Improved 1/F Noise Measurements for Microwave Transistors Clemente Toro Jr
Total Page:16
File Type:pdf, Size:1020Kb
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-25-2004 Improved 1/f Noise Measurements for Microwave Transistors Clemente Toro Jr. University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Toro, Clemente Jr., "Improved 1/f Noise Measurements for Microwave Transistors" (2004). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/1271 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Improved 1/f Noise Measurements for Microwave Transistors by Clemente Toro, Jr. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering College of Engineering University of South Florida Major Professor: Lawrence P. Dunleavy, Ph.D. Thomas Weller, Ph.D. Horace Gordon, Jr., M.S.E., P.E. Date of Approval: June 25, 2004 Keywords: low, frequency, flicker, model, correlation © Copyright 2004, Clemente Toro, Jr. DEDICATION This thesis is dedicated to my father, Clemente, and my mother, Miriam. Thank you for helping me and supporting me throughout my college career! ACKNOWLEDGMENT I would like to acknowledge Dr. Lawrence P. Dunleavy for proving the opportunity to perform 1/f noise research under his supervision. For providing software solutions for the purposes of data gathering, I give credit to Alberto Rodriguez. In addition, his experience in the area of noise and measurements was useful to me as he generously brought me up to speed with understanding the fundamentals of noise and proper data representation. I appreciate Bill Graves, Jr. from TRAK Microwave for his useful insight: TRAK provided funding for the research as well as test devices and the motivation for this work. For their help in the area of providing device models, test boards, and professional experience, I also want to acknowledge Modelithics, Inc. For providing test equipment for education purposes related to this work, I thank Agilent Technologies. And for being there for me and helping me in many ways, I thank my family. TABLE OF CONTENTS LIST OF TABLES iv LIST OF FIGURES v ABSTRACT ix CHAPTER 1 INTRODUCTION 1 1.1 Foreword 1 1.2 Objective of This Thesis 3 1.3 Summary of Contributions 3 1.4 Thesis Summary 4 CHAPTER 2 LOW FREQUENCY NOISE THEORY 6 2.1 The Random Nature of Noise 6 2.2 Proper Calculation and Representation of Noise 6 2.3 Low Frequency Noise Sources 8 2.4 1/f Noise (Flicker Noise) 9 2.4.1 1/f Noise in Bipolar Transistors 10 2.4.2 1/f Noise in FETs 11 2.4.3 1/f Noise in Resistors 12 2.5 Shot Noise 12 2.5.1 Shot Noise in Bipolar Transistors 13 2.5.2 Shot Noise in FETs 13 2.6 Thermal Noise 14 2.6.1 Thermal Noise in Bipolar Transistors 15 2.6.2 Thermal Noise in FETs 15 2.7 Burst Noise 16 2.8 Chapter Summary 17 CHAPTER 3 1/f NOISE MEASUREMENT SYSTEM 19 3.1 Introduction 19 3.2 Overview of Measurement System 20 3.3 System Characterization 21 3.3.1 DC Supply Filters 21 3.3.2 Transimpedance (Current) Amplifier 27 3.3.3 Voltage Amplifier 30 3.3.4 DC Blocks 32 3.4 Software Control and Measurement Analyzers 33 i 3.5 Performing a 1/f Noise Measurement 36 3.6 Advantage Over Commercially Available System 38 3.7 Advantage Over Direct Voltage Measurements 41 3.8 Chapter Summary and Conclusions 44 CHAPTER 4 1/f NOISE MEASUREMENTS 45 4.1 Introduction 45 4.2 SiGe HBT 46 4.3 BJT 47 4.4 GaAs MESFET 48 4.5 pHEMT 49 4.6 HJFET 50 4.7 Chapter Summary and Conclusions 51 CHAPTER 5 EXTRACTION OF 1/f NOISE MODELING PARAMETERS 54 5.1 Introduction 54 5.2 Modeling Parameters 54 5.3 Parameter Extraction for Bipolar Devices 55 5.4 Parameter Extraction for FET Devices 60 5.5 Chapter Summary and Conclusions 64 CHAPTER 6 CORRELATION OF 1/F NOISE TO PHASE NOISE 65 6.1 Introduction 65 6.2 Measurement of Oscillator Phase Noise 65 6.3 Simulation of Oscillator Phase Noise 69 6.4 Correlation of 1/f Noise to Phase Noise 73 6.5 Chapter Summary and Conclusions 77 CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 78 7.1 Conclusions 78 7.2 Recommendations 81 REFERENCES 82 APPENDICES 86 Appendix A: MathCAD Noise Modeling 87 A.1 MathCAD Noise Modeling for Bipolar Transistors 87 A.2 MathCAD Noise Modeling for FETs 89 Appendix B: Maxim-IC MAX4106 Operational Amplifier Circuit Simulations 92 B.1 Maxim-IC MAX4106 Op-Amp as a Transimpedance Amplifier 92 B.2 Maxim-IC MAX4106 Op-Amp as a Voltage Amplifier 95 Appendix C: Oscillator Design Using The SiGe LPT16ED HBT 97 C.1 Introduction 97 C.2 Transistor Measurements and Simulations 97 ii C.3 Determination of Oscillator Networks 101 C.4 Oscillator Design Results and Measurements 107 iii LIST OF TABLES Table 4.1 Corner Frequencies Extracted from Figure 4.6 Measured Data 53 Table 5.1 Bias Conditions for SiGe LPT16ED HBT 57 Table 5.2 Modeling Parameters Summarized for SiGe LPT16ED HBT 58 Table 5.3 Bias Conditions for pHEMT 61 Table 5.4 Modeling Parameters Summarized for pHEMT 62 Table C.1 Measured 2.5 GHz S-parameters for Common-Emitter Transistor 98 Table C.2 Translated S-Paramters for Common-Base Transistor 99 Table C.3 Models Used in the Final Oscillator Circuit 106 iv LIST OF FIGURES Figure 1.1 Typical 1/f Noise Spectrum and Corner Frequency 2 Figure 2.1 Example of Root-mean-square for Random Voltages at One Frequency 7 Figure 2.2 Basic Small-signal Bipolar Model Including Noise Sources 10 Figure 2.3 Basic Small-signal Model for FET Including Noise Sources 11 Figure 3.1 Complete Measurement System 20 Figure 3.2 Comparison of DC Supply Noise 22 Figure 3.3 Filtered Supply Compared with Battery (Measured using HP3561) 23 Figure 3.4 General Filter Structure and its Application 23 Figure 3.5 Bipolar Base Supply Filter and Approximate Base Termination Impedance 24 Figure 3.6 Bipolar Base Filter Calculated and Measured Frequency Response 25 Figure 3.7 Calculated FET Gate Filter Frequency Response 26 Figure 3.8 Collector/Drain Filter Calculated and Measured Frequency Response 27 Figure 3.9 Transimpedance (Current) Amplifier Schematic 28 Figure 3.10 Measured and Simulated Transimpedance Over Frequency 30 Figure 3.11 Voltage Amplifier Schematic 31 Figure 3.12 Measured and Simulated Voltage Gain of Voltage Amplifiers 32 Figure 3.13 Measured and Simulated DC Block Frequency Response 33 v Figure 3.14 DSA Labview Program (Developed By Alberto Rodriguez, USF) 34 Figure 3.15 HP 3585 Labview Program (Developed By Alberto Rodriguez, USF) 35 Figure 3.16 Amplified Noise Voltage for SiGe HBT Measured Using Analyzers 36 Figure 3.17 Combined Voltage Gain of Voltage Amplifiers 37 Figure 3.18 Amplified Noise Voltage at V1 for SiGe HBT Measured Using Analyzers 37 Figure 3.19 Calculated Input Noise Current (Noise Current Generated by SiGe HBT) 38 Figure 3.20 Comparison of Measurements Using Developed and Commercial Method 39 Figure 3.21 SR570 Gain (-3dB @ 1MHz for Highest Bandwidth) 40 Figure 3.22 Noise Floor of Developed System 40 Figure 3.23 Direct Noise Voltage Measurement (no amplifiers used) 41 Figure 3.24 Direct Noise Voltage Measurement and Node Impedances 42 Figure 3.25 Noise Current Measurement Compared to Noise Voltage Measurement 43 Figure 4.1 1/f Noise Measured for SiGe HBT with Variable Collector DC Current 47 Figure 4.2 1/f Noise Measured for BJT with Variable Collector DC Current 48 Figure 4.3 1/f Noise Measured for MESFET with Variable Drain DC Current 49 Figure 4.4 1/f Noise Measured for a p-HEMT with Variable Drain DC Current 50 Figure 4.5 1/f Noise Measured for a HJFET with Variable Drain DC Current 51 Figure 4.6 Various Devices Measured Using the Same DC Output Bias Current (10 mA) 52 Figure 5.1 Typical 1/f Noise and Shot Noise Curve Referred to the Base Noise Sources 56 vi Figure 5.2 Plotted Noise Spectral Density of Base Noise Current Sources 58 Figure 5.3 Measured and Modeled Noise Current Sources 59 Figure 5.4 Typical Curve for 1/f Noise and Thermal Noise Measured at the Drain 61 Figure 5.5 Plotted Noise Spectral Density of Drain and Gate Noise Sources 62 Figure 5.6 Measured and Modeled Noise Current Sources 63 Figure 6.1 Injection Locked Phase Noise Measurement System 66 Figure 6.2 Measured Phase Noise for 1.4 GHz SiGe LPT16ED HBT Oscillator 67 Figure 6.3 Measurement and Limit for Valid L(fm) 68 Figure 6.4 Oscillator Screen Capture 69 Figure 6.5 SiGe Semiconductor LPT16ED HBT Transistor Model for ADS 70 Figure 6.6 SiGe Semiconductor LPT16ED HBT Transistor Schematic for ADS 71 Figure 6.7 1.4 GHz Oscillator Model Based on SiGe LPT16ED HBT 71 Figure 6.8 Harmonic Balance Simulation Using ADS 72 Figure 6.9 Simulation of 1.4 GHz Oscillator Phase Noise with 1/f Noise Parameters 73 Figure 6.10 Phase Noise for Devices with Low 1/f Noise and Higher 1/f Noise 74 Figure 6.11 Phase Noise Measured and Simulated 75 Figure 7.1 Complete Measurement, Modeling, and Simulation Flow Graph 80 Figure A.1 Modeled and Measured Bipolar Noise Sources Plotted with MathCAD 87 Figure A.2 MathCAD File used for Modeling Bipolar 1/f and Shot Noise Sources 88 Figure A.3 Modeled and Measured FET Noise Sources Plotted with MathCAD 90 Figure A.4 MathCAD File used for Modeling FET 1/f and Shot Noise Sources 91 Figure B.1 2-Port Network Representation of S21 Op-Amp Circuit Measurement 93 vii Figure B.2 S-parameter Simulation of MAX4106 Transimpedance Amplifier 93 Figure B.3 Measured and Simulated Transimpedance Over Frequency