Introduction to Coding Theory Ron M
Total Page:16
File Type:pdf, Size:1020Kb
Cambridge University Press 978-0-521-84504-5 - Introduction to Coding Theory Ron M. Roth Index More information Index adjacency matrix block code, 5 of digraphs, 486 Blokh–Zyablov bound, 393 of graphs, 398 bound Lee, 325 BCH, 253 alphabet, 3 Bhattacharyya, 21, 25, 493 alternant code, 70, 157, 179 Blokh–Zyablov, 393 decoding of, 197, 204 Carlitz–Uchiyama, 179 Lee-metric, 306 Chernoff, 139 list, 280, 328 decoding-radius, 290 designed minimum distance of, 157, Elias, 108 250 Lee-metric, 332 dual code of, 175, 180 Gilbert–Varshamov, 97, 137, 176, 181, Lee-metric, 302 393 list decoding of, 280, 328 asymptotic, 107, 372 over Z, 328 Lee-metric, 320, 330 aperiodic irreducible digraph, 455 Griesmer, 120, 136 aperiodic irreducible matrix, 445 Hamming, see bound, sphere-packing arc (in projective geometry), 361 Hartmann–Tzeng, 265 complete, 363 Johnson, 107, 128, 139, 289 autocorrelation Lee-metric, 330 of Legendre sequences, 80 linear programming, 103, 110, 138 of maximal-length sequences, 87 MDS code length, 338 AWGN channel, 17 MRRW, 110 Plotkin, 37, 127, 131, 139, 294 basis Lee-metric, 326, 330 complementary, 85 Reiger, 122 dual, 85 Roos, 265 see normal, 240 Singleton, Singleton bound BCH bound, 253 sphere-covering, 123 BCH code, 162, 181, 244, 250 sphere-packing, 95, 122, 136 consecutive root sequence of, 163 asymptotic, 107 decoding of, see alternant code, decod- Lee-metric, 318, 330 ing of union, 137 designed minimum distance of, 163, Zyablov, 373, 392, 413, 422, 438, 440 250 burst, 45, 122, 137, 257 excess root of, 251 root of, 163, 250 cap (in projective geometry), 47 Berlekamp code, 314, 330 capacity, 10, 16, 24, 110 Berlekamp–Massey algorithm, 200, 217 Carlitz–Uchiyama bound, 179 Bhattacharyya bound, 21, 25, 493 catastrophic error propagation, 496 bi-connection, 454 Cauchy matrix, 168, 336, 356, 362 binary erasure channel, 15 Cayley graph, 406, 447 binary symmetric channel (BSC), 4, 450 channel, 1 bipartite graph, 362, 398 additive, 5 bit-shift error, 327 AWGN, 17 Blahut’s algorithm, 217 binary symmetric (BSC), 4, 450 559 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-84504-5 - Introduction to Coding Theory Ron M. Roth Index More information 560 Index discrete memoryless (DMC), 19, 23, 46, negacyclic, 323, 330 142, 466 outer (in concatenated codes), 154, 366 erasure, 15, 25, 126, 134, 391, 514 parity, 27 Gaussian (AWGN), 17 perfect, 96, 137, 256 non-symmetric, 20, 46 Lee-metric, 319, 330 probabilistic, 3 Preparata, 328 symmetric, 4, 19, 24, 32, 110, 113, 117, product, 44, 178 125, 133, 145, 378, 390, 394, 424, punctured, 36 450, 467, 490 rate, 5 character redundancy, 27 of Abelian groups, 91, 447 Reed–Muller, see Reed–Muller code additive, 85, 99, 447 Reed–Solomon, see RS code multiplicative, 78 repetition, 28 quadratic, 80 self-dual, 31 trivial, 79 shortened, 40 characteristic (of fields), 62 simplex, 41, 120 check node, 449 weight distribution of, 99 check polynomial, 246 size, 5 Chernoff bound, 139 spectral-null, 329 Chien search, 186, 215, 285 Spielman, 451 circulant matrix, 325, 330, 356, 362 trellis, 460 code, 5 decoding of, 466 algebraic-geometry, 138 encoding of, 464 almost-MDS (AMDS), 363 free distance of, 463 alternant, see alternant code turbo, 519 array, 353 Wozencraft, 375 BCH, see BCH code Wyner–Ash, 512 Berlekamp, 314, 330 codeword, 3, 460 block, 5 communication system, 1 concatenated, see concatenated code companion matrix, 73, 383, 510 constant-weight, 121, 139, 352 complementary basis, 85 convolutional, see convolutional code concatenated code, 154, 172, 178, 408, 420 cyclic, see cyclic code decoding of, 178, 371, 396, 422 Delsarte–Goethals, 328 dual code of, 383 dimension, 5 linearly-, 154, 367 double-error-correcting, 70, 161 concave function, 9, 23 dual, see dual code conjugate element equidistant, 128 in the complex field, 325 equivalence, 29, 47 in cyclotomic extension fields, 241 generalized Reed–Solomon, see GRS in finite extension fields, 218 code conjugate transpose (of complex matrices), Golay, 96, 136, 255 326 Goppa, 182, 389 convex function, 9 graph, see graph code convolutional code, 477 Gray, 321, 328 constraint length of encoders of, 483 group, 37, 299 decoding of, 485, 519 Hamming, see Hamming code encoding of, 479 inner (in concatenated codes), 154, 366 free distance of, 478, 512 Justesen, 376 generator matrix of, 477 Kerdock, 328 coset LDPC, 362, 450 leader, 34 length, 5 of linear codes, 34 lengthening of, 123 of subgroups, 522 linear, see linear code cover (of arrays), 354, 362 low-density parity-check, 362, 450 covering radius, 123, 137 maximal, 123 of GRS codes, 166 maximum distance separable (MDS), of MDS codes, 166 see MDS code crisscross error, 362 minimum distance, 6 cycle (in graphs), 397 near-MDS (NMDS), 363 in digraphs, 454 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-84504-5 - Introduction to Coding Theory Ron M. Roth Index More information Index 561 cyclic code, 242 irreducible component of, 455, 501 dual code of, 247 irreducible sink of, 455, 501 encoding of, 245 lossless, 456 Hamming, 244, 254, 264 period of, 455, 502 of length q over GF(q), 257, 265 primitive irreducible, 455 of length q+1 over GF(q), 262, 265 regular, 459 repeated-root, 265 sequence set of, 457 root of, 248 strongly-connected, 454, 519 shortened, 388 tag in, 459 cyclotomic coset, 230 trellis diagram of, 458 cyclotomic extension field, 240 dimension (of codes), 5, 26 direct product (of matrices), 45, 428 dB, 18 directed graph, see digraph (and labeled di- decoding, 7 graph) of alternant codes, see alternant code, discrete logarithm, 59, 81, 91 decoding of discrete memoryless channel (DMC), 19, 23, of BCH codes, see alternant code, de- 46, 142, 466 coding of distance complexity, 48 cover, 354, 362 of concatenated codes, 178, 371, 396, free, 463, 478, 512 422 in graphs, 397 of convolutional codes, 485, 519 Hamming, 6 error probability, 7, 110, 132, 133, 471, Kullback–Leibler, 111 485, 491, 519 Lee, 299 generalized minimum distance (GMD), rank, 19, 353, 361 178, 371, 396, 422 divergence, 111 of graph codes, 414 dual basis, 85 of GRS codes, see GRS decoding dual code, 30 of Hamming codes, 35 of alternant codes, 175, 180 hard-decision, 18 of concatenated codes, 383 iterative, 414, 451 of cyclic codes, 247 of linear codes, 33 of extended GRS codes, 163 list, see list decoding of GRS codes, 148 of GRS codes, see GRS list decoding of Hamming codes, 41 maximum a posteriori,8 of MDS codes, 119 maximum-likelihood, 8, 32, 140, 466 of RS codes, 257 misdetection probability, 22, 125, 132, self-, 31 140, 440 of subfield sub-codes, 175 nearest-codeword, 9, 33 dual linear programming problem, 138 sequential, 520 dynamic programming, 519 soft-decision, 18 standard array, 33 edge (in graphs), 396 syndrome, 34 cut, 397 of trellis codes, 466 in digraphs, 453 degree (of extension fields), 57 Elias bound, 108 degree (of polynomials), 51 Lee-metric, 332 of bivariate polynomials, 268 encoder, 3 degree (of vertices in graphs), 396 entropy function derivative, 65, 87, 194, 300, 322 binary, 9 Hasse (or hyper-), 87, 276, 310, 329 q-ary, 24, 105 designed minimum distance, 157, 163, 250 erasure, 15 diameter (of graphs), 397 burst, 45, 257 digraph (and labeled digraph), 400, 453 channel, 15, 25, 126, 134, 391, 514 adjacency matrix of, 486 error, 12 anticipation of, 503 bit-shift, 327 aperiodic irreducible, 455 burst, 45, 122, 137, 257 controllable, 454, 519 correction, 12 deterministic, 456 crisscross, 362 induced, 453 detection, 13 irreducible, 454, 519 evaluator polynomial, 186 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-84504-5 - Introduction to Coding Theory Ron M. Roth Index More information 562 Index exponent, 143, 381, 393, 425 generalized minimum distance (GMD) de- location, 5 coder, 178, 371, 396, 422 locator polynomial, 185 generalized Reed–Solomon code, see GRS Lee-metric, 307 code locator ratio, 307 generator matrix (of convolutional codes), peak-shift, 327 477 synchronization, 327 catastrophic, 497 value, 5 LFSM realization of, 510 word, 5 systematic, 477, 517 error-evaluator polynomial, 186 generator matrix (of linear codes), 27 error-locator polynomial, 185 systematic, 29 Lee-metric, 307 generator polynomial error-locator ratio, 307 of cyclic codes, 245 Euclid’s algorithm of negacyclic codes, 323 for integers, 50, 501, 524 of RS codes, 152 for polynomials, 52, 71, 90, 191, 215, Gilbert–Varshamov bound, 97, 137, 176, 309 181, 393 Euler–Fermat Theorem, 526 asymptotic, 107, 372 Euler function, 62, 229, 449, 522 Lee-metric, 320, 330 expander (graph), 404 GMD decoder, 178, 371, 396, 422 exponent (of polynomials), 206, 227, 247 Golay code, 96, 136, 255 extension field, 57, 218 Goppa code, 182, 389 arithmetic in, 59, 74, 90 graph conjugate element in, 218, 241 adjacency matrix of, 398 cyclotomic, 240 bipartite, 362, 398 transfer matrix of, 399 Cayley, 406, 447 factorization of polynomials, 56, 90 code, see graph code Fano’s algorithm, 520 connected, 397 Fermat’s Little Theorem, 526 directed, see digraph (and labeled di- field, 522 graph) characteristic of, 62 edge cut in, 397 extension, see extension field expander, 404 finite, see finite field Hamming, 427 Galois, see finite field hyper-, 445 prime, 50 incidence matrix of, 399 of rational functions, 268, 476 induced, 397 splitting, 65 isomorphism, 47 finite field, 50, 218, 240 labeled directed, see digraph (and la- characteristic of, 62 beled digraph) see extension field of, extension field Laplace matrix of, 399 isomorphism,