Constructions of MDS-Convolutional Codes Ring ‘H“, with R—Nk Q@Haak

Total Page:16

File Type:pdf, Size:1020Kb

Constructions of MDS-Convolutional Codes Ring ‘H“, with R—Nk Q@Haak IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001 2045 Constructions of MDS-Convolutional Codes ring h, with rnk q@hAak. For the purpose of this correspon- dence, we define the rate kan convolutional code generated by q@hA Roxana Smarandache, Student Member, IEEE, as the set Heide Gluesing-Luerssen, and n k Joachim Rosenthal, Senior Member, IEEE g a fu@hAq@hA P @hAju@hA P @hAg and say that q@hA is a generator matrix for the convolutional code g q@hA qH@hA Abstract—Maximum-distance separable (MDS) convolutional codes are . If the generator matrices and both generate the same characterized through the property that the free distance attains the gener- convolutional code g then there exists a k k invertible matrix @hA alized Singleton bound. The existence of MDS convolutional codes was es- with qH@hAa @hAq@hA and we say q@hA and qH@hA are equiva- tablished by two of the authors by using methods from algebraic geometry. lent encoders. This correspondence provides an elementary construction of MDS convo- lutional codes for each rate and each degree . The construction is Because of this, we can assume without loss of generality that the based on a well-known connection between quasi-cyclic codes and convo- code g is presented by a minimal basic encoder q@hA. For this, let lutional codes. #i be the ith-row degree of q@hA, i.e., #i amxj deg gij @hA. In the # Index Terms—Convolutional codes, generalized Singleton bound, max- literature [7], the indexes i are also called the constraint length for the imum-distance separable (MDS) convolutional codes. ith input of the matrix q@hA. Then one defines the following. Definition 1.1: A polynomial generator matrix q@hA is called basic k # I. INTRODUCTION if it has a polynomial right inverse. It is called minimal if iaI i attains the minimal value among all generator matrices of g. The free distance of a rate kan convolutional code of degree is always upper-bounded by the generalized Singleton bound A basic generator matrix is automatically noncatastrophic, this means finite-weight codewords can only be produced from fi- dfree @n kA@ak CIAC CI (1.1) nite-weight messages. If q@hA is a minimal basic encoder one defines k the degree [8] of g as the number Xa iaI #i. In the literature, see [1]. We will provide an alternative proof of this result in the next the degree is sometimes also called the total memory [9] or the section. If aH, i.e., in the case of block codes, (1.1) simply reduces overall constraint length [7] or the complexity [10] of the minimal to the well-known Singleton bound basic generator matrix q@hA, a number dependent only on g. Among all these equivalent expressions we like the term degree best since d n k CI free (1.2) it relates naturally to equal objects appearing in systems theory and algebraic geometry. The following remarks explain this notion. cf. [2, Ch. 1, Theorem 11]. The authors of [1] showed the existence of rate kan convolutional codes of degree whose free distance was Remark 1.2: It has been shown by Forney [11] that the set equal to the generalized Singleton bound (1.1) and they called such f#IY FFFY#kg of row degrees is the same for all minimal basic codes maximum-distance separable (MDS) convolutional codes. The encoders of g. Because of this reason, McEliece [8] calls these indexes existence was established in [1] by techniques from algebraic geometry the Forney indexes of the code g. These indexes are also the same as without giving an explicit construction. This correspondence is based the Kronecker indexes of the row module on ideas from Justesen [3] and it provides an explicit construction of w a fu@hAq@hA P nhju@hA P khg MDS convolutional codes for each rate kan and each degree . The construction itself uses a well-known connection between quasi-cyclic when q@hA is a basic encoder. The Pontryagin dual of w defines a codes and convolutional codes which has been worked out by several linear time-invariant behavior in the sense of Willems [12], [13], i.e., a authors [3]–[6]. linear system. Under this identification, the Kronecker indexes of w The correspondence is structured as follows. In the remainder of this correspond to the observability indexes of the linear system [14]. The section we introduce the basic notions which will be needed throughout sum of the observability indexes is equal to the McMillan degree of the correspondence. In Section II, we give a new derivation of the gen- the system. Finally, w defines in a natural way a quotient sheaf [15] eralized Singleton bound (1.1). The main new results will be given in over the projective line and, in this context, one refers to the indexes Section III. f#IY FFFY#kg as the Grothendieck indexes of the quotient sheaf and Let be a finite field, h the polynomial ring, and @hA the field k a iaI #i as the degree of the quotient sheaf. of rational functions. Let q@hA be a k n matrix over the polynomial We feel that the degree is the single most important code parameter on the side of the transmission rate kan. In the sequel, we will adopt Manuscript received September 15, 1999; revised November 30, 2000. This the notation used by McEliece [8, p. 1082] and denote by @nY kY A a work was supported in part by NSF under Grants DMS-96-10389 and DMS-00- rate kan convolutional code of degree . 72383. The work of R. Smarandache was supported by a fellowship from the n Center of Applied Mathematics at the University of Notre Dame. J. Rosenthal For any n-component vector v P , we define its weight wt @vA as was carrying out this work while he was a Guest Professor at EPFL in Switzer- the number of all its nonzero components. The weight wt @v@hAA of a land. The material in this correspondence was presented in part at the 2000 IEEE vector v@hA P n@hA is then the sum of the weights of all its n-co- International Symposium on Information Theory, Sorrento, Italy, June 25–30, efficients. Finally, we define the free distance of the convolutional code 2000. n R. Smarandache and J. Rosenthal are with the Department of Mathematics, g& @hA through University of Notre Dame, Notre Dame, IN 46556 USA (e-mail: Smaran- [email protected]; [email protected]). dfree aminfwt @v@hAAjv@hA PgYv@hA TaHgX (1.3) H. Gluesing-Luerssen is with the Department of Mathematics, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany (e-mail: gluesing@ It is an easy but crucial observation that in case we are given a basic mathematik.uni-oldenburg.de). encoder q@hA the free distance can also be obtained as Communicated by R. M. Roth, Associate Editor for Coding Theory. Publisher Item Identifier S 0018-9448(01)04751-4. dfree a minfwt @v@hAAjv@hA PwYv@hA TaHgX 0018–9448/01$10.00 © 2001 IEEE 2046 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001 This follows simply from the fact that, if q@hA has a polynomial right Once the row degrees #IY FFFY#k of the minimal basic encoder inverse, a nonpolynomial message u@hA would result in a nonpolyno- q@hA are specified one has a natural upper bound on the free distance mial codeword v@hA, which, of course, has infinite weight. of a convolutional code. The following result was derived in [1]. In the sequel, we wish to link the free distance to two types of dis- Theorem 2.1: Let g be a rate kan convolutional code generated by tances known from the literature. Following the approach in [16], [7] r a minimal-basic encoding matrix q@hA. Let #IY FFFY#k be the row we shall define the column distances dj and the row distances dj .In degrees of q@hA and # a minf#IY FFFY#kg denote the value of the order to do so let us suppose smallest row degree. Finally, let be the number of indexes #i among q@hAaq C q h C q hP C C q h# H I P # the indexes #IY FFFY#k having the value #. Then the free distance must is an encoder with row degrees #I #k. Denote by (1.4) the satisfy semi-infinite sliding generator matrix, as shown at the bottom of the dfree n@# CIA CIX (2.1) page. Then the convolutional code can be defined as k g a f@uHYuIY FFFYu Y FFFA qjuj P Y for j aHY IY FFFgX The proof given in [1] was based on the polynomial generator matrix q@hA. In the sequel, we provide a proof by means of the sliding matrix j d Then the th-order column distance j is defined as the minimum of q introduced in (1.4). v Xa @v YvY FFFYvA the weights of the truncated codewords HYj H I j re- Proof: Without loss of generality, we may assume sulting from an information sequence uHYj Xa @uHYuIY FFFYuj A with # a # # X uH TaH. Precisely, if qj denotes the k@jCIAn@jCIAupper-left sub- I k matrix of the semi-infinite matrix q, then dj aminu TaH wt@uHYj Let q be the infinite sliding generator matrix associated to q@hA as qj AX The quantity d# is called the minimum distance of the code and in (1.4).
Recommended publications
  • Reed-Solomon Codes
    Foreword This chapter is based on lecture notes from coding theory courses taught by Venkatesan Gu- ruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY and by Madhu Sudan at MIT. This version is dated May 8, 2015. For the latest version, please go to http://www.cse.buffalo.edu/ atri/courses/coding-theory/book/ The material in this chapter is supported in part by the National Science Foundation under CAREER grant CCF-0844796. Any opinions, findings and conclusions or recomendations ex- pressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF). ©Venkatesan Guruswami, Atri Rudra, Madhu Sudan, 2013. This work is licensed under the Creative Commons Attribution-NonCommercial- NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. Chapter 5 The Greatest Code of Them All: Reed-Solomon Codes In this chapter, we will study the Reed-Solomon codes. Reed-Solomoncodeshavebeenstudied a lot in coding theory. These codes are optimal in the sense that they meet the Singleton bound (Theorem 4.3.1). We would like to emphasize that these codes meet the Singleton bound not just asymptotically in terms of rate and relative distance but also in terms of the dimension, block length and distance. As if this were not enough, Reed-Solomon codes turn out to be more versatile: they have many applications outside of coding theory.
    [Show full text]
  • Reed-Solomon Error Correction
    R&D White Paper WHP 031 July 2002 Reed-Solomon error correction C.K.P. Clarke Research & Development BRITISH BROADCASTING CORPORATION BBC Research & Development White Paper WHP 031 Reed-Solomon Error Correction C. K. P. Clarke Abstract Reed-Solomon error correction has several applications in broadcasting, in particular forming part of the specification for the ETSI digital terrestrial television standard, known as DVB-T. Hardware implementations of coders and decoders for Reed-Solomon error correction are complicated and require some knowledge of the theory of Galois fields on which they are based. This note describes the underlying mathematics and the algorithms used for coding and decoding, with particular emphasis on their realisation in logic circuits. Worked examples are provided to illustrate the processes involved. Key words: digital television, error-correcting codes, DVB-T, hardware implementation, Galois field arithmetic © BBC 2002. All rights reserved. BBC Research & Development White Paper WHP 031 Reed-Solomon Error Correction C. K. P. Clarke Contents 1 Introduction ................................................................................................................................1 2 Background Theory....................................................................................................................2 2.1 Classification of Reed-Solomon codes ...................................................................................2 2.2 Galois fields............................................................................................................................3
    [Show full text]
  • Linear Block Codes
    Linear Block codes (n, k) Block codes k – information bits n - encoded bits Block Coder Encoding operation n-digit codeword made up of k-information digits and (n-k) redundant parity check digits. The rate or efficiency for this code is k/n. 푘 푁푢푚푏푒푟 표푓 푛푓표푟푚푎푡표푛 푏푡푠 퐶표푑푒 푒푓푓푐푒푛푐푦 푟 = = 푛 푇표푡푎푙 푛푢푚푏푒푟 표푓 푏푡푠 푛 푐표푑푒푤표푟푑 Note: unlike source coding, in which data is compressed, here redundancy is deliberately added, to achieve error detection. SYSTEMATIC BLOCK CODES A systematic block code consists of vectors whose 1st k elements (or last k-elements) are identical to the message bits, the remaining (n-k) elements being check bits. A code vector then takes the form: X = (m0, m1, m2,……mk-1, c0, c1, c2,…..cn-k) Or X = (c0, c1, c2,…..cn-k, m0, m1, m2,……mk-1) Systematic code: information digits are explicitly transmitted together with the parity check bits. For the code to be systematic, the k-information bits must be transmitted contiguously as a block, with the parity check bits making up the code word as another contiguous block. Information bits Parity bits A systematic linear block code will have a generator matrix of the form: G = [P | Ik] Systematic codewords are sometimes written so that the message bits occupy the left-hand portion of the codeword and the parity bits occupy the right-hand portion. Parity check matrix (H) Will enable us to decode the received vectors. For each (kxn) generator matrix G, there exists an (n-k)xn matrix H, such that rows of G are orthogonal to rows of H i.e., GHT = 0, where HT is the transpose of H.
    [Show full text]
  • An Introduction to Coding Theory
    An introduction to coding theory Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India Feb. 6, 2017 Lecture #6A: Some simple linear block codes -I Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Outline of the lecture Dual code. Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Outline of the lecture Dual code. Examples of linear block codes Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Outline of the lecture Dual code. Examples of linear block codes Repetition code Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Outline of the lecture Dual code. Examples of linear block codes Repetition code Single parity check code Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Outline of the lecture Dual code. Examples of linear block codes Repetition code Single parity check code Hamming code Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Dual code Two n-tuples u and v are orthogonal if their inner product (u, v)is zero, i.e., n (u, v)= (ui · vi )=0 i=1 Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Dual code Two n-tuples u and v are orthogonal if their inner product (u, v)is zero, i.e., n (u, v)= (ui · vi )=0 i=1 For a binary linear (n, k) block code C,the(n, n − k) dual code, Cd is defined as set of all codewords, v that are orthogonal to all the codewords u ∈ C.
    [Show full text]
  • Scribe Notes
    6.440 Essential Coding Theory Feb 19, 2008 Lecture 4 Lecturer: Madhu Sudan Scribe: Ning Xie Today we are going to discuss limitations of codes. More specifically, we will see rate upper bounds of codes, including Singleton bound, Hamming bound, Plotkin bound, Elias bound and Johnson bound. 1 Review of last lecture n k Let C Σ be an error correcting code. We say C is an (n, k, d)q code if Σ = q, C q and ∆(C) d, ⊆ | | | | ≥ ≥ where ∆(C) denotes the minimum distance of C. We write C as [n, k, d]q code if furthermore the code is a F k linear subspace over q (i.e., C is a linear code). Define the rate of code C as R := n and relative distance d as δ := n . Usually we fix q and study the asymptotic behaviors of R and δ as n . Recall last time we gave an existence result, namely the Gilbert-Varshamov(GV)→ ∞ bound constructed by greedy codes (Varshamov bound corresponds to greedy linear codes). For q = 2, GV bound gives codes with k n log2 Vol(n, d 2). Asymptotically this shows the existence of codes with R 1 H(δ), which is similar≥ to− Shannon’s result.− Today we are going to see some upper bound results, that≥ is,− code beyond certain bounds does not exist. 2 Singleton bound Theorem 1 (Singleton bound) For any code with any alphabet size q, R + δ 1. ≤ Proof Let C Σn be a code with C Σ k. The main idea is to project the code C on to the first k 1 ⊆ | | ≥ | | n k−1 − coordinates.
    [Show full text]
  • Tcom 370 Notes 99-8 Error Control: Block Codes
    TCOM 370 NOTES 99-8 ERROR CONTROL: BLOCK CODES THE NEED FOR ERROR CONTROL The physical link is always subject to imperfections (noise/interference, limited bandwidth/distortion, timing errors) so that individual bits sent over the physical link cannot be received with zero error probability. A bit error -6 rate (BER) of 10 , which may sound quite low and very good, actually leads 1 on the average to an error every -th second for transmission at 10 Mbps. 10 -7 Even with better links, say BER=10 , one would make on the average one error in transferring a binary file of size 1.25 Mbytes. This is not acceptable for "reliable" data transmission. We need to provide in the data link control protocols (Layer 2 of the ISO 7- layer OSI protocol architecture) a means for obtaining better reliability than can be guaranteed by the physical link itself. Note: Error control can be (and is) also incorporated at a higher layer, the transport layer. ERROR CONTROL TECHNIQUES Error Detection and Automatic Request for Retransmission (ARQ) This is a "feedback" mode of operation and depends on the receiver being able to detect that an error has occurred. (Error detection is easier than error correction at the receiver). Upon detecting an error in a frame of transmitted bits, the receiver asks for a retransmission of the frame. This may happen at the data link layer or at the transport layer. The characteristics of ARQ techniques will be discussed in more detail in a subsequent set of notes, where the delays introduced by the ARQ process will be considered explicitly.
    [Show full text]
  • An Introduction to Coding Theory
    An introduction to coding theory Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India Feb. 6, 2017 Lecture #7A: Bounds on the size of a code Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Outline of the lecture Hamming bound Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Outline of the lecture Hamming bound Perfect codes Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Outline of the lecture Hamming bound Perfect codes Singleton bound Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Outline of the lecture Hamming bound Perfect codes Singleton bound Maximum distance separable codes Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Outline of the lecture Hamming bound Perfect codes Singleton bound Maximum distance separable codes Plotkin Bound Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Outline of the lecture Hamming bound Perfect codes Singleton bound Maximum distance separable codes Plotkin Bound Gilbert-Varshamov bound Adrish Banerjee Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India An introduction to coding theory Bounds on the size of a code The basic problem is to find the largest code of a given length, n and minimum distance, d.
    [Show full text]
  • Optimal Codes and Entropy Extractors
    Department of Mathematics Ph.D. Programme in Mathematics XXIX cycle Optimal Codes and Entropy Extractors Alessio Meneghetti 2017 University of Trento Ph.D. Programme in Mathematics Doctoral thesis in Mathematics OPTIMAL CODES AND ENTROPY EXTRACTORS Alessio Meneghetti Advisor: Prof. Massimiliano Sala Head of the School: Prof. Valter Moretti Academic years: 2013{2016 XXIX cycle { January 2017 Acknowledgements I thank Dr. Eleonora Guerrini, whose Ph.D. Thesis inspired me and whose help was crucial for my research on Coding Theory. I also thank Dr. Alessandro Tomasi, without whose cooperation this work on Entropy Extraction would not have come in the present form. Finally, I sincerely thank Prof. Massimiliano Sala for his guidance and useful advice over the past few years. This research was funded by the Autonomous Province of Trento, Call \Grandi Progetti 2012", project On silicon quantum optics for quantum computing and secure communications - SiQuro. i Contents List of Figures......................v List of Tables....................... vii Introduction1 I Codes and Random Number Generation7 1 Introduction to Coding Theory9 1.1 Definition of systematic codes.............. 16 1.2 Puncturing, shortening and extending......... 18 2 Bounds on code parameters 27 2.1 Sphere packing bound.................. 29 2.2 Gilbert bound....................... 29 2.3 Varshamov bound.................... 30 2.4 Singleton bound..................... 31 2.5 Griesmer bound...................... 33 2.6 Plotkin bound....................... 34 2.7 Johnson bounds...................... 36 2.8 Elias bound........................ 40 2.9 Zinoviev-Litsyn-Laihonen bound............ 42 2.10 Bellini-Guerrini-Sala bounds............... 43 iii 3 Hadamard Matrices and Codes 49 3.1 Hadamard matrices.................... 50 3.2 Hadamard codes..................... 53 4 Introduction to Random Number Generation 59 4.1 Entropy extractors...................
    [Show full text]
  • Optimal Locally Repairable Codes of Distance 3 and 4 Via Cyclic Codes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CWI's Institutional Repository Optimal locally repairable codes of distance 3 and 4 via cyclic codes Yuan Luo,∗ Chaoping Xing and Chen Yuan y Abstract Like classical block codes, a locally repairable code also obeys the Singleton-type bound (we call a locally repairable code optimal if it achieves the Singleton-type bound). In the breakthrough work of [14], several classes of optimal locally repairable codes were constructed via subcodes of Reed-Solomon codes. Thus, the lengths of the codes given in [14] are upper bounded by the code alphabet size q. Recently, it was proved through extension of construction in [14] that length of q-ary optimal locally repairable codes can be q + 1 in [7]. Surprisingly, [2] presented a few examples of q-ary optimal locally repairable codes of small distance and locality with code length achieving roughly q2. Very recently, it was further shown in [8] that there exist q-ary optimal locally repairable codes with length bigger than q + 1 and distance propositional to n. Thus, it becomes an interesting and challenging problem to construct new families of q-ary optimal locally repairable codes of length bigger than q + 1. In this paper, we construct a class of optimal locally repairable codes of distance 3 and 4 with un- bounded length (i.e., length of the codes is independent of the code alphabet size). Our technique is through cyclic codes with particular generator and parity-check polynomials that are carefully chosen.
    [Show full text]
  • Coding Theory: Linear-Error Correcting Codes 1 Basic Definitions
    Anna Dovzhik 1 Coding Theory: Linear-Error Correcting Codes Anna Dovzhik Math 420: Advanced Linear Algebra Spring 2014 Sharing data across channels, such as satellite, television, or compact disc, often comes at the risk of error due to noise. A well-known example is the task of relaying images of planets from space; given the incredible distance that this data must travel, it is be to expected that interference will occur. Since about 1948, coding theory has been utilized to help detect and correct corrupted messages such as these, by introducing redundancy into an encoded message, which provides a means by which to detect errors. Although non-linear codes exist, the focus here will be on algebraic coding, which is efficient and often used in practice. 1 Basic Definitions The following build up a basic vocabulary of coding theory. Definition 1.1 If A = a1; a2; : : : ; aq, then A is a code alphabet of size q and an 2 A is a code symbol. For our purposes, A will be a finite field Fq. Definition 1.2 A q-ary word w of length n is a vector that has each of its components in the code alphabet. Definition 1.3 A q-ary block code is a set C over an alphabet A, where each element, or codeword, is a q-ary word of length n. Note that jCj is the size of C. A code of length n and size M is called an (n; M)-code. Example 1.1 [3, p.6] C = f00; 01; 10; 11g is a binary (2,4)-code taken over the code alphabet F2 = f0; 1g .
    [Show full text]
  • Part I Basics of Coding Theory
    Part I Basics of coding theory CHAPTER 1: BASICS of CODING THEORY ABSTRACT - September 24, 2014 Coding theory - theory of error correcting codes - is one of the most interesting and applied part of informatics. Goals of coding theory are to develop systems and methods that allow to detect/correct errors caused when information is transmitted through noisy channels. All real communication systems that work with digitally represented data, as CD players, TV, fax machines, internet, satellites, mobiles, require to use error correcting codes because all real channels are, to some extent, noisy { due to various interference/destruction caused by the environment Coding theory problems are therefore among the very basic and most frequent problems of storage and transmission of information. Coding theory results allow to create reliable systems out of unreliable systems to store and/or to transmit information. Coding theory methods are often elegant applications of very basic concepts and methods of (abstract) algebra. This first chapter presents and illustrates the very basic problems, concepts, methods and results of coding theory. prof. Jozef Gruska IV054 1. Basics of coding theory 2/50 CODING - BASIC CONCEPTS Without coding theory and error-correcting codes there would be no deep-space travel and pictures, no satellite TV, no compact disc, no . no . no . Error-correcting codes are used to correct messages when they are (erroneously) transmitted through noisy channels. channel message code code W Encoding word word Decoding W user source C(W) C'(W)noise Error correcting framework Example message Encoding 00000 01001 Decoding YES YES user YES or NO YES 00000 01001 NO 11111 00000 A code C over an alphabet Σ is a subset of Σ∗(C ⊆ Σ∗): A q-nary code is a code over an alphabet of q-symbols.
    [Show full text]
  • Coding Theory: Introduction to Linear Codes and Applications
    InSight: RIVIER ACADEMIC JOURNAL, VOLUME 4, NUMBER 2, FALL 2008 CODING THEORY: INTRODUCTION TO LINEAR CODES AND APPLICATIONS Jay Grossman* Undergraduate Student, B.A. in Mathematics Program, Rivier College Coding Theory Basics Coding theory is an important study which attempts to minimize data loss due to errors introduced in transmission from noise, interference or other forces. With a wide range of theoretical and practical applications from digital data transmission to modern medical research, coding theory has helped enable much of the growth in the 20th century. Data encoding is accomplished by adding additional informa- tion to each transmitted message to enable the message to be decoded even if errors occur. In 1948 the optimization of this redundant data was discussed by Claude Shannon from Bell Laboratories in the United States, but it wouldn’t be until 1950 that Richard Hamming (also from Bell Labs) would publish his work describing a now famous group of optimized linear codes, the Hamming Codes. It is said he developed this code to help correct errors in punch tape. Around the same time John Leech from Cambridge was describing similar codes in his work on group theory. Notation and Basic Properties To work more closely with coding theory it is important to define several important properties and notation elements. These elements will be used throughout the further exploration of coding theory and when discussing its applications. There are many ways to represent a code, but perhaps the simplest way to describe a given code is as a set of codewords, i.e. {000,111}, or as a matrix with all the codewords forming the rows, such as: This example is a code with two codewords 000 and 111 each with three characters per codeword.
    [Show full text]