Strugnell2009chap26.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Common Name: Chiton Class: Polyplacophora
Common Name: Chiton Class: Polyplacophora Scrapes algae off rock with radula 8 Overlapping Plates Phylum? Mollusca Class? Gastropoda Common name? Brown sea hare Class? Scaphopoda Common name? Tooth shell or tusk shell Mud Tentacle Foot Class? Gastropoda Common name? Limpet Phylum? Mollusca Class? Bivalvia Class? Gastropoda Common name? Brown sea hare Phylum? Mollusca Class? Gastropoda Common name? Nudibranch Class? Cephalopoda Cuttlefish Octopus Squid Nautilus Phylum? Mollusca Class? Gastropoda Most Bivalves are Filter Feeders A B E D C • A: Mantle • B: Gill • C: Mantle • D: Foot • E: Posterior adductor muscle I.D. Green: Foot I.D. Red Gills Three Body Regions 1. Head – Foot 2. Visceral Mass 3. Mantle A B C D • A: Radula • B: Mantle • C: Mouth • D: Foot What are these? Snail Radulas Dorsal HingeA Growth line UmboB (Anterior) Ventral ByssalC threads Mussel – View of Outer Shell • A: Hinge • B: Umbo • C: Byssal threads Internal Anatomy of the Bay Mussel A B C D • A: Labial palps • B: Mantle • C: Foot • D: Byssal threads NacreousB layer Posterior adductorC PeriostracumA muscle SiphonD Mantle Byssal threads E Internal Anatomy of the Bay Mussel • A: Periostracum • B: Nacreous layer • C: Posterior adductor muscle • D: Siphon • E: Mantle Byssal gland Mantle Gill Foot Labial palp Mantle Byssal threads Gill Byssal gland Mantle Foot Incurrent siphon Byssal Labial palp threads C D B A E • A: Foot • B: Gills • C: Posterior adductor muscle • D: Excurrent siphon • E: Incurrent siphon Heart G F H E D A B C • A: Foot • B: Gills • C: Mantle • D: Excurrent siphon • E: Incurrent siphon • F: Posterior adductor muscle • G: Labial palps • H: Anterior adductor muscle Siphon or 1. -
Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration. -
Quaderni Del Museo Civico Di Storia Naturale Di Ferrara
ISSN 2283-6918 Quaderni del Museo Civico di Storia Naturale di Ferrara Anno 2018 • Volume 6 Q 6 Quaderni del Museo Civico di Storia Naturale di Ferrara Periodico annuale ISSN. 2283-6918 Editor: STEFA N O MAZZOTT I Associate Editors: CARLA CORAZZA , EM A N UELA CAR I A ni , EN R ic O TREV is A ni Museo Civico di Storia Naturale di Ferrara, Italia Comitato scientifico / Advisory board CE S ARE AN DREA PA P AZZO ni FI L ipp O Picc OL I Università di Modena Università di Ferrara CO S TA N ZA BO N AD im A N MAURO PELL I ZZAR I Università di Ferrara Ferrara ALE ss A N DRO Min ELL I LU ci O BO N ATO Università di Padova Università di Padova MAURO FA S OLA Mic HELE Mis TR I Università di Pavia Università di Ferrara CARLO FERRAR I VALER I A LE nci O ni Università di Bologna Museo delle Scienze di Trento PI ETRO BRA N D M AYR CORRADO BATT is T I Università della Calabria Università Roma Tre MAR C O BOLOG N A Nic KLA S JA nss O N Università di Roma Tre Linköping University, Sweden IRE N EO FERRAR I Università di Parma In copertina: Fusto fiorale di tornasole comune (Chrozophora tintoria), foto di Nicola Merloni; sezione sottile di Micrite a foraminiferi planctonici del Cretacico superiore (Maastrichtiano), foto di Enrico Trevisani; fiore di digitale purpurea (Digitalis purpurea), foto di Paolo Cortesi; cardo dei lanaioli (Dipsacus fullonum), foto di Paolo Cortesi; ala di macaone (Papilio machaon), foto di Paolo Cortesi; geco comune o tarantola (Tarentola mauritanica), foto di Maurizio Bonora; occhio della sfinge del gallio (Macroglossum stellatarum), foto di Nicola Merloni; bruco della farfalla Calliteara pudibonda, foto di Maurizio Bonora; piumaggio di pernice dei bambù cinese (Bambusicola toracica), foto dell’archivio del Museo Civico di Lentate sul Seveso (Monza). -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
A Review of Ethnographic and Historically Recorded Dentaliurn Source Locations
FISHINGFOR IVORYWORMS: A REVIEWOF ETHNOGRAPHICAND HISTORICALLY RECORDEDDENTALIUM SOURCE LOCATIONS Andrew John Barton B.A., Simon Fraser University, 1979 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN THE DEPARTMENT OF ARCHAEOLOGY Q Andrew John Barton 1994 SIMON FRASER UNIVERSITY Burnaby October, 1994 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means without permission of the author. Name: Andrew John Barton Degree: Master of Arts (Archaeology) Title of Thesis: Fishing for Ivory Worms: A Review of Ethnographic and Historically Recorded Dentaliurn Source Locations Examining Committee: Chairperson: Jack D. Nance - -, David V. Burley Senior Supervisor Associate Professor Richard Inglis External Examiner Department of Aboriginal Affairs Government of British Columbia PARTIAL COPYRIGHT LICENSE I hereby grant to Simon Fraser University the right to lend my thesis or dissertation (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this thesis for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Title of ThesisIDissertation: Fishing for Ivory Worms: A Review of Ethnographic and Historically Recorded Dentalium Source Locations Author: Andrew John Barton Name October 14, 1994 Date This study reviews and examines historic and ethnographic written documents that identify locations where Dentaliurn shells were procured by west coast Native North Americans. -
Mollusca) Found Along the Brazilian Coast, with Two New Synonymies in the Genus Gadila Gray, 1847
Biota Neotrop., vol. 13, no. 2 A commented list of Scaphopoda (Mollusca) found along the Brazilian coast, with two new synonymies in the genus Gadila Gray, 1847 Leonardo Santos de Souza1,2, Isabella Campos Vieira Araújo1 & Carlos Henrique Soares Caetano1 1Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro – UNIRIO, Av. Pasteur, 458, Urca, CEP 22290-240, Rio de Janeiro, RJ, Brasil 2Corresponding author: Leonardo Santos de Souza, e-mail: [email protected] SOUZA, L.S., ARAÚJO, I.C.V. & CAETANO, C.H.S. A commented list of Scaphopoda (Mollusca) found along the Brazilian coast, with two new synonymies in the genus Gadila Gray, 1847. Biota Neotrop. (13)2: http://www.biotaneotropica.org.br/v13n2/en/abstract?inventory+bn03213022013 Abstract: This review aims to present an updated checklist of scaphopods, based mainly on literature database. There is a total of 40 species (six families) for Brazil, including information about the distribution and bathymetric range of each taxon. We propose two synonyms with the aid of morphometry of the shell, for the genus Gadila: G. longa as junior synonym of G. elongata and G. robusta as junior synonym of G. pandionis. Keywords: scaphopods, morphometry, synonyms, distribution, bathymetry. SOUZA, L.S., ARAÚJO, I.C.V. & CAETANO, C.H.S. Lista comentada dos Scaphopoda (Mollusca) encontrados ao longo da costa Brasileira, com duas novas sinonímias no gênero Gadila Gray, 1847. Biota Neotrop. 13(2): http://www.biotaneotropica.org.br/v13n2/pt/abstract?inventory+bn0321302201 Resumo: Uma lista atualizada dos escafópodes da costa brasileira pertencentes a seis famílias é apresentada baseada principalmente em dados da literatura. -
Microanatomical Studies of Dentalium Pilsbryi Rehder, 1942 and D. Texasianum Philippi, 1848 Kenneth R
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Open-Access* Master's Theses from the University Libraries at University of Nebraska-Lincoln of Nebraska-Lincoln 7-1974 Microanatomical Studies of Dentalium pilsbryi Rehder, 1942 and D. texasianum Philippi, 1848 Kenneth R. Bazata University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/opentheses Part of the Zoology Commons Bazata, Kenneth R., "Microanatomical Studies of Dentalium pilsbryi Rehder, 1942 and D. texasianum Philippi, 1848" (1974). Open- Access* Master's Theses from the University of Nebraska-Lincoln. 31. http://digitalcommons.unl.edu/opentheses/31 This Thesis is brought to you for free and open access by the Libraries at University of Nebraska-Lincoln at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Open-Access* Master's Theses from the University of Nebraska-Lincoln by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MICROANAT0t1ICAL STUDIES OF DENTALIUM PILSBRYI REHDER, 1942 AND D. TEXASIANUM PHILIPPI, 1848 by Kenneth R. Bazata A THESIS Presented to the Faculty of The Graduate College in the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Department of Zoology Under the Supervision of Dr. Carl W. Gugler Lincoln, Nebraska July, 1974 ACKNm~LEDGEt1ENTS The author wishes to express sincere thanks to Dr. Carl W. Gugler for his encouragement and guidance during the research and writing of this thesis. Sincere thanks are also given to my parents, Mr. and Mrs. Rudolph Bazata. The author hopes one day to achieve the knowledge of life my parents and Dr. -
Bulletin 111
SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM Bulletin 111 A MONOGRAPH OF THE EAST AMERICAN SCAPHOPOD MOLLUSKS BY JOHN B. HENDERSON Of Washington, District of Columbia WASHINGTON GOVERNMENT PRINTING OFFICE 1920 ADVERTISEMENT. States National Museum The scientific publications of the United the Bulletins. consist of two series, the Proceedings and issued m 1878, are The Proceedings, the first volume of which was publication of original, and intended primarily as a medium for the of the National Museum, usually brief, papers based on the collections geology, and anthro- presentincr newly acquired facts in zoology, animals, and revisions pology, including descriptions of new forms of are issued annually and dis- of limited groups. One or two volumes organizations. A limited number tributed to libraries and scientific form, is distributed to specialists of copies of each paper, in pamphlet as soon as printed. and others interested in the different subjects, the tables of contents of the The dates of publication are recorded in . volumes. „ issued m 1875, consist ot a The Bulletins, the first of which was comprising chiefly monographs ot series of separate publications general systematic treatises (occa- laro-e zoological groups and other works, reports of expeditions, and sionally in several volumes), faunal collections, etc. ihe majority catalogues of type-specimens, special quarto size has been adopted m a of the volumes^re octavos, but a regarded as indispensable. few instances in which large plates were containing papers relating to Since 1902 a series of octavo volumes and known as the Contribu- the botanical collections of the Museum, has been published as bulletins. -
SCAMIT Newsletter Vol. 14 No. 9 1996 January
January, 1996 SCAMIT Newsletter Vol. 14, No.9 NEXT MEETING: Lumbrineridae (except Ninoe) GUEST SPEAKER: Larry Lovell DATE: February 12, 1996 TIME: 9:30am - 3:30pm LOCATION: MEC 2433 Impala Drive Carlsbad, California FEBRUARY 12 MEETING The February meeting will be on polychaetes in the family Lumbrineridae (except Ninoe). The meeting will have Larry Lovell as guest speaker, and will be held at MEC in Carlsbad (see attached map). The emphasis in the meeting will be on identification of typical lumbrinerid specimens, rather than on complete specimens in excellent condition. Please bring your voucher specimens with you, along with the whole lumbrinerid fraction of one or more samples. We also plan to discuss sample handling and its impact on the identifiability of the resulting lumbrinerid Lumbrineris cruzensis (ex Hilbig, 1995) specimens. A secondary goal is exchange of FUNDS FOR THIS PUBLICATION PROVIDED, IN PART, BY THE ARCO FOUNDATION, CHEVRON USA, AND TEXACO INC. SCAMIT Newsletter is not deemed to be a valid publication for formal taxonomic purposes. January 1996 SCAMIT Newsletter Vol. 14 , No. 9 experience with and opinion on the recently fax #(310) 834-7689 published Taxonomic Atlas second worm volume. or Please be prepared to share any problems you Ron Velarde have noted in this volume. City of San Diego Marine Biology Laboratory 4077 North Harbor Drive, MS 45A ELECTIONS San Diego, CA 92101 fax #(619) 692-4902 Nominations for SCAMIT officers for the 1996-97 year were made at the January meeting. All current SCAMIT officers were nominated again. No other nominations were received. Additional LITERATURE nominations would be welcome, please submit any to the Vice-President at the below address by the end of February, or at the February meeting. -
Marine Biodiversity Conservation and Management
MARINE BIODIVERSITY CONSERVATION AND MANAGEMENT Edited by N.G. Menon and C.S.G. Pillai ICAR CENTRAL MARINE FISHERIES RESEARCH INSTITUTE INDIAN COUNCIL OF AGRICULTURAL RESEARCH TATAPURAM P.O, COCHIN-682 014 1996 MARINE BIODIVERSITY CONSERVATION AND MANAGEMENT VI. MARINE MOLLUSCS AND THEIR CONSERVATION K.K. APPUKUTTAN Central Marine Fisheries Research Institute, Cochin - 682 014 Marine invertebrates in general, especially molluscs are able to ivith- stand fishing pressure, because of their high fecundity, reproductive capacities and planktonic larval life. Wliere as there are cases of depletion of stock due to over exploitation by commercialised fishing and indis criminate collection of rare species. Appropriate conservation measures are to be taken for judicious exploitation of the existing reserve and to impose precautionary measures to resist overexploitation of rare speci mens leading to extinction. INTRODUCTION Molluscs are soft bodied, heterogenous group of animals with great antiquity and diversity. The shells of molluscs are extremely diversified in shape and colour. They consist of coat-of-mail shell - amphineura, a single piece spirally twisted shell - gastropods, two valved - bivalves, cephalopods comprising of squids, cuttlefishes, octopus and nautilus and the elephant tusk shells - scaphopod. The majority of molluscs inhabit marine biotopes and they occur from the backwater zone, mangrooves, intertidal, shelf and down to deeper waters. The number of species of moUuscs recorded from various parts of the world vary from 80,000 to 100,000 (Subba Rao, 1991). From India, a total of 3271 numbers of molluscs are known to occur belonging to 220 families and 591 genera, of which 1900 are gastropods, 1100 bivalves, 210 cephalopods, 41 ployplacophors and 20 scaphopods. -
Diversity of Animals 355 15 | DIVERSITY of ANIMALS
Concepts of Biology Chapter 15 | Diversity of Animals 355 15 | DIVERSITY OF ANIMALS Figure 15.1 The leaf chameleon (Brookesia micra) was discovered in northern Madagascar in 2012. At just over one inch long, it is the smallest known chameleon. (credit: modification of work by Frank Glaw, et al., PLOS) Chapter Outline 15.1: Features of the Animal Kingdom 15.2: Sponges and Cnidarians 15.3: Flatworms, Nematodes, and Arthropods 15.4: Mollusks and Annelids 15.5: Echinoderms and Chordates 15.6: Vertebrates Introduction While we can easily identify dogs, lizards, fish, spiders, and worms as animals, other animals, such as corals and sponges, might be easily mistaken as plants or some other form of life. Yet scientists have recognized a set of common characteristics shared by all animals, including sponges, jellyfish, sea urchins, and humans. The kingdom Animalia is a group of multicellular Eukarya. Animal evolution began in the ocean over 600 million years ago, with tiny creatures that probably do not resemble any living organism today. Since then, animals have evolved into a highly diverse kingdom. Although over one million currently living species of animals have been identified, scientists are [1] continually discovering more species. The number of described living animal species is estimated to be about 1.4 million, and there may be as many as 6.8 million. Understanding and classifying the variety of living species helps us to better understand how to conserve and benefit from this diversity. The animal classification system characterizes animals based on their anatomy, features of embryological development, and genetic makeup. -
Marine Shell Hoard from the Late Neolithic Site of :Epin-Ov;Ara (Slavonia, Croatia)
Documenta Praehistorica XLIII (2016) Marine shell hoard from the Late Neolithic site of :epin-Ov;ara (Slavonia, Croatia) Boban Tripkovic´ 1, Vesna Dimitrijevic´ 2 and Dragana Rajkovic´ 3 1 Department of Archaeology, Faculty of Philosophy, University of Belgrade, RS [email protected] 2 Laboratory for Bioarchaeology, Department of Archaeology, Faculty of Philosophy, University of Belgrade, RS [email protected] 3 Museum of Slavonia in Osijek, HR [email protected] ABSTRACT – The focus of this paper is the ornament hoard from the Sopot culture site of ∞epin-Ov- ≠ara in eastern Slavonia (the Republic of Croatia). The hoard contained pendants and beads made of shells of marine clam Spondylus gaederopus and scaphopod Antalis vulgaris. The paper analyses the context and use wear of the objects in the hoard. The results form a basis for: the reconstruction of the role of some of the items and the ways in which they were worn; the premise that the dynam- ics and mechanisms of acquisition of ornaments made of the two Mediterranean mollusc species could have differed; and the identification of a cross-cultural pattern of deposition of ornament hoards. IZVLE∞EK – V ≠lanku se osredoto≠amo na zakladno najdbo z nakitom iz ≠asa sopotske kulture na najdi∏≠u ∞epin-Ov≠ara v vzhodni Slavoniji (Republika Hrva∏ka). Depo vsebuje obeske in jagode, iz- delane iz lupin morskih ∏koljk vrste Spondylus gaederopus in pol∫kov vrste Antalis vulgaris. V ≠lanku analiziramo kontekste in sledove uporabe teh izdelkov. Rezultati nam nudijo osnovo za: rekonstruk- cijo vloge nekaterih izdelkov in na≠inov no∏enja nakita; premiso o razli≠nih dinamikah in mehaniz- mih pridobivanja okrasov iz dveh sredozemskih vrst mehku∫cev; in za prepoznavanje medkulturnih vzorcev odlaganja zakladnih najdb z nakitom.