Subject Index, Volume 83, 1998
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IMA Master List
The New IMA List of Minerals – A Work in Progress – Update: February 2013 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name: it is the presently accepted mineral name (and in the table, minerals are sorted by name). Chemical formula: it is the CNMNC-approved formula. IMA status: A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year: for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p. -
STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials. -
{Replace with the Title of Your Dissertation}
Characterization and Formation of High-Chroma Features in Loamy Soils of Southern Minnesota A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Douglas Wayne Pribyl IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY James C. Bell, Adviser December 2012 © Douglas Wayne Pribyl 2012 Acknowledgements Many people both inside and outside the University of Minnesota have helped make this dissertation possible. The Department of Soil, Water, and Climate has supported me in many ways not least of which was the office staff, who were always ready with a friendly greeting, and willing and able to solve any problem: Karen Mellem, Kari Jarcho, Jenny Brand, and Marjorie Bonse. I especially want to thank my adviser, Jay Bell, for his continuous enthusiasm and encouragement. Ed Nater, together with Jay Bell, is responsible for introducing me to soil genesis and enabling me to pursue the interest they created. The rest of my committee, Paul Bloom and Carrie Jennings, have provided inspiration and motivation. Terry Cooper and John Lamb imparted wisdom and confidence in ways that only the best teachers can. I am profoundly grateful to have been their teaching assistant. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program. A special thanks to the staff who trained, listened, suggested, and encouraged: Bob Hafner, Ozan Ugurlu, Jinping Dong, John Nelson, Alice Ressler, Maria Torija Juana, Fang Zhou, and Nicholas Seaton. My earliest microscopy imaging and analysis work was with Gib Ahlstrand at the Biological Imaging Center, now part of the University Imaging Centers at the University of Minnesota. -
Geology of the Crater of Diamonds State Park and Vicinity, Pike County, Arkansas
SPS-03 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director STATE PARK SERIES 03 GEOLOGY OF THE CRATER OF DIAMONDS STATE PARK AND VICINITY, PIKE COUNTY, ARKANSAS by J. M. Howard and W. D. Hanson Little Rock, Arkansas 2008 STATE OF ARKANSAS ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director STATE PARK SERIES 03 GEOLOGY OF THE CRATER OF DIAMONDS STATE PARK AND VICINITY, PIKE COUNTY, ARKANSAS by J. M. Howard and W. D. Hanson Little Rock, Arkansas 2008 STATE OF ARKANSAS Mike Beebe, Governor ARKANSAS GEOLOGICAL SURVEY Bekki White, State Geologist and Director COMMISSIONERS Dr. Richard Cohoon, Chairman………………………………………....Russellville William Willis, Vice Chairman…………………………………...…….Hot Springs David J. Baumgardner………………………………………….………..Little Rock Brad DeVazier…………………………………………………………..Forrest City Keith DuPriest………………………………………………………….….Magnolia Becky Keogh……………………………………………………...……..Little Rock David Lumbert…………………………………………………...………Little Rock Little Rock, Arkansas 2008 i TABLE OF CONTENTS Introduction…………………………………………………………………………..................... 1 Geology…………………………………………………………………………………………... 1 Prairie Creek Diatreme Rock Types……………………………….…………...……...………… 3 Mineralogy of Diamonds…………………….……………………………………………..……. 6 Typical shapes of Arkansas diamonds…………………………………………………………… 6 Answers to Frequently Asked Questions……………..……………………………….....……… 7 Definition of Rock Types……………………………………………………………………… 7 Formation Processes.…...…………………………………………………………….....…….. 8 Search Efforts……………...……………………………...……………………...………..…. -
Geochemical Constraints on the Element Enrichments of Microbially Mediated Manganese and Iron Ores – an Overview
Ore Geology Reviews 136 (2021) 104203 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeorev Geochemical constraints on the element enrichments of microbially mediated manganese and iron ores – An overview Marta´ Polgari´ a,b,*, Ildiko´ Gyollai a a Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, ELRN, Budapest, Hungary b Eszterhazy´ Karoly´ University, Dept. of Natural Geography and Geoinformatics, Eger, Hungary ARTICLE INFO ABSTRACT Keywords: The role of biogenicity in the mineral world is larger than many might assume. Biological processes interact with Biomineralization physical and chemical processes at the Earth’s surface and far below underground, leading to the formation, for Cell mineralization instance, of banded iron formations and manganese deposits. Microbial mats can form giant sedimentary ore EPS mineralization deposits, which also include enrichment of further elements. Microorganisms play a basic role in catalyzing Ore-forming processes of Fe- and Mn geochemical processes of the Earth and in the control, regularization and leading of cycles of elements. Microbial Diagenesis mats and other biosignatures can be used as indicators for environmental reconstruction in geological samples. This article reviews the many ways that microbially controlled or mediated processes contribute to minerali zation and examines some published case studies for clues of what might have been missed in the analysis of sedimentary rocks when biogenicity was not taken into account. Suggestions are made for tests and analyses that will allow the potential role of biomineralization to be investigated in order to obtain a more complete view of formation processes and their implications. -
Shin-Skinner January 2018 Edition
Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com. -
Geomrcrobrology: Ixinractionsbetween MTCNOBESAND Mtxbrals
REVIEWS in MINERALOGY Volume 35 GEoMrcRoBroLoGY: IXInRACTIoNSBETWEEN MTCNOBESAND MTxBRALS J. F. BeNn'rpr",D& K. H. NpemoN,Eorrons CONTENTS Chapter 1 Microorganisrns and biogeochemicalcycles: What can we learn from layereclmicrobial communities? K. H. Nealson & D. A. Stahl 2 Microbial Diversity in Modern Subsurface,Ocean, and Surface Environments S.M. Barns & S. Nierzwichi-Bauer 3 Processesat Minerals and Surfaceswith Relevanceto Microorganisms and Prebiotic Synthesis J.F. Banfield & R.J. Hatners 4 Spatial Relationships between Bacteria and Mineral Surfaces B.J. Little, P.A. lVagner & Z. Lewandowshi 5 Surface Mediated Mineral Development by Bacteria D. Fortin, F.G. Fenis & T.J. Beueridge 6 Microbial Biomineralization of Magnetic Iron Minerals: Microbiology, Magnetism and Environmental Significance D.A. Bazylinksi & B.M. Moskowitz 7 Bacterially'mediated Mineral Formation: Insights into Manganese(II) Oxidation from Molecular Genetic and Biochemical Studies B.M. Tebo,W.C. Ghiorse,L.G. uan Waasbergen,P.L. Siering, & R. Caspi 8 Algal Deposition of Carbonatesand Silicates E.W. de Vrind-de Jong & J.P.M. de Vrind q Reactions of Extracellular Organic Ligands with DissolvedMetal Ions and Mineral Surfaces A.T. Stone 10 The Bacterial View of the Periodic Table: Soecific Functions for all Elements S. Siluer 11 Geomicrobiology of Sulfide Mineral Oxidation D.K. Nordstrotn & G. Southam I2 Biogeochemical Weathering of Silicate Minerals W.W.Barher, S.A. Welch & J.F. Banfield 13 Long-term Evolution of the Biogeochemical Carbon Cycle D.J. DesMarais ISBN 0-939950-43-X This 448 page, paperbound book accompaniedthe Short Course on Geomicrobiologypresented by the Mineralogical Societyof America on October 18 and Ig, lgg7, at the Alta Peruvian Lodge in Alta, Utah. -
2004 Newsletter
Department of Geosciences University of Massachusetts Amherst A LETTER FROM THE DEPARTMENT HEAD JANUARY 2004 This is the first department newsletter in of these efforts, we have tried to leverage In Memoriam several years, and much has happened. university dollars with federal money, and This edition is somewhat longer than to strategically invest the funds we receive Remembering Terrence Burke Page 2 normal in order to catch up, and hopefully from our alumni to improve classroom and we will get back on schedule with regular field teaching facilities. We also work Memories of Howard Jaffe newsletters after this. Budgets have been closely with departments in the other local Page 3 tight, but as you will see, the department colleges to use our collective efforts when Faculty News has made significant progress in a number that seems like the best strategy. With all of critical areas, including faculty and of the new equipment and laboratories, the David Alexander departs student research, laboratory improvement, department is still as active in the field as Page 4 and a general broadening of our curricu- ever with every faculty member and nearly Steve Haggerty retires lum. The campus has invested new all graduate students working in some Page 5 resources in the department over the past exciting part of the world last year. Some Welcome back Don Wise couple of years, which speaks volumes highlights are included in this newsletter, Page 6 about how we are viewed across the but check our web site to see more about Meet our new faculty—Steve campus. We are commonly cited as an what we have been up to. -
ISBN 5 900395 50 2 UDK 549 New Data on Minerals. Moscow
#00_firstPpages_en_0727:#00_firstPpages_en_0727.qxd 21.05.2009 19:38 Page 2 ISBN 5900395502 UDK 549 New Data on Minerals. Moscow.: Ocean Pictures, 2003. volume 38, 172 pages, 66 color photos. Articles of the volume are devoted to mineralogy, including descriptions of new mineral species (telyushenkoite – a new caesium mineral of the leifite group, neskevaaraite-Fe – a new mineral of the labuntsovite group) and new finds of min- erals (pabstite from the moraine of the Dara-i-Pioz glacier, Tadjikistan, germanocolusite from Kipushi, Katanga, min- erals of the hilairite group from Khibiny and Lovozero massifs). Results of study of mineral associations in gold-sulfide- tellyride ore of the Kairagach deposit, Uzbekistan are presented. Features of rare germanite structure are revealed. The cavitation model is proposed for the formation of mineral microspherulas. Problems of isomorphism in the stannite family minerals and additivity of optical properties in minerals of the humite series are considered. The section Mineralogical Museums and Collections includes articles devoted to the description and history of Museum collections (article of the Kolyvan grinding factory, P.A.Kochubey's collection, new acquisitions) and the geographical location of mineral type localities is discussed in this section. The section Mineralogical Notes includes the article about photo- graphing minerals and Reminiscences of the veteran research worker of the Fersman Mineralogical Museum, Doctor in Science M.D. Dorfman about meetings with known mineralogists and geochemists – N.A. Smoltaninov, P.P. Pilipenko, Yu.A. Bilibin. The volume is of interest for mineralogists, geochemists, geologists, and to museum curators, collectors and amateurs of minerals. EditorinChief Margarita I .Novgorodova, Doctor in Science, Professor EditorinChief of the volume: Elena A.Borisova, Ph.D Editorial Board Moisei D. -
A New Occurrence of Yimengite-Hawthorneite and Crichtonite-Group Minerals in An
26 A new occurrence of yimengite-hawthorneite and crichtonite-group minerals in an 27 orthopyroxenite from kimberlite: Implications for mantle metasomatism 1,* 1 1 28 Dmitriy I. Rezvukhin , Taisia A. Alifirova , Andrey V. Korsakov , Alexander V. 1 29 Golovin 1 30 Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy 31 of Sciences, 3 Koptyuga Avenue, Novosibirsk 630090, Russia 32 *corresponding author, e-mail: [email protected], [email protected] 33 34 ABSTRACT 35 LILE-enriched chromium titanates of the magnetoplumbite (AM12O19) and crichtonite 36 (ABC18T2O38) groups were recognized as abundant inclusions in orthopyroxene grains in a 37 mantle-derived xenolith from the Udachnaya-East kimberlite pipe, Daldyn field, Siberian craton. 38 The studied xenolith consists of three parts: an orthopyroxenite, a garnet clinopyroxenite, and a 39 garnet-orthopyroxene intermediate domain between the two. Within the host enstatite (Mg# 40 92.6) in the orthopyroxenitic part of the sample titanate inclusions are associated with Cr-spinel, 41 diopside, rutile, Mg-Cr-ilmenite, and pentlandite. Crichtonite-group minerals also occur as 42 lamellae inclusions in pyrope grains of the intermediate domain adjacent to the orthopyroxenite, 43 as well as in interstitial to enstatite oxide intergrowths together with Cr-spinel, rutile, and 44 ilmenite. 45 Yimengite-hawthorneite inclusions in enstatite contain (wt%) 3.72-8.04 BaO, 2.05-3.43 46 K2O, and 0.06-0.48 CaO. Their composition is transitional between yimengite and hawthorneite 47 endmembers with most grains exhibiting K-dominant chemistry. A distinct feature of the studied 48 yimengite-hawthorneite minerals is a high content of Al2O3 (5.74-7.69 wt%). -
Mathiasite-Loveringite and Priderite in Mantle Xenoliths from the Alto Paranaíba Igneous Province, Brazil: Genesis and Constraints on Mantle Metasomatism
Cent. Eur. J. Geosci. • 6(4) • 2014 • 614-632 DOI: 10.2478/s13533-012-0197-5 Central European Journal of Geosciences Mathiasite-loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: genesis and constraints on mantle metasomatism Topical issue Vidyã V. Almeida1;2∗, Valdecir de A. Janasi2, Darcy P. Svisero2, Felix Nannini2;3 1 Geological Survey of Brazil (CPRM, SUREG SP), Rua Costa, 55, CEP 01304-010, São Paulo, SP, Brazil 2 Departamento de Mineralogia e Geotectônica, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, CEP 05508-080, São Paulo, SP, Brazil 3 Geological Survey of Brazil (CPRM, SUREG RE), Av. Sul, 2291, CEP 50770-011, Recife, PE, Brazil Received 01 April 2014; accepted 05 July2014 Abstract: Alkali-bearing Ti oxides were identified in mantle xenoliths enclosed in kimberlite-like rocks from Limeira 1 alkaline intrusion from the Alto Paranaíba Igneous Province, southeastern Brazil. The metasomatic mineral assemblages include mathiasite-loveringite and priderite associated with clinopyroxene, phlogopite, ilmenite and rutile. Mathiasite-loveringite (55-60 wt.% TiO2; 5.2-6.7 wt.% ZrO2) occurs in peridotite xenoliths rimming chromite (∼50 wt.% Cr2O3) and subordinate ilmenite (12-13.4 wt.% MgO) in double reaction rim coronas. Priderite (Ba/(K+Ba)< 0:05) occurs in phlogopite-rich xenoliths as lamellae within Mg-ilmenite (8.4-9.8 wt.% MgO) or as intergrowths in rutile crystals that may be included in sagenitic phlogopite. Mathiasite-loveringite was formed by reaction of peridotite primary minerals with alkaline melts. The priderite was formed by reaction of peridotite minerals with ultrapotassic melts. -
Invalid Unnamed Minerals
INVALID UNNAMED MINERALS, UPDATE 2012-01 IMA Subcommittee on Unnamed Minerals: Jim Ferraiolo*, Jeffrey de Fourestier**, Dorian Smith*** (Chairman) *[email protected] **[email protected] ***[email protected] Users making reference to this compilation should refer to the primary source (D.G.W. Smith & E.H. Nickel, "A system of codification for unnamed minerals: Report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification": Canadian Mineralogist (2007), v. 45, p. 983-1055) and to this website. Additions and changes to the original publication are shown in blue print. Alphabetic symbols in the Reject Category column represent the following: a - the mineral has been subsequently named; b - the data given for the mineral are considered to be inadequate for a match with another unrelated sample to be made with any confidence; c - on the basis of the reported data, the unnamed mineral is not distinct from a previously described, named or unnamed mineral; d - the material examined was probably a mixture; e - the unnamed mineral has been discredited; f - the unnamed substance does not meet IMA-accepted definitions of a mineral. IMA Designation Primary Reference Secondary Comments Rej ect Reference cat' gry UM1839-//-SeO:Pb *Ann. Phys. 46 , 265 Eur. J. Mineral. 6 , 337 Inadequate data; later named kerstenite b UM1889-//-SO:FeH[1] *Am. J. Sci. 38 , 243, 245 Dana (7th) 2 , 570 Mineral "A"; this is almost certainly metahohmannnite (described in 1838) c UM1889-//-SO:FeH[2] *Am. J. Sci. 38 , 243, 245 Dana (7th) 2 , 570 Mineral "B"; this is almost certainly amarantite (described in 1888) c UM1889-//-SO:FeH[3] *Am.