvai Repeat Expansion Remains Highly Active in the Human 2 Genome 3 Ilea E. Heft,1,* Yulia Mostovoy,2,* Michal Levy-Sakin,2 Walfred Ma,2 Aaron J. Stevens,3 Steven 4 Pastor,4 Jennifer McCaffrey,4 Dario Boffelli,5 David I. Martin,5 Ming Xiao,4 Martin A. Kennedy,3 5 Pui-Yan Kwok,2,6,7 and James M. Sikela1 6 7 1Department of Biochemistry and Molecular Genetics, and Human Medical Genetics and 8 Genomics Program, University of Colorado School of Medicine, Aurora CO 80045 9 2Cardiovascular Research Institute, 6Department of Dermatology, and 7Institute for Human 10 Genetics, University of California, San Francisco, San Francisco, CA, USA 11 3Department of Pathology, University of Otago, Christchurch, New Zealand 8140 12 4School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104 13 5Children's Hospital Oakland Research Institute, Oakland, CA, 94609 14 15 Corresponding author: James M. Sikela: [email protected] 16 *Ilea E. Heft and Yulia Mostovoy contributed equally to this article. 17 1 Copyright 2019. 18 Abstract 19 Sequences encoding Olduvai protein domains (formerly DUF1220) show the greatest 20 human lineage-specific increase in copy number of any coding region in the genome and have 21 been associated, in a dosage-dependent manner, with brain size, cognitive aptitude, autism, 22 and schizophrenia. Tandem intragenic duplications of a three-domain block, termed the Olduvai 23 triplet, in four NBPF genes in the chromosomal 1q21.1-.2 region are primarily responsible for 24 the striking human-specific copy number increase.
    [Show full text]
  • DUF1220-Domain Copy Number Implicated in Human Brain-Size Pathology and Evolution
    ARTICLE DUF1220-Domain Copy Number Implicated in Human Brain-Size Pathology and Evolution Laura J. Dumas,1 Majesta S. O’Bleness,1 Jonathan M. Davis,1,2 C. Michael Dickens,1 Nathan Anderson,1 J.G. Keeney,1 Jay Jackson,1 Megan Sikela,1 Armin Raznahan,3 Jay Giedd,3 Judith Rapoport,3 Sandesh S.C. Nagamani,4 Ayelet Erez,4 Nicola Brunetti-Pierri,5,6 Rachel Sugalski,7 James R. Lupski,4 Tasha Fingerlin,2 Sau Wai Cheung,4 and James M. Sikela1,* DUF1220 domains show the largest human-lineage-specific increase in copy number of any protein-coding region in the human genome and map primarily to 1q21, where deletions and reciprocal duplications have been associated with microcephaly and macro- cephaly, respectively. Given these findings and the high correlation between DUF1220 copy number and brain size across primate line- À ages (R2 ¼ 0.98; p ¼ 1.8 3 10 6), DUF1220 sequences represent plausible candidates for underlying 1q21-associated brain-size pathol- ogies. To investigate this possibility, we used specialized bioinformatics tools developed for scoring highly duplicated DUF1220 sequences to implement targeted 1q21 array comparative genomic hybridization on individuals (n ¼ 42) with 1q21-associated micro- cephaly and macrocephaly. We show that of all the 1q21 genes examined (n ¼ 53), DUF1220 copy number shows the strongest asso- ciation with brain size among individuals with 1q21-associated microcephaly, particularly with respect to the three evolutionarily conserved DUF1220 clades CON1(p ¼ 0.0079), CON2 (p ¼ 0.0134), and CON3 (p ¼ 0.0116). Interestingly, all 1q21 DUF1220-encoding genes belonging to the NBPF family show significant correlations with frontal-occipital-circumference Z scores in the deletion group.
    [Show full text]
  • High Resolution Measurement of DUF1220 Domain Copy Number from Whole Genome Sequence Data David P
    Astling et al. BMC Genomics (2017) 18:614 DOI 10.1186/s12864-017-3976-z METHODOLOGYARTICLE Open Access High resolution measurement of DUF1220 domain copy number from whole genome sequence data David P. Astling1, Ilea E. Heft1, Kenneth L. Jones2 and James M. Sikela1* Abstract Background: DUF1220 protein domains found primarily in Neuroblastoma BreakPoint Family (NBPF) genes show the greatest human lineage-specific increase in copy number of any coding region in the genome. There are 302 haploid copies of DUF1220 in hg38 (~160 of which are human-specific) and the majority of these can be divided into 6 different subtypes (referred to as clades). Copy number changes of specific DUF1220 clades have been associated in a dose-dependent manner with brain size variation (both evolutionarily and within the human population), cognitive aptitude, autism severity, and schizophrenia severity. However, no published methods can directly measure copies of DUF1220 with high accuracy and no method can distinguish between domains within a clade. Results: Here we describe a novel method for measuring copies of DUF1220 domains and the NBPF genes in which they are found from whole genome sequence data. We have characterized the effect that various sequencing and alignment parameters and strategies have on the accuracy and precision of the method and defined the parameters that lead to optimal DUF1220 copy number measurement and resolution. We show that copy number estimates obtained using our read depth approach are highly correlated with those generated by ddPCR for three representative DUF1220 clades. By simulation, we demonstrate that our method provides sufficient resolution to analyze DUF1220 copy number variation at three levels: (1) DUF1220 clade copy number within individual genes and groups of genes (gene-specific clade groups) (2) genome wide DUF1220 clade copies and (3) gene copy number for DUF1220-encoding genes.
    [Show full text]
  • Chromosomal Breakpoints in Primary Colon Cancer Cluster at Sites of Structural Variants in the Genome
    Research Article Chromosomal Breakpoints in Primary Colon Cancer Cluster at Sites of Structural Variants in the Genome Jordi Camps,1 Marian Grade,1,3 Quang Tri Nguyen,1 Patrick Ho¨rmann,1 Sandra Becker,1 Amanda B. Hummon,1 Virginia Rodriguez,2 Settara Chandrasekharappa,2 Yidong Chen,1 Michael J. Difilippantonio,1 Heinz Becker,3 B. Michael Ghadimi,3 and Thomas Ried1 1Genetics Branch, Center for Cancer Research, National Cancer Institute/NIH; 2Genome Technology Branch, National Human Genome Research Institute/NIH, Bethesda, Maryland; and 3Department of General and Visceral Surgery, University Medicine Go¨ttingen, Go¨ttingen, Germany Abstract 8q, 13, and 20q as well as losses of chromosomes 4q, 8p, 17p, and 18q (2). Genomic aberrations on chromosome 8 are common in colon cancer, and are associated with lymph node and distant Within the last decade, microarray technology has been metastases as well as with disease susceptibility. This extensively applied to survey the cellular transcriptome of common prompted us to generate a high-resolution map of genomic solid tumors, including colorectal cancer, and for colon cancers, imbalances of chromosome 8 in 51 primary colon carcinomas gene expression signatures were subsequently correlated with using a custom-designed genomic array consisting of a tiling clinical outcome (for reviews, see refs. 3–5). However, high- path of BAC clones. This analysis confirmed the dominant role resolution mapping of chromosomal copy number changes has of this chromosome. Unexpectedly, the position of the break- only recently been achieved using BAC or cDNA clone-based arrays points suggested colocalization with structural variants in the (6–10).
    [Show full text]
  • Supplementary Data
    1 SUPPLEMENTARY FILES – DESCRIPTION AND LEGENDS Supplementary Data: Validation of amplicons, analysis of grade III IDC-NST of indeterminate phenotype and quantification of PPM1D protein levels by densitometric analysis. Supplementary Figure 1: Validation of CCND1 and EGFR amplifications in a series of 91 grade III-IDC-NST and CCNE1 amplifications on selected cases. (A) i) H&E ii) CISH iii) IHC for a) luminal tumour for CCND1 showing amplification and protein over-expression, b) basal-like tumour for CCND1 with normal copy number and no protein expression, c) EGFR non-amplified tumour with no protein expression d) EGFR amplified tumour showing strong protein expression. Amplification of CCNE1 in basal-like breast cancers. (B) Genome plots of two cases exhibiting amplification with the smallest region of overlap highlighted (i). FISH confirmation of CCNE1 amplification with RP11-327I05 (CCNE1) (red), showing amplification > 5 copies per nucleus (Bii). Supplementary Figure 2: Microarray-based comparative genomic hybridisation analysis of five grade III invasive ductal carcinomas of no special type of indeterminate phenotype. A) Representative genome plots. Log2 ratios are plotted on the Y axis against each clone according to genomic location on the X axis. The centromere is represented by a vertical dotted line. BACs categorised as displaying genomic gains as defined by aws ratios > 0.08 are highlighted in green and those categorised as genomic losses as defined by aws ratios < -0.08 are highlighted in red. Bi) The proportion of tumours in which each clone is gained (green bars) or lost (red bars) is plotted (Y axis) for each BAC clone according to genomic location (X axis).
    [Show full text]
  • In Silico Analysis of B3GALTL Gene Reveling 13 Novel Mutations Associated with Peters'-Plus Syndrome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.21.000695; this version posted March 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Original Article In Silico Analysis of B3GALTL Gene Reveling 13 Novel Mutations Associated with Peters'-plus syndrome Abdelrahman H. Abdelmoneim1*,Arwa A. Satti2, Miysaa I. Abdelmageed3, Naseem S. Murshed4, Nafisa M. Elfadol5, Mujahed I. Mustafa2 and Abdelrafie M. Makhawi2 1Faculty of Medicine, Alneelain University, Khartoum, Sudan.2Department of Biotechnology, University of Bahri, Khartoum, Sudan.3Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan.4Department of Microbiology, International University of Africa, Khartoum, Sudan.5Department of Molecular biology, National University Biomedical Research Institute, National University, Khartoum, Sudan *Corresponding author: Abdelrahman H. Abdelmoneim; [email protected] Abstract: Background: Peters'-plus syndrome is a rare autosomal recessive disorder, which is characterized by a specific malformation of the eye that includes corneal opaqueness and iridocorneal adhesions (Peters' anomaly) along with other systemic manifestations. Furthermore, various researches report the association between B3GALTL gene and Peters'-plus syndrome. In the current work we aim to analyze the deleterious SNPs in B3GALTL gene that predispose to Peters'-plus syndrome. Method: the associated SNPs of the coding region of the B3GALTL gene was acquired from National Center for Biotechnology Information and then analyzed by eight softwares (SIFT, Polyphen2, Proven, SNAP2, SNP@GO, PMut, Imutant and Mupro). The physiochemical properties of the resulted SNPs were then analyzed by Hope project website and visualized by chimera software.
    [Show full text]
  • Long-Term Exposure of MCF-12A Normal Human Breast Epithelial Cells to Ethanol Induces Epithelial Mesenchymal Transition and Oncogenic Features
    INTERNATIONAL JOURNAL OF ONCOLOGY 48: 2399-2414, 2016 Long-term exposure of MCF-12A normal human breast epithelial cells to ethanol induces epithelial mesenchymal transition and oncogenic features Robert GelfAND1,2*, DoloRes VeRNeT1,2*, KeViN bRuhN2, JAyDuTT VADGAmA1 and NesToR f. GoNzAlez-CadaviD1,2 1Department of medicine, Charles Drew university (CDu), los Angeles; 2Department of surgery, Los Angeles Biomedical Research Institute (LABioMed) at Harbor-UCLA Medical Center, Torrance, CA, USA Received January 29, 2016; Accepted february 24, 2016 DOI: 10.3892/ijo.2016.3461 Abstract. Alcoholism is associated with breast cancer inci- This suggests that low concentrations of ethanol, with little or dence and progression, and moderate chronic consumption of no mediation by acetaldehyde, induce EMT and some traits of ethanol is a risk factor. The mechanisms involved in alcohol's oncogenic transformation such as anchorage-independence in oncogenic effects are unknown, but it has been speculated that normal breast epithelial cells. they may be mediated by acetaldehyde. We used the immor- talized normal human epithelial breast cell line MCF-12A to Introduction determine whether short- or long-term exposure to ethanol or to acetaldehyde, using in vivo compatible ethanol concen- Alcoholism is a risk factor for breast cancer, with consumption trations, induces their oncogenic transformation and/or the of 3 or more drinks per day leading to a 40-50% increase in acquisition of epithelial mesenchymal transition (EMT). risk, and with approximately 50,000 alcohol-attributable cases Cultures of MCF-12A cells were incubated with 25 mM per year worldwide (1-3). It is postulated that the effects of ethanol or 2.5 mM acetaldehyde for 1 week, or with lower alcohol are not exerted in the early stage of the carcinogenic concentrations (1.0-2.5 mM for ethanol, 1.0 mM for acet- process, since alcohol effects are not associated with ductal aldehyde) for 4 weeks.
    [Show full text]
  • Proteolytic Activation of Human-Specific Olduvai Domains by the Furin
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.450945; this version posted July 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Proteolytic Activation of Human-specific Olduvai Domains by the Furin 2 Protease 3 Ashley Pacheco1†, Aaron Issaian1†, Jonathan Davis1, Nathan Anderson1, Travis Nemkov1, Beat 4 Vögeli1, Kirk Hansen1, James M. Sikela1* 5 1Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, 6 USA 7 †These authors contributed equally to this work. 8 9 *Author for Correspondence: James M. Sikela, Department of Biochemistry and Molecular 10 Genetics, University of Colorado, Aurora, CO, USA, [email protected] 11 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.450945; this version posted July 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 12 ABSTRACT 13 Olduvai protein domains (formerly DUF1220) show the greatest human-specific increase in copy 14 number of any coding region in the genome and are highly correlated with human brain 15 evolution and cognitive disease. The majority of human copies are found within four NBPF 16 genes organized in a variable number of a tandemly arranged three-domain blocks called 17 Olduvai triplets. Here we show that these human-specific Olduvai domains are 18 posttranslationally processed by the furin protease, with a cleavage site occurring once at each 19 triplet. These findings suggest that all expanded human-specific NBPF genes encode proproteins 20 consisting of many independent Olduvai triplet proteins which are activated by furin processing.
    [Show full text]