2012 ABSTRACTS of the Asma SCIENTIFIC SESSIONS 83RD Annual Scientifi C Meeting Atlanta Hilton May 13-17, 2012 Atlanta, GA

Total Page:16

File Type:pdf, Size:1020Kb

2012 ABSTRACTS of the Asma SCIENTIFIC SESSIONS 83RD Annual Scientifi C Meeting Atlanta Hilton May 13-17, 2012 Atlanta, GA 2012 ABSTRACTS OF THE AsMA SCIENTIFIC SESSIONS 83RD Annual Scientifi c Meeting Atlanta Hilton May 13-17, 2012 Atlanta, GA The following are the abstracts accepted for presentation after blind peer-review—in slide, poster, or panel sessions— at the 2012 Annual Scientifi c Meeting of the Aerospace Medical Association. The numbered abstracts are keyed to both the daily schedule and the author index. The order and numbering of some abstracts may have been changed. CONFLICT OF INTEREST: All meeting planners and presenters completed fi nancial disclosure forms for this educational activity. All potential confl icts of interest were resolved before planners and presenters were approved to participate in the educational activity. Any confl icts of interest that could not be resolved resulted in disqualifi - cation from any role involved in planning, management, presentation, or evaluation of the educational activity. Sunday, May 13 9:00 AM Sunday, May 13 12:00 PM Salon C Salon D WORKSHOP: AIRCREW FATIGUE: WORKSHOP: AEROSPACE MEDICINE CAUSES, CONSEQUENCES, AND FACULTY DEVELOPMENT WORKSHOP COUNTERMEASURES [2] AEROSPACE MEDICINE FACULTY DEVELOPMENT [1] AIRCREW FATIGUE: CAUSES, CONSEQUENCES, AND WORKSHOP COUNTERMEASURES D. RHODES J.A. CALDWELL1 AND J. CALDWELL2 Aerospace Medicine, USAFSAM, Wright-Patterson AFB, OH 1 2 Fatigue Science, Honolulu, HI; 711 HPW, Wright-Patterson WORKSHOP OVERVIEW: The purpose of this workshop is to AFB, OH provide presentations on current topics of interest to faculty of Aerospace Medicine residencies and fellowships. These presentations WORKSHOP OVERVIEW: In modern aviation operations, may also be of interest to faculty of other Preventive Medicine aircrew fatigue has become a serious but often unrecognized problem. Residencies including General Preventive Medicine and Occupational The unpredictable work hours, long duty periods, circadian disrup- Medicine. The presenters are all experienced faculty for Aerospace tions, and disturbed or restricted sleep that are commonly experienced Medicine programs. They will present topics aimed at improving by aviation personnel strain the body’s adaptive capabilities. The result teaching skills and providing proven methods for evaluating residents in is that crewmembers often report for duty in a fatigued state, and aerospace medicine. Any current or future aerospace medicine faculty because of this they make mistakes, respondIP: more192.168.39.151 slowly, experience On: Thu, 30 Sep 2021 16:57:55 Copyright: Aerospace Medicalmembers mayAssociation benefi t from these presentations and are invited to attend. cognitive diffi culties, and suffer mood disturbances that taken together Continuing Medical Education (CME) and Maintenance of Certifi cation often lead to performance problems and compromised safety.Delivered Aircrew by(MOC) Ingenta credit will be available for completion of this workshop. fatigue can be effectively mitigated, but only if scientifi cally validated strategies are systematically applied. These include 1) the implementa- tion of crew scheduling procedures that are based on up-to-date [3] EVALUATING RESIDENTS IN AEROSPACE MEDICINE scientifi c information about the underpinnings of fatigue; 2) the D. RHODES implementation of scientifi cally-based in-fl ight counter-fatigue Aerospace Medicine, USAFSAM, Wright-Patterson AFB, OH practices; 3) educating crew and crew schedulers on the importance of sleep and circadian rhythms in effective fatigue management; and 4) INTRODUCTION: The objective evaluation of residents in the utilization of effective strategies for optimizing off-duty sleep Aerospace Medicine can take many forms, from the multiple choice periods. Once comprehensive, scientifi cally-validated fatigue-risk examination to a structured evaluation of their clinical skills in a fl ight mitigation processes are fully integrated into the aviation safety system, medicine clinic environment. Another evaluation tool is the oral exam, fatigue can be effectively managed, and safety and performance can which can be utilized to not only evaluate knowledge fund on a subject, be optimized. The proposed fatigue workshop will outline the but also to view more subjective areas such as poise, competence, and importance of addressing fatigue as a danger in aviation, the basic how they organize their thoughts on the fl y to answer an aerospace physiological mechanisms underlying fatigue, and the most common medicine question. Other forms of evaluation can utilize simulated patient causes of fatigue in air transport and other settings. In addition, the encounters to evaluate a resident’s skill in taking a good history and workshop will present ways to recognize fatigue in operational physical examination to arrive at a diagnosis while being observed. All environments, and it will provide information about the relative of these methods can allow the aerospace medicine preceptor to gather effi cacy of various fatigue countermeasures. Participants will be suffi cient information to evaluate a resident’s ability to show mastery of provided with hard-copy materials that summarize the topics discussed the various competencies within Aerospace Medicine and to fi nally make as well as reference bibliographies that can be used to obtain further the judgment of that resident’s ability to practice independently. These information on specifi c issues. This workshop is aimed at those with a techniques and tools for evaluation of residents will be discussed. basic understanding of the problem of fatigue in operational environ- ments, and/or those who are anticipating new duty assignments in Learning Objectives: which they will bear some responsibility for the alertness management 1 The participants will learn various techniques and tools to evaluate of aviators or other personnel. No prior education in fatigue manage- aerospace medicine residents clinical skills and fund of knowledge ment, sleep, or circadian rhythms is required. in aerospace medicine Aviation, Space, and Environmental Medicine x Vol. 83, No. 3 x March 2012 209 ASMA 2012 MEETING ABSTRACTS [4] USE OF SERIOUS GAMING APPROACHES IN TRAINING medicine programs versus the spectrum of our stakeholder’s AEROSPACE MEDICINE SPECIALISTS expectations (ACGME, ABPM, Sponsoring institutions, future L. STEINKRAUS employers/organizations, faculty, residents and patients). Topics Mayo Clinic, Rochester, MN presented shall include: specifi c consideration stakeholder expecta- tions and their impact on curriculum; Subject matter weighting; INTRODUCTION: Serious Gaming (also referred to as Virtual effective communication of expectations, competencies and Reality) educational uses have grown steadily over the last two outcomes of the curriculum to the residents, residents and stakehold- decades, especially as computer-based Information Technology ers; weighting ACGME required subject matter and stakeholder capabilities have advanced. Faster processor speeds, larger memory, expected competencies versus the limitations of curriculum-time; the and improved software allow for multi-player, multi-level, high fi delity challenge of weighing experiential learning (rotations) versus didactic training scenarios. The challenge for the educator is to ensure educational units; and, the role of the faculty member in assessing appropriate educational goals and objectives are translated into resident competency. appropriate algorithms and heuristics within the simulated settings. Learning Objectives: METHODS: The process for developing a virtual aeromedical clinical teaching case will be presented and discussed. The trainee is presented 1 Participants will improve their knowledge and system-based with a pilot requiring an FAA medical certifi cation examination. As practice in the education of the 1 July 2011 ACGME Preventive part of the encounter the trainee interviews the patient, reviews and Medicine Program Requirements. completes the 8500-8, and makes decisions regarding further 2 Participants will recognize their roles in feedback process of cur- diagnostic testing, aeromedical disposition, and answers patient riculum weighting and assessing resident competency. questions. Evaluation of the encounter with respect to fund of 3 Participations will gain insight into the various residency programs’ knowledge, behaviors, and ACGME competencies will be discussed. stakeholder expectations. RESULTS: The use of this type of computer based training presents multiple opportunities for trainee assessment. Advantages to this type of training include accessibility, lower cost per training session, and [7] DEVELOPMENT OF RESIDENT TRAINING AND reliability with respect to training experience. Disadvantages include RESEARCH OPPORTUNITIES R.T. JENNINGS AND J.M. VANDERPLOEG lack of direct hands-on clinical examination, possible loss of fi delity based on the quality of the simulation, and need for computer access. UTMB, Galveston, TX Other advantages and disadvantages will also be presented and discussed. Initial results from a pilot study comparing Serious Gaming INTRODUCTION: Resident training and aerospace medicine and Standardized Patient simulation educational modalities will be specialty competency development can be augmented by numerous included in the presentation. activities outside of the classroom and traditional practicum rotations. This presentation will explore the role of Aerospace Learning Objectives: Medicine Grand Rounds and Journal Club and how these activities 1 The audience will understand the steps required to develop a Seri- can be developed, shared between
Recommended publications
  • An Investigation of the Effects of Sustained G-Forces on the Human
    An Investigation of the Effects of Sustained G-Forces on the Human Body During Suborbital Spaceflight In Fulfilment of the Degree: Master of Science in Aerospace Engineering Eric Jackson KTH Royal Institute of Technology Stockholm, Sweden June 30, 2017 SAMMANFATTNING (SWEDISH) Inom en snar framtid ¨ardet troligt att privata, kommersiella rymdflygningar ¨arm¨ojliga,d¨arpassagerarna inte kommer att vara utbildade astronauter och, till majoriteten, troligtvis ¨aldre.Dessa personer kommer att uts¨attasf¨or h¨ogaG-krafter vilket utan avancerad tr¨aningmedf¨orrisker som inte beaktats i detalj tidigare. Accelerationsprofilerna f¨orde tv˚arymdfarkoster som just nu utvecklas kommersiellt var analyserade utifr˚anofficiellt tillg¨anglig data. Videoanalys utf¨ordesutifr˚anfilmer av testflygningar och m¨anskligacentrifugtester anv¨andes f¨oratt f˚afram individuell data. Dessa var sedan kombinerade f¨oratt f˚afram accelerationsprofiler f¨orb˚adafarkosterna. Baserat p˚adessa profiler och de maximala G-krafterna som uppn˚addesanalyserades de m¨ojligariskerna f¨or passagerarna utifr˚anett medicinsk perspektiv. 1 ABSTRACT With the advent of private commercial suborbital spaceflight, a new demo- graphic of untrained individuals will begin to travel to space. These individu- als are exposed to high levels of G-forces, resulting in medical considerations which are not a normal factor with high performance fighter pilots or astro- nauts. The acceleration profiles of the Virgin Galactic and Blue Origin spacecraft were obtained from publicly available data. Video analysis was performed on footage of spacecraft test launches and human centrifuge tests to obtain individual data sets. These data sets were used to develop the acceleration profiles for both spacecraft. Based on the spacecraft's acceleration profiles and peak G-forces, medical conditions were investigated and considered to identify potential risks that may affect the passengers, particularly the elderly.
    [Show full text]
  • What Would Happen to Our Globes on the Globe of Mars?
    FEATURE Globes in space: What would happen to our globes on the globe of Mars? BY KATHERINE MCVEIGH AND TOMAS BURKE Many films have been made regarding life on alternative planets. With the Mars One mission approaching in 2023, there are high expectations regarding future interplanetary travel. The authors provide an ophthalmology perspective on what could happen to our eyes if exposed to the atmosphere of Mars. n 1990, Arnold Schwarzenegger starred in Total Recall [1], a film where he finds himself on Mars. Damage to his Ispacesuit and subsequent exposure to the environment on Mars results in excessive bodily swelling, along with extensive proptosis whereby the globes extend anteriorly beyond the eyelids as his optic nerves are undoubtedly stretched to their maximal capacity. From an ophthalmological perspective, the interpretation of the impact of atmospheric exposure is intriguing. With the anticipated Mars One mission launch in 2023 aiming to establish a habitable settlement in a hostile environment, we ask if what happened is an accurate depiction of what could be expected to happen to us and our ophthalmic globes on that other globe? The atmosphere on Mars has an O2 level of 0.13% and CO2 level of 95%, and is very Armstrong limit, meaning that exposure to thin, approximately 1% of that on Earth at Tense oedematous soft tissue swelling of sea level [2]. This is believed to be a result the environment would result in a prompt the lids will then make it challenging to of the loss of the magnetosphere four and severe dehydration from the mucosal open the lids.
    [Show full text]
  • NEAR of the 21 Lunar Landings, 19—All of the U.S
    Copyrights Prof Marko Popovic 2021 NEAR Of the 21 lunar landings, 19—all of the U.S. and Russian landings—occurred between 1966 and 1976. Then humanity took a 37-year break from landing on the moon before China achieved its first lunar touchdown in 2013. Take a look at the first 21 successful lunar landings on this interactive map https://www.smithsonianmag.com/science-nature/interactive-map-shows-all-21-successful-moon-landings-180972687/ Moon 1 The near side of the Moon with the major maria (singular mare, vocalized mar-ray) and lunar craters identified. Maria means "seas" in Latin. The maria are basaltic lava plains: i.e., the frozen seas of lava from lava flows. The maria cover ∼ 16% (30%) of the lunar surface (near side). Light areas are Lunar Highlands exhibiting more impact craters than Maria. The far side is pocked by ancient craters, mountains and rugged terrain, largely devoid of the smooth maria we see on the near side. The Lunar Reconnaissance Orbiter Moon 2 is a NASA robotic spacecraft currently orbiting the Moon in an eccentric polar mapping orbit. LRO data is essential for planning NASA's future human and robotic missions to the Moon. Launch date: June 18, 2009 Orbital period: 2 hours Orbit height: 31 mi Speed on orbit: 0.9942 miles/s Cost: 504 million USD (2009) The Moon is covered with a gently rolling layer of powdery soil with scattered rocks called the regolith; it is made from debris blasted out of the Lunar craters by the meteor impacts that created them.
    [Show full text]
  • Professor Name Class Student ID Number Name Problem Points
    2019 Fall Semester Midterm Examination For General Chemistry I Date: Oct 23 (Wed), Time Limit: 19:00 ~ 21:00 Write neatly in the spaces provided below each question; print your Student ID in the upper right corner of every page. Professor Class Student I.D. Number Name Name Problem points Problem points TOTAL pts 1 /8 6 /10 2 /10 7 /10 3 /10 8 /8 /100 4 /10 9 /10 5 /10 10 /14 ** This paper consists of 10 pages with 10 problems (pages 12 - 14: Equations, constants & periodic table, page 15: form for claiming credit). Please check all page numbers before taking the exam. Write down your work and answers in the Answer sheet. Please the numerical value of your answer with the appropriate unit when applicable. You will get 30% deduction for a missing unit. NOTICE: SCHEDULES on RETURN and CLAIM of the MARKED EXAM PAPER. (채점 답안지 분배 및 이의신청 일정) 1. Period, Location, and Procedure 1) Return and Claim Period: Oct 28 (Mon, 7:00 ~ 8:00 p.m.) 2) Location: Room for quiz sessions 3) Procedure: Rule 1: Students cannot bring their own writing tools into the room. (Use a pen only provided by TA) Rule 2: Whether you have made a claim or not, you must submit the paper back to TA. (Do not go out of the room with it) If you have any claims on it, you can submit the claim paper with your opinion. After writing your opinions on the claim form, please staple it to your mid-term paper.
    [Show full text]
  • Where in the Air Classroom Activity Educator Guide 2 | WHERE in the AIR CLASSROOM ACTIVITY EDUCATOR GUIDE
    National Aeronautics and Space Administration STEM ACTIVITY: Where in the Air Classroom Activity Educator Guide www.nasa.gov 2 | WHERE IN THE AIR CLASSROOM ACTIVITY EDUCATOR GUIDE OVERVIEW In this lesson, students learn about the layers of the atmosphere as well as what things can be found in each layer. Objectives Students will be able to: • Identify the layers of the atmosphere, including their location relative to the other layers • Determine in which layer of the atmosphere different objects can be found Standards Materials Worksheet – one per student Next Generation Science Standards • Disciplinary Core Ideas Informational sheets – one per group or student • MS-ESS2 Earth’s systems • Crosscutting Concepts • Systems and system models Science and Engineering Practices • Developing and using models Preparation Other Resources • Print out a worksheet for each student and “Earth’s Atmospheric Layers” diagram, available at: enough informational sheets so each student https://www.nasa.gov/mission_pages/sunearth/science/ will get a copy of the sheet describing their atmosphere-layers2.html group’s object. • The object descriptions in the informational sheets vary in complexity, allowing reading variation for students. WHERE IN THE AIR CLASSROOM ACTIVITY EDUCATOR GUIDE | 3 Steps 1. Use a warm-up or other method to teach (or review) the layers of the atmosphere. A search of the internet will provide you with many possible activities or videos that can be used to engage students. This information can be presented in conjunction with Earth’s other spheres (cryosphere, hydrosphere, biosphere, etc.). 2. Divide the students into groups of two or three. Or, depending on class size and composition, students can work as individuals instead of in small groups.
    [Show full text]
  • Contacts: Isabel Morales, Museum of Science and Industry, (773) 947-6003 Renee Mailhiot, Museum of Science and Industry, (773) 947-3133
    Contacts: Isabel Morales, Museum of Science and Industry, (773) 947-6003 Renee Mailhiot, Museum of Science and Industry, (773) 947-3133 A GLOSSARY OF TERMS Aerodynamics: The study of the properties of moving air, particularly of the interaction between the air and solid bodies moving through it. Afterburner: An auxiliary burner fitted to the exhaust system of a turbojet engine to increase thrust. Airfoil: A structure with curved surfaces designed to give the most favorable ratio of lift to drag in flight, used as the basic form of the wings, fins and horizontal stabilizer of most aircraft. Armstrong limit: The altitude that produces an atmospheric pressure so low (0.0618 atmosphere or 6.3 kPa [1.9 in Hg]) that water boils at the normal temperature of the human body: 37°C (98.6°F). The saliva in your mouth would boil if you were not wearing a pressure suit at this altitude. Death would occur within minutes from exposure to the vacuum. Autothrottle: The autopilot function that increases or decreases engine power,typically on larger aircraft. Avatar: An icon or figure representing a particular person in computer games, Internet forums, etc. Aerospace: The branch of technology and industry concerned with both aviation and space flight. Carbon fiber: Thin, strong, crystalline filaments of carbon, used as a strengthening material, especially in resins and ceramics. Ceres: A dwarf planet that orbits within the asteroid belt and the largest asteroid in the solar system. Chinook: The Boeing CH-47 Chinook is an American twin-engine, tandem-rotor heavy-lift helicopter. CST-100: The crew capsule spacecraft designed by Boeing in collaboration with Bigelow Aerospace for NASA's Commercial Crew Development program.
    [Show full text]
  • G R a V I T Y a N D Ma N Part I . Studies on the Effect Of
    GRAVITY AND MAN PART I . STUDIES ON THE EFFECT OF INCREASED GRAVITATIONAL FORCE ON MAN. PART I I . THE EFFECTS OF OTHER PHYSIOLOGICAL STRESSES ON MAN'S TOLERANCE TO INCREASED GRAVITATIONAL FORCE. MATTHEW KENNEDY BROWNE THESIS PRESENTED FOR THE DEGREE OF DOCTOR OF MEDICINE IN THE UNIVERSITY OF GLASGOW. MARCH 1959. ProQuest Number: 13850369 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13850369 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 CONTENTS. PAST I . Page CHAPTER I* INTRODUCTION. 1 " I I . METHODS AND MATERIALS. 10 " I I I . PHYSIOLOGY. PI " IV. HUMAN TOLERANCE TO ACCELERATION. 35 “ v. THE ELECTROCARDIOGRAM DURING POSITIVE 50 ACCELERATION. " VI. CHANGES IN THE ELECTRICAL AXIS AND THE VECTORCARDIOGRAM DURING 66 ACCELERATION. VII. THE ELECTRO-ENCEPHALOGRAM DURING 80 POSITIVE ACCELERATION. K V III. THE OCCURRENCE OP CONVULSIVE EPISODES 86 ON THE CENTRIFUGE. XI. A METHOD FOR THRESHOLD DETERMINATION 91 IN THE HUMAN CENTRIFUGE. PART I I . CHAPTER I . INTRODUCTION. 107 " I I . THE EFFECT OF HEAT ON TOLERANCE TO POSITIVE ACCELERATION. 136 " I I I .
    [Show full text]
  • Where in the Air Classroom Activity Student Guide.Pdf
    National Aeronautics and Space Administration STEM ACTIVITY: Where in the Air Classroom Activity Student Guide www.nasa.gov 2 | WHERE IN THE AIR CLASSROOM ACTIVITY STUDENT GUIDE OVERVIEW In this lesson, you will learn about the layers of the atmosphere as well as some of the things that can be found in each layer. Objectives Students will be able to: • Identify the layers of the atmosphere, including their location relative to the other layers • Determine in which layer of the atmosphere different objects can be found Directions Complete the following worksheet. 1. Part 1: You will be given an informational sheet which describes the object that you are to learn about. Read through this sheet to become the class expert. As you read, fill in the information on part 1 of the worksheet. When you have finished, use this information to complete the portion of the table in part 2 about your object. Prepare to share this information with the class. 2. Part 2: Each group will take turns sharing the information they gathered about their object. As they teach you about their object, use the information they provide to complete the rest of the table in part 2 of the worksheet. 3. Part 3: On the chart in part 3 of the worksheet, fill in the names for each layer of the atmosphere. Then, write the name of each object in its appropriate layer. If time permits, add a small drawing for each object. WHERE IN THE AIR CLASSROOM ACTIVITY STUDENT GUIDE | 3 NAME: “Where in the Air?” Student Worksheet PART 1 You are going to become an expert on one object found in Earth’s atmosphere.
    [Show full text]
  • Human Consequences of Climate Change, Climate Refugees: an Exploratory Essay
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2015 HUMAN CONSEQUENCES OF CLIMATE CHANGE, CLIMATE REFUGEES: AN EXPLORATORY ESSAY Frederick A. Snyder-Manetti University of Montana - Missoula Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Human Geography Commons, Physical and Environmental Geography Commons, and the Social and Cultural Anthropology Commons Let us know how access to this document benefits ou.y Recommended Citation Snyder-Manetti, Frederick A., "HUMAN CONSEQUENCES OF CLIMATE CHANGE, CLIMATE REFUGEES: AN EXPLORATORY ESSAY" (2015). Graduate Student Theses, Dissertations, & Professional Papers. 4519. https://scholarworks.umt.edu/etd/4519 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. HUMAN CONSEQUENCES OF CLIMATE CHANGE, CLIMATE REFUGEES: AN EXPLORATORY ESSAY By FREDERICK ANTES SNYDER-MANETTI Bachelor of Arts, History (With Honors), The University of Montana, Missoula, Montana, U.S.A., 2010 Bachelor of Arts, Geography (With Honors), The University of Montana, Missoula, Montana, U.S.A., 2010 Certificate of Completion in Geographic Information Systems, The University of Montana, Missoula, Montana, U.S.A.,
    [Show full text]
  • Acceleration Tolerance: Effect of Exercise, Acceleration Training; Bed Rest and Weightlessness Deconditioning a Compendium of Research (1950-1996)
    NASA Technical Memorandum 112214 Acceleration Tolerance: Effect of Exercise, Acceleration Training; Bed Rest and Weightlessness Deconditioning A Compendium of Research (1950-1996) J. L. Chou, M. A. McKenzie, N. J. Stad, and P. R. Barnes, California State University at San Francisco C. G. R. Jackson, California State University at Fresno F. Ghiasvand and J. E. Greenleaf, Ames Research Center, Moffett Field, California October 1997 National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 Contents Page Summary ................................................................................................ iv Introduction ............................................................................................. v Abstracts and Annotations ............................................................................ 1 Additional Selected Bibliography .................................................................... 45 Author Index ............................................................................................ 47 Keyword Index ......................................................................................... 51 iii Summary This compendium includes abstracts and annotations of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of acceleration, training and deconditioning. If the author's abstract or summary was appropriate, it was included. In other cases a more detailed annotation of the paper was prepared under the
    [Show full text]
  • NAWC ASTC Cherry Point GTIP 95 American Osteopathic College of Occupational and Preventive Medicine 2014 Annual Meeting, Seattle, Washington
    American Osteopathic College of Occupational and Preventive Medicine 2014 Annual Meeting, Seattle, Washington 24.0 IDENTIFY Gz acceleration forces, the causes and symptoms of (G-LOC), and the methods to improve G-tolerance. disclosure information: “Nothing to Disclose!” • On 13 July 1977 British racing driver David Purley survived a 24.1 IDENTIFY effects of +/- Gs. deceleration from 173 km/h to zero in a distance of about 24.2 IDENTIFY different types of Loss of 0.66 m, enduring 180 G. Consciousness (LOC). • The beak of the red-headed woodpecker hits the bark of a 24.3 LIST physical and physiological factors that tree with an impact velocity of over 21 km/h, subjecting the may effect G-tolerance. bird’s brain to a deceleration of approximately 10 G when its head snaps back. 24.4 IDENTIFY physiological and mechanical mechanisms used to increase G-tolerance. The current capabilities of trained individuals to maintain clear vision during sustained exposures to 9 Gz is a result of: It’s fun • Use of a G suit It builds character • Very effective self-protective straining maneuvers such So you can kill the other guy as the M-1, L-1 So you don’t get killed • Pressure breathing Actually only pull Gs to change direction All of which are variants of the Valsalva maneuver developed in the 1940s S-1 NAWC ASTC Cherry Point GTIP 95 American Osteopathic College of Occupational and Preventive Medicine 2014 Annual Meeting, Seattle, Washington The most plausible causes are: Poor anti-G straining maneuver was cited in 1) Increased capability of jet-powered fighters to 70+% of the mishaps sustain, with minimal pilot effort, accelerations in the 7-10 gz range for periods longer than the Fatigue / G-suit malfunction is 20% symptom-free 3-8 second cerebral ischemic anoxic period which precedes GLOC.
    [Show full text]
  • Conceptual Design and Flight Envelopes of a Light Aircraft for Mars Atmosphere
    ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20170908130808 Original scientific paper Conceptual Design and Flight Envelopes of a Light Aircraft for Mars Atmosphere Marko Ž. EKMEDŽIĆ, Aleksandar BENGIN, Boško RAŠUO Abstract: In this paper is presented a new conceptual design of the light aircraft for Mars atmosphere, ALPEMA. It allows atmospheric dropping (aeroshell), as well as direct take-off from Martian surface. Complex atmosphere demanded for simplified yet efficient wing geometry, capable of maximizing Lift-to-Drag ratio. Martian atmospheric pressure, density, temperature and speed of sound variations, demand a scrutinized powerplant choice. Efficient aspect ratio and drag polar lead to optimal flight envelopes as a proof of sustainability of ALPEMA project. Special performances and basic aerodynamics provide boundaries and constraints of the project, in line with similar approaches. Chosen propeller allows for ALPEMA to use maximum power capabilities of its engine, described through Vmin and Vmax, which are significant inputs for flight envelope. Envelope provides effective width and profile for a variety of possible missions. ALPEMA’s specific propeller and engine are a certain comparative advantage, together with its flight envelope. Keywords: aerodynamics; atmosphere; flight; light aircraft; flight envelope; flight speed; Mars 1 INTRODUCTION related with flight in complex Martian conditions, analysis and synthetization of results will allow for more precise Efforts to overcome numerous challenges observable and effective projects, employing various and versatile in Martian atmosphere are one of the ongoing and tools [9-11]. permanent topics for aerospace engineering in last decades. Martian atmosphere shows specifics, which make it Engineering community, as well as state agencies or strictly different than the atmosphere of Earth.
    [Show full text]