Tm Synchronization and Channel Coding—Summary of Concept and Rationale

Total Page:16

File Type:pdf, Size:1020Kb

Tm Synchronization and Channel Coding—Summary of Concept and Rationale Report Concerning Space Data System Standards TM SYNCHRONIZATION AND CHANNEL CODING— SUMMARY OF CONCEPT AND RATIONALE INFORMATIONAL REPORT CCSDS 130.1-G-3 GREEN BOOK June 2020 Report Concerning Space Data System Standards TM SYNCHRONIZATION AND CHANNEL CODING— SUMMARY OF CONCEPT AND RATIONALE INFORMATIONAL REPORT CCSDS 130.1-G-3 GREEN BOOK June 2020 TM SYNCHRONIZATION AND CHANNEL CODING—SUMMARY OF CONCEPT AND RATIONALE AUTHORITY Issue: Informational Report, Issue 3 Date: June 2020 Location: Washington, DC, USA This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of technical panel experts from CCSDS Member Agencies. The procedure for review and authorization of CCSDS Reports is detailed in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4). This document is published and maintained by: CCSDS Secretariat National Aeronautics and Space Administration Washington, DC, USA Email: [email protected] CCSDS 130.1-G-3 Page i June 2020 TM SYNCHRONIZATION AND CHANNEL CODING—SUMMARY OF CONCEPT AND RATIONALE FOREWORD This document is a CCSDS Report that contains background and explanatory material to support the CCSDS Recommended Standard, TM Synchronization and Channel Coding (reference [3]). Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Report is therefore subject to CCSDS document management and change control procedures, which are defined in Organization and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4). Current versions of CCSDS documents are maintained at the CCSDS Web site: http://www.ccsds.org/ Questions relating to the contents or status of this document should be sent to the CCSDS Secretariat at the email address indicated on page i. CCSDS 130.1-G-3 Page ii June 2020 TM SYNCHRONIZATION AND CHANNEL CODING—SUMMARY OF CONCEPT AND RATIONALE At time of publication, the active Member and Observer Agencies of the CCSDS were: Member Agencies – Agenzia Spaziale Italiana (ASI)/Italy. – Canadian Space Agency (CSA)/Canada. – Centre National d’Etudes Spatiales (CNES)/France. – China National Space Administration (CNSA)/People’s Republic of China. – Deutsches Zentrum für Luft- und Raumfahrt (DLR)/Germany. – European Space Agency (ESA)/Europe. – Federal Space Agency (FSA)/Russian Federation. – Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil. – Japan Aerospace Exploration Agency (JAXA)/Japan. – National Aeronautics and Space Administration (NASA)/USA. – UK Space Agency/United Kingdom. Observer Agencies – Austrian Space Agency (ASA)/Austria. – Belgian Federal Science Policy Office (BFSPO)/Belgium. – Central Research Institute of Machine Building (TsNIIMash)/Russian Federation. – China Satellite Launch and Tracking Control General, Beijing Institute of Tracking and Telecommunications Technology (CLTC/BITTT)/China. – Chinese Academy of Sciences (CAS)/China. – China Academy of Space Technology (CAST)/China. – Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia. – Danish National Space Center (DNSC)/Denmark. – Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil. – Electronics and Telecommunications Research Institute (ETRI)/Korea. – European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe. – European Telecommunications Satellite Organization (EUTELSAT)/Europe. – Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand. – Hellenic National Space Committee (HNSC)/Greece. – Hellenic Space Agency (HSA)/Greece. – Indian Space Research Organization (ISRO)/India. – Institute of Space Research (IKI)/Russian Federation. – Korea Aerospace Research Institute (KARI)/Korea. – Ministry of Communications (MOC)/Israel. – Mohammed Bin Rashid Space Centre (MBRSC)/United Arab Emirates. – National Institute of Information and Communications Technology (NICT)/Japan. – National Oceanic and Atmospheric Administration (NOAA)/USA. – National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan. – National Space Organization (NSPO)/Chinese Taipei. – Naval Center for Space Technology (NCST)/USA. – Research Institute for Particle & Nuclear Physics (KFKI)/Hungary. – Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey. – South African National Space Agency (SANSA)/Republic of South Africa. – Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan. – Swedish Space Corporation (SSC)/Sweden. – Swiss Space Office (SSO)/Switzerland. – United States Geological Survey (USGS)/USA. CCSDS 130.1-G-3 Page iii June 2020 TM SYNCHRONIZATION AND CHANNEL CODING—SUMMARY OF CONCEPT AND RATIONALE DOCUMENT CONTROL Document Title Date Status CCSDS TM Synchronization and Channel June 2006 Original issue, 130.1-G-1 Coding—Summary of Concept and superseded Rationale, Informational Report, Issue 1 CCSDS TM Synchronization and Channel November Issue 2, superseded 130.1-G-2 Coding—Summary of Concept and 2012 Rationale, Informational Report, Issue 2 CCSDS TM Synchronization and Channel June 2020 Current issue 130.1-G-3 Coding—Summary of Concept and Rationale, Informational Report, Issue 3 CCSDS 130.1-G-3 Page iv June 2020 TM SYNCHRONIZATION AND CHANNEL CODING—SUMMARY OF CONCEPT AND RATIONALE CONTENTS Section Page 1 DOCUMENT PURPOSE, SCOPE, AND ORGANIZATION ................................... 1-1 1.1 PURPOSE ............................................................................................................... 1-1 1.2 SCOPE .................................................................................................................... 1-1 1.3 ORGANIZATION .................................................................................................. 1-1 1.4 REFERENCES ....................................................................................................... 1-2 2 OVERVIEW OF CCSDS TELEMETRY SYSTEM .................................................. 2-1 2.1 INTRODUCTION .................................................................................................. 2-1 2.2 TELEMETRY SYSTEM CONCEPT ..................................................................... 2-3 3 TM SYNCHRONIZATION AND CHANNEL CODING .......................................... 3-1 3.1 INTRODUCTION .................................................................................................. 3-1 3.2 RECOMMENDED CODES ................................................................................... 3-2 3.3 CHANNEL CODING PERFORMANCE .............................................................. 3-3 4 CONVOLUTIONAL CODES ....................................................................................... 4-1 4.1 INTRODUCTION .................................................................................................. 4-1 4.2 ENCODER FOR THE (7,1/2) RECOMMENDED CODE .................................... 4-1 4.3 ENCODER FOR THE RECOMMENDED PUNCTURED CONVOLUTIONAL CODES ................................................................................ 4-3 4.4 SOFT MAXIMUM LIKELIHOOD DECODING OF CONVOLUTIONAL CODES ................................................................................ 4-4 4.5 PERFORMANCE OF THE RECOMMENDED (7,1/2) CONVOLUTIONAL CODE .................................................................................. 4-7 4.6 PERFORMANCE OF THE RECOMMENDED PUNCTURED CONVOLUTIONAL CODES .............................................................................. 4-10 4.7 EFFECT OF THE TRUNCATION LENGTH ON PERFORMANCE ................ 4-11 5 REED-SOLOMON CODE ............................................................................................ 5-1 5.1 INTRODUCTION .................................................................................................. 5-1 5.2 ENCODER .............................................................................................................. 5-2 5.3 INTERLEAVING OF THE REED-SOLOMON SYMBOLS ................................ 5-4 5.4 HARD ALGEBRAIC DECODING OF REED-SOLOMON CODES ................... 5-5 5.5 PERFORMANCE OF THE RECOMMENDED REED-SOLOMON CODES ..... 5-6 CCSDS 130.1-G-3 Page v June 2020 TM SYNCHRONIZATION AND CHANNEL CODING—SUMMARY OF CONCEPT AND RATIONALE CONTENTS (continued) Section Page 6 CONCATENATED CODES: REED-SOLOMON AND CONVOLUTIONAL ...... 6-1 6.1 INTRODUCTION .................................................................................................. 6-1 6.2 ENCODING AND DECODING A CONCATENATED CODE ........................... 6-3 6.3 PERFORMANCE OF THE RECOMMENDED CONCATENATED CODING SYSTEMS .............................................................................................. 6-5 7 TURBO CODES ............................................................................................................. 7-1 7.1 INTRODUCTION .................................................................................................. 7-1 7.2 TURBO ENCODER ............................................................................................... 7-2 7.3 TURBO DECODER ............................................................................................... 7-4 7.4 PERFORMANCE OF THE RECOMMENDED TURBO CODES ....................... 7-7 8 LDPC CODES ................................................................................................................ 8-1 8.1 GENERAL .............................................................................................................
Recommended publications
  • Ts 136 212 V11.1.0 (2013-02)
    ETSI TS 136 212 V11.1.0 (2013-02) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (3GPP TS 36.212 version 11.1.0 Release 11) 3GPP TS 36.212 version 11.1.0 Release 11 1 ETSI TS 136 212 V11.1.0 (2013-02) Reference RTS/TSGR-0136212vb10 Keywords LTE ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • Ioag Infusion Plans and Roadmaps
    IOAG ROADMAP DRAFT IOAG INFUSION PLANS AND ROADMAPS (this version contains all IOAG agency(s) input) (Draft IOAG-8 Version – July 2005) (Draft IOAG-8 Version, Revision 1 – August 2005) IOAG ROADMAP This document is uncontrolled when printed. Please check the IOAG web site at http://www.ioag.org prior to use to ensure this is the latest version. IOAG ROADMAP TABLE OF CONTENTS 1 – INTRODUCTION .................................................................................................................1 2 – STRUCTURE AND MANAGEMENT OF THE PRESENT DOCUMENT...........................1 2-1 STRUCTURE ..................................................................................................................1 2-2 DOCUMENT MANAGEMENT..........................................................................................2 3 – IOAG STRATEGY PLAN....................................................................................................2 3-1 IOAG OBJECTIVES ........................................................................................................2 3-2 IOAG AREAS OF INTEREST ..........................................................................................3 4 – IOAG INTEROPERABILITY ITEMS...................................................................................6 5 – AGENCIES’ INFUSION PLANS AND ROADMAPS..........................................................7 ANNEX-1 – ASI INFUSION PLAN AND ROADMAP ...........................................................1-1 ANNEX-2 – CNES INFUSION PLAN AND ROADMAP
    [Show full text]
  • MHOMS: High Speed ACM Modem for Satellite Applications1
    MHOMS : high speed ACM modem for satellite applications Sergio Benedetto, Claude Berrou, Catherine Douillard, Roberto Garello, Domenico Giancristofaro, Alberto Ginesi, Luca Giugno, Marco Luise, G. Montorsi To cite this version: Sergio Benedetto, Claude Berrou, Catherine Douillard, Roberto Garello, Domenico Giancristofaro, et al.. MHOMS : high speed ACM modem for satellite applications. IEEE Wireless Communications, In- stitute of Electrical and Electronics Engineers, 2005, 12 (2), pp.66 - 77. 10.1109/MWC.2005.1421930. hal-02137104 HAL Id: hal-02137104 https://hal.archives-ouvertes.fr/hal-02137104 Submitted on 22 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MHOMS: High Speed ACM Modem for Satellite Applications1 S. Benedetto(3), C. Berrou(5), C. Douillard(5), R. Garello(3), D. Giancristofaro(1), A. Ginesi(2), L. Giugno(4), M. Luise(4), G. Montorsi(3), (1) Alenia Spazio (2) European Space Agency (3) Politecnico di Torino (4) Università di Pisa (5) ENST Bretagne Table of Contents 1 Introduction......................................................................................................................................................................
    [Show full text]
  • What Is Different? Between Impulse Noise and Electrical Fast Transient Burst】
    【What is different? Between Impulse Noise and Electrical Fast Transient Burst】 The Inquiry about "a distinction between an impulse noise simulator (following and our company model INS series) and a Fast transient Burst simulator (following and our company model FNS series)" is one of the major questions in a lot of quries from customers. Herewith the difference is focused and presented. The phenomenon which are reproduced and backgraound Both INS and FNS reproduce phenomenon of back electromotive energy noise which may be generated in ON/OFF of power supply switching (like a gas insulated braker and/or electromagnetism relay, etc.). INS was introduced by Mr. Manohar L.Tandor (at that time worked in I.B.M) as a simulator of the high frequency noise to data processing apparatus in the 1960s, and the computer maker of those days adopted it in the 1970s, and it spread widely. FNS is indicated as a basic standard of the immunity type test which reproduces the malfunction by the noise phenomenon of switching ON/OFF and adopted not only in Europe but also world-wide. The 1st edition of Standard for this test was issued as IEC801-4 in IEC TC65 (Industrial Process Controls) in 1988. Then, in order to adopt to all the electric devices, IEC1000-4-4 was issued in 1995. Moreover, in order to differenciate the numbering between ISO and IEC, “60000” has been added to the Stadanrd number. Consequently, it has been named as IEC61000-4-4. output waveform Rise time / the pulse width [INS] It is a rectangular wave whose pulse width is 50ns-1μs and rise time is less than 1ns.
    [Show full text]
  • Improved 1/F Noise Measurements for Microwave Transistors Clemente Toro Jr
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-25-2004 Improved 1/f Noise Measurements for Microwave Transistors Clemente Toro Jr. University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Toro, Clemente Jr., "Improved 1/f Noise Measurements for Microwave Transistors" (2004). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/1271 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Improved 1/f Noise Measurements for Microwave Transistors by Clemente Toro, Jr. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering College of Engineering University of South Florida Major Professor: Lawrence P. Dunleavy, Ph.D. Thomas Weller, Ph.D. Horace Gordon, Jr., M.S.E., P.E. Date of Approval: June 25, 2004 Keywords: low, frequency, flicker, model, correlation © Copyright 2004, Clemente Toro, Jr. DEDICATION This thesis is dedicated to my father, Clemente, and my mother, Miriam. Thank you for helping me and supporting me throughout my college career! ACKNOWLEDGMENT I would like to acknowledge Dr. Lawrence P. Dunleavy for proving the opportunity to perform 1/f noise research under his supervision. For providing software solutions for the purposes of data gathering, I give credit to Alberto Rodriguez. In addition, his experience in the area of noise and measurements was useful to me as he generously brought me up to speed with understanding the fundamentals of noise and proper data representation.
    [Show full text]
  • Enhanced-SNR Impulse Radio Transceiver Based on Phasers Babak Nikfal,Studentmember,IEEE, Qingfeng Zhang, Member, IEEE,Andchristophe Caloz, Fellow, IEEE
    778 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 24, NO. 11, NOVEMBER 2014 Enhanced-SNR Impulse Radio Transceiver Based on Phasers Babak Nikfal,StudentMember,IEEE, Qingfeng Zhang, Member, IEEE,andChristophe Caloz, Fellow, IEEE Abstract—The concept of signal-to-noise ratio (SNR) enhance- transmitter. The message data, which are reduced in the figure ment in impulse radio transceivers based on phasers of opposite to a single baseband rectangular pulse representing a bit of in- chirping slopes is introduced. It is shown that SNR enhancements formation, is injected into the pulse shaper to be transformed by factors and are achieved for burst noise and Gaussian into a smooth Gaussian-type pulse, , of duration .This noise, respectively, where is the stretching factor of the phasers. An experimental demonstration is presented, using stripline cas- pulse is mixed with an LO signal of frequency , which yields caded C-section phasers, where SNR enhancements in agreement the modulated pulse , of peak power . with theory are obtained. The proposed radio analog signal pro- This modulated pulse is injected into a linear up-chirp phaser, cessing transceiver system is simple, low-cost and frequency scal- and subsequently transforms into an up-chirped pulse, . able, and may therefore be suitable for broadband impulse radio Assuming energy conservation (lossless system), the duration ranging and communication applications. of this pulse has increased to while its peak power has de- Index Terms—Dispersion engineering, impulse radio, phaser, creased to ,where is the stretching factor of the phaser, radio analog signal processing, signal-to-noise ratio. given by ,where and are the duration of the input and output pulses, respectively, is the slope of the group delay response of the phaser (in I.
    [Show full text]
  • Convolutional Codes in Vss
    CONVOLUTIONAL CODES IN VSS . .. By: Dr. Kurt R. Matis Director of Systems Research SIMULATION OF CONVOLUTIONAL CODES IN VSS This document describes the modeling and simulation of short constraint- length convolutional codes used in conjunction with Viterbi decoding in the Visual System Simulator (VSS). After a brief review of the history and application of convolutional codes, a detailed description of VSS models for encoding/decoding of these codes is presented. Step-by-step examples illustrate how to construct simulations and analyze results. Convolutional Code Basics This note begins with some background information on the use of convolutional codes. The development of convolutional codes is discussed along with a history of important applications. This information is meant to provide a perspective on the selection of the convolutional code models that are provided in VSS. Transmission efficiency and reliability can be improved by encoding information digits in a way that creates an interdependence between symbols which are transmitted over a channel. At the receiving end, the interdependence can be exploited to detect or even correct transmission errors, provided erroneous symbols are not received too frequently. Such coding is called error-control coding and is shown in the configuration of Figure 1. Received Source Encoded Symbols Decoded Symbols Symbols ˆ Symbols {bk } {ai} Channel {bk} Transmitter s(t) Channel r(t) Receiver Channel {âi} Encoder Decoder {rk} Figure 1. System Employing Error-Control Coding Visual System Simulator 1 CONVOLUTIONAL CODES IN VSS Simulation of Convolutional Codes in VSS Encoders for error control are usually called channel encoders to differentiate them from various encoders used for other purposes within digital communication systems.
    [Show full text]
  • AN-1496 Noise, TDMA Noise, and Suppression Techniques (Rev. D)
    Application Report SNAA033D–May 2006–Revised May 2013 AN-1496 Noise, TDMA Noise, and Suppression Techniques ..................................................................................................................................................... ABSTRACT The term “noise” is often and loosely used to describe unwanted electrical signals that distort the purity of the desired signal. Some forms of noise are unavoidable (e.g., real fluctuations in the quantity being measured), and they can be overcome only with the techniques of signal averaging and bandwidth narrowing. Other forms of noise (for example, radio frequency interference and “ground loops”) can be reduced or eliminated by a variety of techniques, including filtering and careful attention to wiring configuration and parts location. Finally, there is noise that arises in signal amplification and it can be reduced through the techniques of low-noise amplifier design. Although noise reduction techniques can be effective, it is prudent to begin with a system that is free of preventable interference and that possesses the lowest amplifier noise possible1. This application note will specifically address the problem of TDMA Noise customers have encountered while driving mono speakers in their GSM phone designs. Contents 1 Noise and TDMA Noise .................................................................................................... 2 2 Conclusion ................................................................................................................... 6
    [Show full text]
  • 22Nd International Congress on Acoustics ICA 2016
    Page intentionaly left blank 22nd International Congress on Acoustics ICA 2016 PROCEEDINGS Editors: Federico Miyara Ernesto Accolti Vivian Pasch Nilda Vechiatti X Congreso Iberoamericano de Acústica XIV Congreso Argentino de Acústica XXVI Encontro da Sociedade Brasileira de Acústica 22nd International Congress on Acoustics ICA 2016 : Proceedings / Federico Miyara ... [et al.] ; compilado por Federico Miyara ; Ernesto Accolti. - 1a ed . - Gonnet : Asociación de Acústicos Argentinos, 2016. Libro digital, PDF Archivo Digital: descarga y online ISBN 978-987-24713-6-1 1. Acústica. 2. Acústica Arquitectónica. 3. Electroacústica. I. Miyara, Federico II. Miyara, Federico, comp. III. Accolti, Ernesto, comp. CDD 690.22 ISBN 978-987-24713-6-1 © Asociación de Acústicos Argentinos Hecho el depósito que marca la ley 11.723 Disclaimer: The material, information, results, opinions, and/or views in this publication, as well as the claim for authorship and originality, are the sole responsibility of the respective author(s) of each paper, not the International Commission for Acoustics, the Federación Iberoamaricana de Acústica, the Asociación de Acústicos Argentinos or any of their employees, members, authorities, or editors. Except for the cases in which it is expressly stated, the papers have not been subject to peer review. The editors have attempted to accomplish a uniform presentation for all papers and the authors have been given the opportunity to correct detected formatting non-compliances Hecho en Argentina Made in Argentina Asociación de Acústicos Argentinos, AdAA Camino Centenario y 5006, Gonnet, Buenos Aires, Argentina http://www.adaa.org.ar Proceedings of the 22th International Congress on Acoustics ICA 2016 5-9 September 2016 Catholic University of Argentina, Buenos Aires, Argentina ICA 2016 has been organised by the Ibero-american Federation of Acoustics (FIA) and the Argentinian Acousticians Association (AdAA) on behalf of the International Commission for Acoustics.
    [Show full text]
  • Short Low-Rate Non-Binary Turbo Codes Gianluigi Liva, Bal´Azs Matuz, Enrico Paolini, Marco Chiani
    Short Low-Rate Non-Binary Turbo Codes Gianluigi Liva, Bal´azs Matuz, Enrico Paolini, Marco Chiani Abstract—A serial concatenation of an outer non-binary turbo decoding thresholds lie within 0.5 dB from the Shannon code with different inner binary codes is introduced and an- limit in the coherent case, for a wide range of coding rates 1 alyzed. The turbo code is based on memory- time-variant (1/3 ≤ R ≤ 1/96). Remarkably, a similar result is achieved recursive convolutional codes over high order fields. The resulting codes possess low rates and capacity-approaching performance, in the noncoherent detection framework as well. thus representing an appealing solution for spread spectrum We then focus on the specific case where the inner code is communications. The performance of the scheme is investigated either an order-q Hadamard code or a first order length-q Reed- on the additive white Gaussian noise channel with coherent and Muller (RM) code, due to their simple fast Hadamard trans- noncoherent detection via density evolution analysis. The pro- form (FHT)-based decoding algorithms. The proposed scheme posed codes compare favorably w.r.t. other low rate constructions in terms of complexity/performance trade-off. Low error floors can be thus seen either as (i) a serial concatenation of an outer and performances close to the sphere packing bound are achieved Fq-based turbo code with an inner Hadamard/RM code with down to small block sizes (k = 192 information bits). antipodal signalling, or (ii) as a coded modulation Fq-based turbo/LDPC code with q-ary (bi-) orthogonal modulation.
    [Show full text]
  • CRC-Assisted Error Correction in a Convolutionally Coded System Renqiu Wang, Member, IEEE, Wanlun Zhao, Member, IEEE, and Georgios B
    IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 11, NOVEMBER 2008 1807 CRC-Assisted Error Correction in a Convolutionally Coded System Renqiu Wang, Member, IEEE, Wanlun Zhao, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE Abstract—In communication systems employing a serially When the signal to noise ratio (SNR) is relatively high, only a concatenated cyclic redundancy check (CRC) code along with small number of errors are typically present in an erroneously a convolutional code (CC), erroneous packets after CC decoding decoded packet. Instead of discarding the entire packet, the are usually discarded. The list Viterbi algorithm (LVA) and the iterative Viterbi algorithm (IVA) are two existing approaches theme is this paper is to possibly recover it by utilizing jointly capable of recovering erroneously decoded packets. We here ECC and CRC. employ a soft decoding algorithm for CC decoding, and introduce We will study a system with serially concatenated CRC and several schemes to identify error patterns using the posterior CC (CRC-CC). Being a special case of conventional serially information from the CC soft decoding module. The resultant iterative decoding-detecting (IDD) algorithm improves error concatenated codes (CSCC) [1], CRC-CC has been widely performance by iteratively updating the extrinsic information applied in wireless communications, for example, in an IS-95 based on the CRC parity check matrix. Assuming errors only system. Various approaches are available to recover erroneous happen in unreliable bits characterized by small absolute values packets following the Viterbi decoding stage. One of them is of the log-likelihood ratio (LLR), we also develop a partial IDD based on the list Viterbi algorithm (LVA), which produces a (P-IDD) alternative which exhibits comparable performance to IDD by updating only a subset of unreliable bits.
    [Show full text]
  • Understanding Noise Figure
    Understanding Noise Figure Iulian Rosu, YO3DAC / VA3IUL, http://www.qsl.net/va3iul One of the most frequently discussed forms of noise is known as Thermal Noise. Thermal noise is a random fluctuation in voltage caused by the random motion of charge carriers in any conducting medium at a temperature above absolute zero (K=273 + °Celsius). This cannot exist at absolute zero because charge carriers cannot move at absolute zero. As the name implies, the amount of the thermal noise is to imagine a simple resistor at a temperature above absolute zero. If we use a very sensitive oscilloscope probe across the resistor, we can see a very small AC noise being generated by the resistor. • The RMS voltage is proportional to the temperature of the resistor and how resistive it is. Larger resistances and higher temperatures generate more noise. The formula to find the RMS thermal noise voltage Vn of a resistor in a specified bandwidth is given by Nyquist equation: Vn = 4kTRB where: k = Boltzmann constant (1.38 x 10-23 Joules/Kelvin) T = Temperature in Kelvin (K= 273+°Celsius) (Kelvin is not referred to or typeset as a degree) R = Resistance in Ohms B = Bandwidth in Hz in which the noise is observed (RMS voltage measured across the resistor is also function of the bandwidth in which the measurement is made). As an example, a 100 kΩ resistor in 1MHz bandwidth will add noise to the circuit as follows: -23 3 6 ½ Vn = (4*1.38*10 *300*100*10 *1*10 ) = 40.7 μV RMS • Low impedances are desirable in low noise circuits.
    [Show full text]