1St Cover Nov Issue.Indd

Total Page:16

File Type:pdf, Size:1020Kb

1St Cover Nov Issue.Indd DHRUBAJYOTI CHTTOPADHYAY Laika – the space dog – would always be remembered for her short adventure in space that made it possible for RTICLE humans to take a giant leap in the fi eld A of space science. EATURE F Laika – the space dog – would always support aeronautical fl ight. Above this be remembered for her short adventure Karman line, there is an abrupt increase in in space that made it possible for humans atmospheric temperature and interaction to take a giant leap in the fi eld of space with solar radiation. science. The key concerns for a living species There is no distinct boundary beyond this Karman line are ebullism, hypoxia, hypocapnia, decompression VEN two months before her death, between the atmosphere and space, only sickness, extreme temperature variations, she used to roam like a vagabond on an imaginary line approximately 68 mile E cellular mutation, destruction from high the streets of Moscow. She didn’t have or 110 Kilometer above from the earth’s energy photons and sub-atomic particles any permanent address as she was a surface, called the Karman line. Scientists and many other problems. street dweller. Nobody even knew about believe that the Earth’s atmosphere meets her parents or when and where she took outer space from here. • Ebullism is the formation of bubbles birth. And no one could have imagined Karman was a Hungarian-American in body fl uids due to the reduction of that in the last two months of her life she engineer-cum-physicist. He was the fi rst atmospheric pressure. It is considered as would bring a revolution in space science scientist who calculated that around the most severe experience of space. for which the entire human civilization 100 km above the Earth’s surface, the • Embolism may start at an elevation of would be grateful to her. atmosphere becomes so thin that it cannot around 19 km above the Earth’s surface or 29 Science Reporter, NOVEMBER 2016 FEATURE ARTICLE Cabin For Laika (left) Sputnik 2 On either side of the compartment there were plates of potassium super- oxide. This chemical while reacting with carbon dioxide and water vapor emitted oxygen. rabbits, bees, ants, frogs, mice, crickets, rats, newts, snails, urchins, moths, brine shrimp, jellyfi sh, guinea pigs, bu erfl ies, scorpions and cockroaches. Animals like dogs, monkeys and chimps were mainly used to test the safety and feasibility of launching a human being into space and bringing it back to the earth safely. Russian space scie- ntists preferred dogs because they felt that dogs could endure long periods of inactivity be er than any other animal. The dogs when atmospheric pressure becomes less these eff ects – the space suit. Astronauts could easily be confi ned in than 47 mm of Hg. This limit is known as still have to contend with weightlessness small boxes for 15-20 days at a time. Soviet the Armstrong Limit. and micro-gravity. For long periods scientists further assumed that a stray of time, exposure to weightlessness dog would be be er as they had already • Rapid de-oxygenation of the blood due has several deleterious eff ects on learned to endure harsh conditions of at lower atmospheric pressure is called human health. Short-term exposure to hunger and cold temperatures. So, strays hypoxia, which causes gradual loss of microgravity causes space adaptation from the Moscow streets were chosen for cognitive functions. It starts at about 3 km syndrome that may cause a self-limiting the fi rst mission to send a living being or 10,000 altitude. nausea, derangement of the vestibular into space. Further, female dogs were • The formation of nitrogen gas bubbles system, etc. But long-term exposure chosen because they did not have to stand which usually interfere with organ could cause loss of bone and muscle and li a leg to urinate. function is known as decompression mass, increase risk of injury, reduce Among dozens of other stray dogs sickness. aerobic capacity, and slow down the which were kept at the space research • Reduction of blood carbon dioxide cardiovascular system. centre in Moscow, Laika had been levels is known as hypocapnia. In the early days of space science, no rounded up a er a variety of tests and Hypocapnia can alter the blood pH and one knew what would be the eff ects of training. These tests included weeks of indirectly contribute to nervous system weightlessness on a living body. So, space confi nement in small cages so that the malfunctions. If the person tries to hold scientists used animals to understand the dogs could be accustomed to the limited breath in space the lungs may rupture impact of microgravity on many biological space available within the capsule. She internally. functions. They have studied these also had to pass other tests like noise, Scientists, therefore, had to develop impacts on animals like wasps, beetles, vibration and G-forces that would be a special type of protective cloth to avoid tortoises, fl ies, worms, fi sh, spiders, experienced during the launch period and Science Reporter, NOVEMBER 2016 30 FEATURE ARTICLE Though Russian offi cial news reported the results of the experiment from the early hours, no details were announced about Laika, who had become an instant celebrity at that time. The only news they Laika with broadcast about implanted her that she was biometric sensors fi ne. When on November 10, the radio transmitter also stopped, offi cials began to acknowledge that Laika would die. the fl ight. The same generall assessmentt and to the harness and waste-collection limited freedom to lie down or stand, and system devised for Laika was later used apparatus. Silver electrocardiogram motion sensors reported activity. for cosmonauts who were to be sent into electrodes were implanted in the chest to On the 3 November 1957, Sputnik-2 space. measure the heart rate, and a piezoelectric was launched from the Baikonur The original name of Laika was blood-pressure sleeve was surgically Cosmodrome in Kazakhstan along with Kudryavka, or Li le Curly, but she placed around the carotid artery in the Laika. She became the fi rst cosmonaut became known internationally as Laika. neck so that the biometric readings of our planet Earth. The fl ight of Laika American reporters dubbed her Mu nik could be radioed to Earth. To avoid became headline news in almost all as a pun on Sputnik, the spacecra on any infection these were kept carefully newspapers across the world. From board which she travelled. bandaged and cleaned with alcohol every the capsule of Sputnik-2, reports about During training for the fl ight, Laika day. Respiration rate was measured by her condition were transmi ed back was trained to sit in the cabin and get used strain gauges in a belt around her chest. to Earth, including her blood pressure, to the noises and acceleration of launch The dog was chained in place, with heart rate and breathing. The capsule’s Solar UV and X-ray Sensor KS-5 Cosmic Ray Counter environmental conditions including temperature and internal pressure were also closely monitored from Russia. Sputnik-2 satellite had three units mounted in a conical frame, with a total mass of 508.3 kg. At the top there was an instrument, which was used to measure solar X-ray and far ultraviolet radiation. Below that, there was a cabin to carry the dog. It was 80 cm long and 64 cm in diameter. 31 Science Reporter, NOVEMBER 2016 FEATURE ARTICLE Laika in the spaceship dog’s body. It was found that during the Laika monument fl ight the cabin became steadily warmer. unveiled on the eve of Cosmonauts’ Day Sometime a er nearly fi ve to seven hours the biometric telemetry system failed. 2008 ( Although Laika’s exact fate is unknown, Courtesy: Wikipedia) from ground simulations many space Below: Postal scientists predict that she died from Stamp on Laika overheating soon a er the third or fourth orbit. Though Russian offi cial news reported the results of the experiment from the early hours, no details were announced about Laika, who had become an instant celebrity at that time. The only news they broadcast about her that she was fi ne. When on November 10, the radio transmi er also stopped, offi cials began to acknowledge that Laika would die. A ventilator fan was mounted at the special high-nutrition gel was supplied. top. It was designed in such a way that This gelatinous nutrient was made from In 1969, Romania published a postal it would turn on if the temperature rose water, agar agar, dried-bread powder, stamp to commemorate the event with above 15° C. powdered meat and beef tallow. This was the caption: “Laika, fi rst travelled into Cosmos”. In November 1997, a statue of On either side of the compartment delivered by a cartridge belt arrangement Laika was unveiled at the Institute for there were plates of potassium super- that doled out portions for the dog to Aviation and Space Medicine at Star City, oxide. This chemical while reacting with eat at regular intervals. It was estimated Moscow. carbon dioxide and water vapor emi ed that the dog might survive maximum for oxygen. However, since excess oxygen seven days, according to which provision But the question is: Do human beings is also harmful and may cause oxygen for the quantity of food and oxygen was have the right to make scapegoats of poisoning, a control system was there made. Urine and feces were collected by innocent animals for their own progress? to stop the regeneration of oxygen if the a tight fi ing rubber cup, and sent to a Oleg Gazenko, the scientist and trainer of pressure went above 765 mm of Hg.
Recommended publications
  • What Would Happen to Our Globes on the Globe of Mars?
    FEATURE Globes in space: What would happen to our globes on the globe of Mars? BY KATHERINE MCVEIGH AND TOMAS BURKE Many films have been made regarding life on alternative planets. With the Mars One mission approaching in 2023, there are high expectations regarding future interplanetary travel. The authors provide an ophthalmology perspective on what could happen to our eyes if exposed to the atmosphere of Mars. n 1990, Arnold Schwarzenegger starred in Total Recall [1], a film where he finds himself on Mars. Damage to his Ispacesuit and subsequent exposure to the environment on Mars results in excessive bodily swelling, along with extensive proptosis whereby the globes extend anteriorly beyond the eyelids as his optic nerves are undoubtedly stretched to their maximal capacity. From an ophthalmological perspective, the interpretation of the impact of atmospheric exposure is intriguing. With the anticipated Mars One mission launch in 2023 aiming to establish a habitable settlement in a hostile environment, we ask if what happened is an accurate depiction of what could be expected to happen to us and our ophthalmic globes on that other globe? The atmosphere on Mars has an O2 level of 0.13% and CO2 level of 95%, and is very Armstrong limit, meaning that exposure to thin, approximately 1% of that on Earth at Tense oedematous soft tissue swelling of sea level [2]. This is believed to be a result the environment would result in a prompt the lids will then make it challenging to of the loss of the magnetosphere four and severe dehydration from the mucosal open the lids.
    [Show full text]
  • NEAR of the 21 Lunar Landings, 19—All of the U.S
    Copyrights Prof Marko Popovic 2021 NEAR Of the 21 lunar landings, 19—all of the U.S. and Russian landings—occurred between 1966 and 1976. Then humanity took a 37-year break from landing on the moon before China achieved its first lunar touchdown in 2013. Take a look at the first 21 successful lunar landings on this interactive map https://www.smithsonianmag.com/science-nature/interactive-map-shows-all-21-successful-moon-landings-180972687/ Moon 1 The near side of the Moon with the major maria (singular mare, vocalized mar-ray) and lunar craters identified. Maria means "seas" in Latin. The maria are basaltic lava plains: i.e., the frozen seas of lava from lava flows. The maria cover ∼ 16% (30%) of the lunar surface (near side). Light areas are Lunar Highlands exhibiting more impact craters than Maria. The far side is pocked by ancient craters, mountains and rugged terrain, largely devoid of the smooth maria we see on the near side. The Lunar Reconnaissance Orbiter Moon 2 is a NASA robotic spacecraft currently orbiting the Moon in an eccentric polar mapping orbit. LRO data is essential for planning NASA's future human and robotic missions to the Moon. Launch date: June 18, 2009 Orbital period: 2 hours Orbit height: 31 mi Speed on orbit: 0.9942 miles/s Cost: 504 million USD (2009) The Moon is covered with a gently rolling layer of powdery soil with scattered rocks called the regolith; it is made from debris blasted out of the Lunar craters by the meteor impacts that created them.
    [Show full text]
  • Professor Name Class Student ID Number Name Problem Points
    2019 Fall Semester Midterm Examination For General Chemistry I Date: Oct 23 (Wed), Time Limit: 19:00 ~ 21:00 Write neatly in the spaces provided below each question; print your Student ID in the upper right corner of every page. Professor Class Student I.D. Number Name Name Problem points Problem points TOTAL pts 1 /8 6 /10 2 /10 7 /10 3 /10 8 /8 /100 4 /10 9 /10 5 /10 10 /14 ** This paper consists of 10 pages with 10 problems (pages 12 - 14: Equations, constants & periodic table, page 15: form for claiming credit). Please check all page numbers before taking the exam. Write down your work and answers in the Answer sheet. Please the numerical value of your answer with the appropriate unit when applicable. You will get 30% deduction for a missing unit. NOTICE: SCHEDULES on RETURN and CLAIM of the MARKED EXAM PAPER. (채점 답안지 분배 및 이의신청 일정) 1. Period, Location, and Procedure 1) Return and Claim Period: Oct 28 (Mon, 7:00 ~ 8:00 p.m.) 2) Location: Room for quiz sessions 3) Procedure: Rule 1: Students cannot bring their own writing tools into the room. (Use a pen only provided by TA) Rule 2: Whether you have made a claim or not, you must submit the paper back to TA. (Do not go out of the room with it) If you have any claims on it, you can submit the claim paper with your opinion. After writing your opinions on the claim form, please staple it to your mid-term paper.
    [Show full text]
  • Where in the Air Classroom Activity Educator Guide 2 | WHERE in the AIR CLASSROOM ACTIVITY EDUCATOR GUIDE
    National Aeronautics and Space Administration STEM ACTIVITY: Where in the Air Classroom Activity Educator Guide www.nasa.gov 2 | WHERE IN THE AIR CLASSROOM ACTIVITY EDUCATOR GUIDE OVERVIEW In this lesson, students learn about the layers of the atmosphere as well as what things can be found in each layer. Objectives Students will be able to: • Identify the layers of the atmosphere, including their location relative to the other layers • Determine in which layer of the atmosphere different objects can be found Standards Materials Worksheet – one per student Next Generation Science Standards • Disciplinary Core Ideas Informational sheets – one per group or student • MS-ESS2 Earth’s systems • Crosscutting Concepts • Systems and system models Science and Engineering Practices • Developing and using models Preparation Other Resources • Print out a worksheet for each student and “Earth’s Atmospheric Layers” diagram, available at: enough informational sheets so each student https://www.nasa.gov/mission_pages/sunearth/science/ will get a copy of the sheet describing their atmosphere-layers2.html group’s object. • The object descriptions in the informational sheets vary in complexity, allowing reading variation for students. WHERE IN THE AIR CLASSROOM ACTIVITY EDUCATOR GUIDE | 3 Steps 1. Use a warm-up or other method to teach (or review) the layers of the atmosphere. A search of the internet will provide you with many possible activities or videos that can be used to engage students. This information can be presented in conjunction with Earth’s other spheres (cryosphere, hydrosphere, biosphere, etc.). 2. Divide the students into groups of two or three. Or, depending on class size and composition, students can work as individuals instead of in small groups.
    [Show full text]
  • Contacts: Isabel Morales, Museum of Science and Industry, (773) 947-6003 Renee Mailhiot, Museum of Science and Industry, (773) 947-3133
    Contacts: Isabel Morales, Museum of Science and Industry, (773) 947-6003 Renee Mailhiot, Museum of Science and Industry, (773) 947-3133 A GLOSSARY OF TERMS Aerodynamics: The study of the properties of moving air, particularly of the interaction between the air and solid bodies moving through it. Afterburner: An auxiliary burner fitted to the exhaust system of a turbojet engine to increase thrust. Airfoil: A structure with curved surfaces designed to give the most favorable ratio of lift to drag in flight, used as the basic form of the wings, fins and horizontal stabilizer of most aircraft. Armstrong limit: The altitude that produces an atmospheric pressure so low (0.0618 atmosphere or 6.3 kPa [1.9 in Hg]) that water boils at the normal temperature of the human body: 37°C (98.6°F). The saliva in your mouth would boil if you were not wearing a pressure suit at this altitude. Death would occur within minutes from exposure to the vacuum. Autothrottle: The autopilot function that increases or decreases engine power,typically on larger aircraft. Avatar: An icon or figure representing a particular person in computer games, Internet forums, etc. Aerospace: The branch of technology and industry concerned with both aviation and space flight. Carbon fiber: Thin, strong, crystalline filaments of carbon, used as a strengthening material, especially in resins and ceramics. Ceres: A dwarf planet that orbits within the asteroid belt and the largest asteroid in the solar system. Chinook: The Boeing CH-47 Chinook is an American twin-engine, tandem-rotor heavy-lift helicopter. CST-100: The crew capsule spacecraft designed by Boeing in collaboration with Bigelow Aerospace for NASA's Commercial Crew Development program.
    [Show full text]
  • Where in the Air Classroom Activity Student Guide.Pdf
    National Aeronautics and Space Administration STEM ACTIVITY: Where in the Air Classroom Activity Student Guide www.nasa.gov 2 | WHERE IN THE AIR CLASSROOM ACTIVITY STUDENT GUIDE OVERVIEW In this lesson, you will learn about the layers of the atmosphere as well as some of the things that can be found in each layer. Objectives Students will be able to: • Identify the layers of the atmosphere, including their location relative to the other layers • Determine in which layer of the atmosphere different objects can be found Directions Complete the following worksheet. 1. Part 1: You will be given an informational sheet which describes the object that you are to learn about. Read through this sheet to become the class expert. As you read, fill in the information on part 1 of the worksheet. When you have finished, use this information to complete the portion of the table in part 2 about your object. Prepare to share this information with the class. 2. Part 2: Each group will take turns sharing the information they gathered about their object. As they teach you about their object, use the information they provide to complete the rest of the table in part 2 of the worksheet. 3. Part 3: On the chart in part 3 of the worksheet, fill in the names for each layer of the atmosphere. Then, write the name of each object in its appropriate layer. If time permits, add a small drawing for each object. WHERE IN THE AIR CLASSROOM ACTIVITY STUDENT GUIDE | 3 NAME: “Where in the Air?” Student Worksheet PART 1 You are going to become an expert on one object found in Earth’s atmosphere.
    [Show full text]
  • Human Consequences of Climate Change, Climate Refugees: an Exploratory Essay
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2015 HUMAN CONSEQUENCES OF CLIMATE CHANGE, CLIMATE REFUGEES: AN EXPLORATORY ESSAY Frederick A. Snyder-Manetti University of Montana - Missoula Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Human Geography Commons, Physical and Environmental Geography Commons, and the Social and Cultural Anthropology Commons Let us know how access to this document benefits ou.y Recommended Citation Snyder-Manetti, Frederick A., "HUMAN CONSEQUENCES OF CLIMATE CHANGE, CLIMATE REFUGEES: AN EXPLORATORY ESSAY" (2015). Graduate Student Theses, Dissertations, & Professional Papers. 4519. https://scholarworks.umt.edu/etd/4519 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. HUMAN CONSEQUENCES OF CLIMATE CHANGE, CLIMATE REFUGEES: AN EXPLORATORY ESSAY By FREDERICK ANTES SNYDER-MANETTI Bachelor of Arts, History (With Honors), The University of Montana, Missoula, Montana, U.S.A., 2010 Bachelor of Arts, Geography (With Honors), The University of Montana, Missoula, Montana, U.S.A., 2010 Certificate of Completion in Geographic Information Systems, The University of Montana, Missoula, Montana, U.S.A.,
    [Show full text]
  • Conceptual Design and Flight Envelopes of a Light Aircraft for Mars Atmosphere
    ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20170908130808 Original scientific paper Conceptual Design and Flight Envelopes of a Light Aircraft for Mars Atmosphere Marko Ž. EKMEDŽIĆ, Aleksandar BENGIN, Boško RAŠUO Abstract: In this paper is presented a new conceptual design of the light aircraft for Mars atmosphere, ALPEMA. It allows atmospheric dropping (aeroshell), as well as direct take-off from Martian surface. Complex atmosphere demanded for simplified yet efficient wing geometry, capable of maximizing Lift-to-Drag ratio. Martian atmospheric pressure, density, temperature and speed of sound variations, demand a scrutinized powerplant choice. Efficient aspect ratio and drag polar lead to optimal flight envelopes as a proof of sustainability of ALPEMA project. Special performances and basic aerodynamics provide boundaries and constraints of the project, in line with similar approaches. Chosen propeller allows for ALPEMA to use maximum power capabilities of its engine, described through Vmin and Vmax, which are significant inputs for flight envelope. Envelope provides effective width and profile for a variety of possible missions. ALPEMA’s specific propeller and engine are a certain comparative advantage, together with its flight envelope. Keywords: aerodynamics; atmosphere; flight; light aircraft; flight envelope; flight speed; Mars 1 INTRODUCTION related with flight in complex Martian conditions, analysis and synthetization of results will allow for more precise Efforts to overcome numerous challenges observable and effective projects, employing various and versatile in Martian atmosphere are one of the ongoing and tools [9-11]. permanent topics for aerospace engineering in last decades. Martian atmosphere shows specifics, which make it Engineering community, as well as state agencies or strictly different than the atmosphere of Earth.
    [Show full text]
  • Muscle Cell Function and the Effects of Hyperbaric Oxygen Therapy
    ISSN 2473-0963 ORTHOPEDICs RESEARCH AND TRAUMATOLOGY Open Journal Review Muscle Cell Function and the Effects of Hyperbaric Oxygen Therapy Tammy Rossomando, MS.EHS, MEd, ATC* Health and Safety Ergomedic-Consulting, Hillsdale, NJ 07642, USA *Corresponding author Tammy Rossomando, MS.EHS, MEd, ATC President, Health and Safety Ergomedic-Consulting, Hillsdale, NJ 07642, USA; Tel. 201-403-4148; E-mail: [email protected] Article information Received: October 7th, 2019; Revised: Ocober 28th, 2019; Accepted: November 1st, 2019; Published: November 8th, 2019 Cite this article Rossomando T. Muscle cell function and the effects of hyperbaric oxygen therapy. Orthop Res Traumatol Open J. 2019; 4(1): 6-9. doi: 10.17140/ORTOJ-4-115 ABSTRACT There are different processes via which a muscle cell can utilize oxygen to make energy that will sustain activity. The type of ac- tivity and duration of activity will determine what energy system is used to sustain the activity being done. Aerobic metabolism uses oxygen to sustain the energy demand. Oxygen is obtained from the air we breathe, and then transported to the cells though the myoglobin. Although ambient air only contains 21% oxygen, it is enough to sustain life and energy needs. But what if the muscle cell could instead receive 100% oxygen? The delivery method would be via hyperbaric oxygen therapy (HBO) which sup- plies oxygen at 100% concentration under a minimum of 1 atmospheric pressure. Atmospheric pressure will affect the outcomes of consuming 100% oxygen. Research supports positive findings on oxygen therapy under pressure and muscle cell recovery but much research still needs to be investigated.
    [Show full text]
  • Housing Model for Mars
    [ VOLUME 6 I ISSUE 1 I JAN.– MARCH 2019] E ISSN 2348 –1269, PRINT ISSN 2349-5138 Housing Model for Mars Sanjib Das1 & Prasanya Sarkar2 1Student, Department of Zoology, Ananda Chandra college, Jalpaiguri, West Bengal, India 2Research Scholar, Department of Geography and Applied Geography, North Bengal University, West Bengal, India Received: December 07, 2018 Accepted: January 19, 2019 ABSTRACT: Earth’s population is growing at a rapid speed, to the point where it becomes concerning that the Carrying Capacityof earth has been overcome. So it will be requiring to find out another planet alike earth to maintain carrying capacity. In present day, some scientists believe that in Mars environment is possible to create an ecosystem for human surviving.By the analysis of returned information from various robotic mission it is concludedthat Mars as,The New Genesis of Life.The success of such creativity would depend on the provide technology and material from Earth. Key Words: Earth, Mars, Greenhouse effect. Introduction: The only life we have encountered anywhere in the universe- Is life on Earth. Enlarging microorganisms, plants, & animals on earth from 4.0 billion year ago to tillour present day lived& diversified under a specific physical & environmental condition of Earth, where gravity of Earth plays a significant role.Every living thing survived under the common influences of Earth’s gravity, atmosphere, radiation, temperature, surface pressure, and natural resources. Although there seems to be no life on Mars present day, there is considerable evidence, returned by various robotic mission, that early in the planet’s history, liquid water habitats existed, and conditions may have been suitable for the origin of indigenous life.
    [Show full text]
  • Spacesuits Is Growing and Could Present an Attractive Opportunity for Investment
    PREFACE Space Angels Network continually endeavors to understand new market opportunities for investment. Our position, at the forefront of early-stage space investing, gives us a unique vantage point from which to assess nascent markets. And this knowledge provides our investor members with the insights they need to make informed investment decisions in this dynamic industry. With the proliferation of new in-space destinations coming online (Bigelow BA330, Axiom, ROS, Tiangong, cis-lunar, lunar surface, Mars surface) and new crewed launch vehicles (SpaceX Dragon, Boeing Starliner, Virgin Galactic SpaceShipTwo, Blue Origin New Shepard), we are at an inflection point for human spaceflight. Therefore, we believe the market for spacesuits is growing and could present an attractive opportunity for investment. The market dynamics of the spacesuit industry are daunting: few customers, high development risk, and dominant incumbents. The long-term success of a spacesuit business is predicated on the proliferation of human spaceflight, whether commercial or otherwise. If indeed human spaceflight is on the cusp of becoming mainstream, then spacesuit companies will be our proverbial canary in the coalmine. INDEX Page Executive Summary........................ 1 Report Findings.............................................................. 3 Keys to Success.............................................................. 4 Technology....................................... 7 Physiological Effects of Altitude in Humans........ 7 History of Pressure Suits.............................................
    [Show full text]
  • List of Common Misconceptions
    List of common misconceptions This incomplete list is not intended to be exhaustive. examples include the metallized surfaces used in browning sleeves and pizza-cooking platforms.*[7] This list of common misconceptions corrects erroneous • The functional principle of a microwave oven is beliefs that are currently widely held about notable top- dielectric heating rather than resonance frequencies ics. Each misconception and the corresponding facts have of water, and microwave ovens can therefore op- been discussed in published literature. Note that each en- erate at many frequencies. Water molecules are try is formatted as a correction; the misconceptions them- exposed to intense electromagnetic fields in strong selves are implied rather than stated. non-resonant microwaves to create heat. The 22 GHz resonant frequency of isolated water molecules has a wavelength too short to penetrate common 1 Arts and culture foodstuffs to useful depths. The typical oven fre- quency of 2.45 GHz was chosen partly due to its 1.1 Food and cooking ability to penetrate a food object of reasonable size, and partly to avoid interference with communication • Searing meat may cause it to lose moisture in com- frequencies in use when microwave ovens became * parison to an equivalent amount of cooking with- commercially available. [8] out searing. Generally, the value in searing meat is • Twinkies have a shelf life of approximately 45 that it creates a brown crust with a rich flavor via the days*[9] (25 in their original formulation) ̶far Maillard reaction.*[1]*[2]
    [Show full text]