{Replace with the Title of Your Dissertation}

Total Page:16

File Type:pdf, Size:1020Kb

{Replace with the Title of Your Dissertation} Characterization and Formation of High-Chroma Features in Loamy Soils of Southern Minnesota A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Douglas Wayne Pribyl IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY James C. Bell, Adviser December 2012 © Douglas Wayne Pribyl 2012 Acknowledgements Many people both inside and outside the University of Minnesota have helped make this dissertation possible. The Department of Soil, Water, and Climate has supported me in many ways not least of which was the office staff, who were always ready with a friendly greeting, and willing and able to solve any problem: Karen Mellem, Kari Jarcho, Jenny Brand, and Marjorie Bonse. I especially want to thank my adviser, Jay Bell, for his continuous enthusiasm and encouragement. Ed Nater, together with Jay Bell, is responsible for introducing me to soil genesis and enabling me to pursue the interest they created. The rest of my committee, Paul Bloom and Carrie Jennings, have provided inspiration and motivation. Terry Cooper and John Lamb imparted wisdom and confidence in ways that only the best teachers can. I am profoundly grateful to have been their teaching assistant. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program. A special thanks to the staff who trained, listened, suggested, and encouraged: Bob Hafner, Ozan Ugurlu, Jinping Dong, John Nelson, Alice Ressler, Maria Torija Juana, Fang Zhou, and Nicholas Seaton. My earliest microscopy imaging and analysis work was with Gib Ahlstrand at the Biological Imaging Center, now part of the University Imaging Centers at the University of Minnesota. Later imaging and analysis work at the Imaging Center required the able assistance of Tracy Anderson, Gail Celio, and Mark Sanders, who were most generous withe their tim and resources to help a non‐biologist in time of need. Also, I want to thank Thelma Berquó, Subir Banerjee, and others at the Institute for Rock Magnetism, Paroma Chakravarty at Dr. Raj Suryanarayanan’s Pharmaceutics Lab for use of their FT‐Raman, Roger Eliason and Russell Anderson at the University of Minnesota Soil Testing Lab, Donna Whitney in the Geology Department who made her lab available for thin sectioning and Valerie Morgan who took the time to train me. I am truly fortunate to have had the loving support of my wife, whose quiet, unwavering confidence kept me on course and whose companionship kept me grounded. Finally for my parents, who encouraged me to pursue my interests and continue my education, a more tangible acknowledgement: the choice of Palatino Linotype as the type font used for this dissertation. i Dedication This dissertation is dedicated to my parents, Vernon and Myra Pribyl, whose love of family knows no bounds. ii ABSTRACT High‐chroma features have not been adequately defined under existing terminology or classified under existing systems. The terms “masses” as a subclass of concentrations used in field definitions and “loose infillings” used in micromorpological classifications come closest but are not fully satisfactory. Defined descriptively, high‐chroma features have a typical color of 7.5YR 5/8, are usually less than 1 to 2 mm in diameter, are poorly cemented, and have a sharp external boundary with the soil matrix. They are found in well‐drained to poorly drained soils with first‐appearance typically at depths of 50 to 100 cm. A study was undertaken to more fully characterize and classify high‐chroma features and to provide more accurate interpretations of feature morphology for applications in environmental and soil quality, plant nutrition, and soil genesis. High‐chroma features found within peds having varying degrees of hydromorphic expression were assigned to classes depending on internal color and color patterns. Material removed from features, halos, and the soil matrix was analyzed using a low‐power stereomicroscope, SEM/EDS, TEM/ED, μ‐XRD, ICP, and stain tests to determine properties and composition. Four formation hypotheses are proposed: (1) a non‐pedogenic origin, features having developed from the weathering of an inherited precursor mineral; (2) a pedogenic origin resulting from the formation and infilling of vesicles that formed at depth shortly after deglaciation but are no longer actively forming; (3) a pedogenic origin but features are actively forming; (4) formation by dissolution of a soluble mineral fragment and subsequent infilling of the resulting void, analogous to the formation of a geode. Although high‐chroma features might develop by more than one pathway, a non‐pedogenic origin is favored. Non‐pedogenic hypothesis (1) and the hybrid geodic hypothesis (4) offer the most efficient explanations for the presence of silt, iron, and manganese within high‐chroma features. A proposed weathering sequence based on feature classification and evidence for the presence of manganese nodules in the till‐source bedrock also support a non‐ pedogenic origin. Pedogenic hypotheses require a sequence of events of uncertain and in some cases seemingly low probability. Existing classification systems offer little insight into genesis. Most importantly, given the evidence for a non‐pedogenic origin, high‐chroma features should not be interpreted or classified as redoximorphic features as the term is typically used in the field. Although high‐chroma features may result from alternating periods of oxidation and reduction, when used alone they are ambiguous indicators of seasonal wetness. iii Table of Contents Acknowledgements ................................................................................................................ i Dedication ................................................................................................................................ ii Abstract .................................................................................................................................... iii List of Tables ............................................................................................................................ v List of Figures .......................................................................................................................... vi Introduction ............................................................................................................................. 1 General description of high‐chroma features ........................................................ 3 Historical and interpretive sciences ........................................................................ 6 General description of the study area ..................................................................... 10 Development of the soils .......................................................................................... 17 Literature Review .................................................................................................................... 26 Part I: Further characterization of the till ............................................................... 26 Part II: Classification systems .................................................................................. 50 Part III: Properties and formation of nodules and concretions ........................... 75 Methods .................................................................................................................................... 101 Sampling methods ..................................................................................................... 102 Sample sites ................................................................................................................ 104 Initial sample preparation ........................................................................................ 109 Thin sections ............................................................................................................... 109 Characterization and analysis .................................................................................. 111 Results and Discussion .......................................................................................................... 137 Classification of peds by hydromorphology ......................................................... 137 Characterization of high‐chroma features ............................................................. 144 Classification of high‐chroma features ................................................................... 203 Classification as redoximorphic features ............................................................... 209 Comparison of data: non‐pedogenic and pedogenic hypotheses ....................... 215 Discussion of proposed formation hypotheses ..................................................... 220 Non‐pedogenic, inherited ............................................................................ 223 Pedogenic, inherited ..................................................................................... 230 Pedogenic, coeval .......................................................................................... 256 Geode hypothesis .......................................................................................... 258 Other hypotheses .......................................................................................... 261 Conclusion ..............................................................................................................................
Recommended publications
  • Products of Hexavalent Chromium Reduction by Green Rust Sodium Sulfate and Associated Reaction Mechanisms
    Article Products of Hexavalent Chromium Reduction by Green Rust Sodium Sulfate and Associated Reaction Mechanisms Andrew N. Thomas 1,*, Elisabeth Eiche 1, Jörg Göttlicher 2, Ralph Steininger 2, Liane G. Benning 3,4 , Helen M. Freeman 3,† , Knud Dideriksen 5 and Thomas Neumann 6 1 Institute for Applied Geosciences, Karlsruhe Institute of Technology, Adenauerring 20b, Building 50.40, 76135 Karlsruhe, Germany; [email protected] 2 Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, Herman-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; [email protected] (J.G.); [email protected] (R.S.) 3 GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; [email protected] (L.G.B.); [email protected] (H.M.F.) 4 Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany 5 Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; [email protected] 6 Department of Applied Geosciences, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; [email protected] * Correspondence: [email protected] † Current address: School of Chemical and Process Engineering, University of Leeds, Leeds LS29JT, UK. Received: 28 September 2018; Accepted: 25 October 2018; Published: 29 October 2018 Abstract: The efficacy of in vitro Cr(VI) reduction by green rust sulfate suggests that this mineral is potentially useful for remediation of Cr-contaminated groundwater. Previous investigations studied this reaction but did not sufficiently characterize the intermediates and end products at 2− chromate (CrO4 ) concentrations typical of contaminant plumes, hindering identification of the dominant reaction mechanisms under these conditions.
    [Show full text]
  • Subject Index, Volume 83, 1998
    American Mineralogist, Volume 83, pages 1377–1385, 1998 SUBJECT INDEX, VOLUME 83, 1998 Actinolite 458 jadeitic pyroxene 273 Arsenic model compounds 553 AFM lithium disilicate 1008 Arsenopyrite 316 illite-smectite 762 magnesiowüstite 794 ASH system 881 nucleation and growth 147 MgMgAl-pumpellyite 220 Atmospheric CO2 1503 2+ 3+ Agrell, Stuart O., memorial of 666 Mn (Fe, Mn) 2 O4 786 Augite 419, 434 Albite glass 1141 monazite 248 Awards Al-Fe perovskite (MgSiO3) 947 monazite-(Ce) 259 Mineralogical Society of America, ac - Allanite 248 muscovite 535 ceptance of 917 Allende meteorite 970 muscovite-phengite 775 Mineralogical Society of America, pre- Almandite 1293 offretite 577 sentation of 916 27Al MAS NMR olivine 546 Roebling Medal, acceptance of 914 Al2O3+B2O3+SiO2 ± H2O 638 omphacite 419 Roebling Medal, presentation of 912 AlSiO3OH 881 paranite-(Y) 1100 B8/anti-B8 451 Ammonium illilte 58 phase egg 881 B8-FeO 451 Analcime 339, 746 phosphovanadylilte 889 Bacteria 1583 Analysis, chemical (mineral) pyrope 323, 1293 Bacterial surfaces 1399 almandite 1293 pyroxene 491 Bacterial synthesis of greigite 1469 andradite 835 rossmanite 896 Band Gap 865 anorthite 1209 rubicline 1335 Bamfordite 172 apatite 240, 1122 scandiobabingtonite 1330 Basaltic andesite 36 arsenopyrite 316 scheelite 1100 BaTi5Fe6MgO19 1323 augite 419 schorl 848 Benyacarite 400 bamfordite 172 sodic-ferri-clinoferroholmquistite 668 Berezanskite 907 biogenic magnetite 1409 sorosite 901 Bioaccumulation 1503 boralsilite 638 spessartine 1293 Biogenic magnetite 1409 bornite 1231 titanite 1168 Biogeochemistry 1418, 1494, 1593, 1426 brabantite 259 tourmaline 535, 638, 848 Biomineralization 1454, 1510 brucite 68 tremolite–actinolite–ferro-actinolite 458 Birnessite 305 buergerite 848 tschörtnerite 607 Boehmite 1209 Ca-amphibole 952 wüstite 451 Book reviews caleite 1510, 1503 xenotime 1302 Carey, J.William: Thermodynamics carbon 918 yvonite 383 of Natural Systems.
    [Show full text]
  • IMA Master List
    The New IMA List of Minerals – A Work in Progress – Update: February 2013 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name: it is the presently accepted mineral name (and in the table, minerals are sorted by name). Chemical formula: it is the CNMNC-approved formula. IMA status: A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year: for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p.
    [Show full text]
  • The Formation of Green Rust Induced by Tropical River Biofilm Components Frederic Jorand, Asfaw Zegeye, Jaafar Ghanbaja, Mustapha Abdelmoula
    The formation of green rust induced by tropical river biofilm components Frederic Jorand, Asfaw Zegeye, Jaafar Ghanbaja, Mustapha Abdelmoula To cite this version: Frederic Jorand, Asfaw Zegeye, Jaafar Ghanbaja, Mustapha Abdelmoula. The formation of green rust induced by tropical river biofilm components. Science of the Total Environment, Elsevier, 2011, 409 (13), pp.2586-2596. 10.1016/j.scitotenv.2011.03.030. hal-00721559 HAL Id: hal-00721559 https://hal.archives-ouvertes.fr/hal-00721559 Submitted on 27 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The formation of green rust induced by tropical river biofilm components Running title: Green rust from ferruginous biofilms 5 Frédéric Jorand, Asfaw Zegeye, Jaafar Ghanbaja, Mustapha Abdelmoula Accepted in Science of the Total Environment 10 IF JCR 2009 (ISI Web) = 2.905 Abstract 15 In the Sinnamary Estuary (French Guiana), a dense red biofilm grows on flooded surfaces. In order to characterize the iron oxides in this biofilm and to establish the nature of secondary minerals formed after anaerobic incubation, we conducted solid analysis and performed batch incubations. Elemental analysis indicated a major amount of iron as inorganic compartment along with organic matter.
    [Show full text]
  • Identification of Jarosite and Other Major Mineral Fe Phases in Acidic
    Revista Mexicana de Ciencias Geológicas ISSN: 1026-8774 ISSN: 2007-2902 [email protected] Universidad Nacional Autónoma de México México Identification of jarosite and other major mineral Fe phases in acidic environments affected by mining-metallurgy using X-ray Absorption Spectroscopy: With special emphasis on the August 2014 Cananea acid spill Escobar-Quiroz, Ingrid Nayeli; Villalobos-Peñalosa, Mario; Pi-Puig, Teresa; Martín Romero, Francisco; Aguilar-Carrillo de Albornoz, Javier Identification of jarosite and other major mineral Fe phases in acidic environments affected by mining-metallurgy using X-ray Absorption Spectroscopy: With special emphasis on the August 2014 Cananea acid spill Revista Mexicana de Ciencias Geológicas, vol. 36, no. 2, 2019 Universidad Nacional Autónoma de México, México Available in: http://www.redalyc.org/articulo.oa?id=57265251007 PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Ingrid Nayeli Escobar-Quiroz, et al. Identification of jarosite and other major mineral Fe phases ... Articles Identification of jarosite and other major mineral Fe phases in acidic environments affected by mining-metallurgy using X-ray Absorption Spectroscopy: With special emphasis on the August 2014 Cananea acid spill Ingrid Nayeli Escobar-Quiroz 13* Redalyc: http://www.redalyc.org/articulo.oa?id=57265251007 Universidad Nacional Autónoma de México, México [email protected] Mario Villalobos-Peñalosa 1 Universidad Nacional Autónoma de México, México Teresa Pi-Puig 1 Universidad Nacional Autónoma de México, México Francisco Martín Romero 1 Universidad Nacional Autónoma de México, México Javier Aguilar-Carrillo de Albornoz 2 Universidad Autónoma de San Luis Potosí, México Received: 23 July 2018 Accepted: 14 March 2019 Abstract: e sulfuric acid spill into the Sonora river, enriched in iron and copper ions from the Buenavista del Cobre mine (Cananea), gave way to the formation of various solid iron (Fe) phases.
    [Show full text]
  • NICKEL INCORPORATION in Fe(II, III) HYDROXYSULFATE GREEN RUST: EFFECT on CRYSTAL LATTICE SPACING and OXIDATION PRODUCTS(1)
    NICKEL INCORPORATION IN Fe (II, III) HYDROXYSULFATE GREEN RUST: EFFECT... 1115 NICKEL INCORPORATION IN Fe(II, III) HYDROXYSULFATE GREEN RUST: EFFECT ON CRYSTAL LATTICE SPACING AND OXIDATION PRODUCTS(1) Lucia Helena Garófalo Chaves(2), Joan Elizabeth Curry(3), David Andrew Stone(4), Michael D. Carducci(5) & Jon Chorover(6) SUMMARY Ni(II)-Fe(II)-Fe(III) layered double hydroxides (LDH) or Ni-containing sulfate green rust (GR2) samples were prepared from Ni(II), Fe(II) and Fe(III) sulfate salts and analyzed with X ray diffraction. Nickel is readily incorporated in the GR2 structure and forms a solid solution between GR2 and a Ni(II)-Fe(III) LDH. There is a correlation between the unit cell a-value and the fraction of Ni(II) incorporated into the Ni(II)-GR2 structure. Since there is strong evidence that the divalent/trivalent cation ratio in GR2 is fixed at 2, it is possible in principle to determine the extent of divalent cation substitution for Fe(II) in GR2 from the unit cell a-value. Oxidation forms a mixture of minerals but the LDH structure is retained if at least 20 % of the divalent cations in the initial solution are Ni(II). It appears that Ni(II) is incorporated in a stable LDH structure. This may be important for two reasons, first for understanding the formation of LDHs, which are anion exchangers, in the natural environment. Secondly, this is important for understanding the fate of transition metals in the environment, particularly in the presence of reduced Fe compounds. Index terms: isomorphous substitution, layered double hydroxide, LDH, X ray diffraction (1) Received for publication in february 2008 and aproved in july 2009.
    [Show full text]
  • Green Rust: the Simple Organizing ‘Seed’ of All Life?
    life Review Green Rust: The Simple Organizing ‘Seed’ of All Life? Michael J. Russell Planetary Chemistry and Astrobiology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA; [email protected] Received: 6 June 2018; Accepted: 14 August 2018; Published: 27 August 2018 Abstract: Korenaga and coworkers presented evidence to suggest that the Earth’s mantle was dry and water filled the ocean to twice its present volume 4.3 billion years ago. Carbon dioxide was constantly exhaled during the mafic to ultramafic volcanic activity associated with magmatic plumes that produced the thick, dense, and relatively stable oceanic crust. In that setting, two distinct and major types of sub-marine hydrothermal vents were active: ~400 ◦C acidic springs, whose effluents bore vast quantities of iron into the ocean, and ~120 ◦C, highly alkaline, and reduced vents exhaling from the cooler, serpentinizing crust some distance from the heads of the plumes. When encountering the alkaline effluents, the iron from the plume head vents precipitated out, forming mounds likely surrounded by voluminous exhalative deposits similar to the banded iron formations known from the Archean. These mounds and the surrounding sediments, comprised micro or nano-crysts of the variable valence FeII/FeIII oxyhydroxide known as green rust. The precipitation of green rust, along with subsidiary iron sulfides and minor concentrations of nickel, cobalt, and molybdenum in the environment at the alkaline springs, may have established both the key bio-syntonic disequilibria and the means to properly make use of them—the elements needed to effect the essential inanimate-to-animate transitions that launched life.
    [Show full text]
  • Hydroxysulphate Green Rust Synthesized by Precipitation and Coprecipitation Revista Brasileira De Ciência Do Solo, Vol
    Revista Brasileira de Ciência do Solo ISSN: 0100-0683 [email protected] Sociedade Brasileira de Ciência do Solo Brasil Garófalo Chaves, Lucia Helena; Curry, Joan Elizabeth; Stone, David Andrew; Chorover, Jon Fate of nickel ion in (II-III) hydroxysulphate green rust synthesized by precipitation and coprecipitation Revista Brasileira de Ciência do Solo, vol. 31, núm. 4, agosto, 2007, pp. 813-818 Sociedade Brasileira de Ciência do Solo Viçosa, Brasil Available in: http://www.redalyc.org/articulo.oa?id=180214056021 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative FATE OF NICKEL ION IN (II-III) HYDROXYSULPHATE GREEN RUST SYNTHESIZED BY... 813 FATE OF NICKEL ION IN (II-III) HYDROXYSULPHATE GREEN RUST SYNTHESIZED BY PRECIPITATION AND COPRECIPITATION(1) Lucia Helena Garófalo Chaves(2), Joan Elizabeth Curry(3), David Andrew Stone(4) & Jon Chorover(5) SUMMARY In order to investigate the efficiency of sulfate green rust (GR2) to remove Ni from solution, GR2 samples were synthesized under controlled laboratory conditions. Some GR2 samples were synthesized from Fe(II) and Fe(III) sulfate salts by precipitation. Other samples were prepared by coprecipitation, of Ni(II), Fe(II) and Fe(III) sulfate salts, i.e., in the presence of Ni. In another sample, Ni(II) sulfate salt was added to pre-formed GR2. After an initial X-ray diffraction (XRD) characterization all samples were exposed to ambient air in order to understand the role of Ni in the transformation of the GR2 samples.
    [Show full text]
  • Removal of Arsenate and Arsenite in Equimolar Ferrous And
    Article Removal of Arsenate and Arsenite in Equimolar Ferrous and Ferric Sulfate Solutions through Mineral Coprecipitation: Formation of Sulfate Green Rust, Goethite, and Lepidocrocite Chunming Su * and Richard T. Wilkin Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA; [email protected] * Correspondence: [email protected] Received: 24 September 2020; Accepted: 14 November 2020; Published: 23 November 2020 Abstract: An improved understanding of in situ mineralization in the presence of dissolved arsenic and both ferrous and ferric iron is necessary because it is an important geochemical process in the fate and transformation of arsenic and iron in groundwater systems. This work aimed at evaluating mineral phases that could form and the related transformation of arsenic species during coprecipitation. We conducted batch tests to precipitate ferrous (133 mM) and ferric (133 mM) ions in sulfate (533 mM) solutions spiked with As (0–100 mM As(V) or As(III)) and titrated with solid NaOH (400 mM). Goethite and lepidocrocite were formed at 0.5–5 mM As(V) or As(III). Only lepidocrocite formed at 10 mM As(III). Only goethite formed in the absence of added As(V) or As(III). Iron (II, III) hydroxysulfate green rust (sulfate green rust or SGR) was formed at 50 mM As(III) at an equilibrium pH of 6.34. X-ray analysis indicated that amorphous solid products were formed at 10–100 mM As(V) or 100 mM As(III).
    [Show full text]
  • STRONG and WEAK INTERLAYER INTERACTIONS of TWO-DIMENSIONAL MATERIALS and THEIR ASSEMBLIES Tyler William Farnsworth a Dissertati
    STRONG AND WEAK INTERLAYER INTERACTIONS OF TWO-DIMENSIONAL MATERIALS AND THEIR ASSEMBLIES Tyler William Farnsworth A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry. Chapel Hill 2018 Approved by: Scott C. Warren James F. Cahoon Wei You Joanna M. Atkin Matthew K. Brennaman © 2018 Tyler William Farnsworth ALL RIGHTS RESERVED ii ABSTRACT Tyler William Farnsworth: Strong and weak interlayer interactions of two-dimensional materials and their assemblies (Under the direction of Scott C. Warren) The ability to control the properties of a macroscopic material through systematic modification of its component parts is a central theme in materials science. This concept is exemplified by the assembly of quantum dots into 3D solids, but the application of similar design principles to other quantum-confined systems, namely 2D materials, remains largely unexplored. Here I demonstrate that solution-processed 2D semiconductors retain their quantum-confined properties even when assembled into electrically conductive, thick films. Structural investigations show how this behavior is caused by turbostratic disorder and interlayer adsorbates, which weaken interlayer interactions and allow access to a quantum- confined but electronically coupled state. I generalize these findings to use a variety of 2D building blocks to create electrically conductive 3D solids with virtually any band gap. I next introduce a strategy for discovering new 2D materials. Previous efforts to identify novel 2D materials were limited to van der Waals layered materials, but I demonstrate that layered crystals with strong interlayer interactions can be exfoliated into few-layer or monolayer materials.
    [Show full text]
  • Geochemical Constraints on the Element Enrichments of Microbially Mediated Manganese and Iron Ores – an Overview
    Ore Geology Reviews 136 (2021) 104203 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeorev Geochemical constraints on the element enrichments of microbially mediated manganese and iron ores – An overview Marta´ Polgari´ a,b,*, Ildiko´ Gyollai a a Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, ELRN, Budapest, Hungary b Eszterhazy´ Karoly´ University, Dept. of Natural Geography and Geoinformatics, Eger, Hungary ARTICLE INFO ABSTRACT Keywords: The role of biogenicity in the mineral world is larger than many might assume. Biological processes interact with Biomineralization physical and chemical processes at the Earth’s surface and far below underground, leading to the formation, for Cell mineralization instance, of banded iron formations and manganese deposits. Microbial mats can form giant sedimentary ore EPS mineralization deposits, which also include enrichment of further elements. Microorganisms play a basic role in catalyzing Ore-forming processes of Fe- and Mn geochemical processes of the Earth and in the control, regularization and leading of cycles of elements. Microbial Diagenesis mats and other biosignatures can be used as indicators for environmental reconstruction in geological samples. This article reviews the many ways that microbially controlled or mediated processes contribute to minerali­ zation and examines some published case studies for clues of what might have been missed in the analysis of sedimentary rocks when biogenicity was not taken into account. Suggestions are made for tests and analyses that will allow the potential role of biomineralization to be investigated in order to obtain a more complete view of formation processes and their implications.
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]