Removal of Arsenate and Arsenite in Equimolar Ferrous And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Iron Oxides Structure, Properties, Reactions, Occurrence and Uses
R.M.Cornell U. Schwertmann The Iron Oxides Structure, Properties, Reactions, Occurrence and Uses Weinheim • New York VCH Basel • Cambridge • Tokyo Contents 1 Introduction to the iron oxides 1 2 Crystal structure 7 2.1 General 7 2.2 Iron oxide structures 7 2.2.1 Close packing of anion layers 10 2.2.2 Linkages of octahedra or tetrahedra 12 2.3 Structures of the individual iron oxides 14 2.3.1 The oxide hydroxides 14 2.3.1.1 Goethite a-FeOOH 14 2.3.1.2 Lepidocrocite y-FeO(OH) 16 2.3.1.3 Akaganeite ß-FeO(OH) and schwertmannite Fe16016(OH)y(S04)z • n H20 18 2.3.1.4 5-FeOOH and 8'-FeOOH (feroxyhyte) 20 2.3.1.5 High pressure FeOOH 21 2.3.1.6 Ferrihydrite 22 2.3.2 The hydroxides 24 2.3.2.1 Bernalite Fe(OH)3 • nH20 24 2.3.2.2 Fe(OH)2 25 2.3.2.3 Green rusts 25 2.3.3 The oxides 26 2.3.3.1 Haematite a-Fe203 26 2.3.3.2 Magnetite Fe304 28 2.3.3.3 Maghemite y-Fe203 30 2.3.3.4 Wüstite Fe^O 31 2.4 The Fe-Ti oxide System 33 3 Cation Substitution 35 3.1 General 35 3.2 Goethite 38 3.2.1 AI Substitution 38 3.2.1.1 Synthetic goethites 38 3.2.1.2 Natural goethites 43 3.2.2 Other substituting cations 43 3.3 Haematite 48 3.4 Other Fe oxides 50 VIII Contents 4 Crystal morphology and size 53 4.1 General 53 4.1.1 Crystal growth 53 4.1.2 Crystal morphology 55 4.1.3 Crystal size 57 4.2 The iron oxides 58 4.2.1 Goethite 59 4.2.1.1 General 59 4.2.1.2 Domainic character 64 4.2.1.3 Twinning 66 4.2.1.4 Effect of additives on goethite morphology 68 4.2.2 Lepidocrocite 70 4.2.3 Akaganeite and schwertmannite 71 4.2.4 Ferrihydrite 73 4.2.5 Haematite 74 4.2.6 Magnetite 82 4.2.7 -
Products of Hexavalent Chromium Reduction by Green Rust Sodium Sulfate and Associated Reaction Mechanisms
Article Products of Hexavalent Chromium Reduction by Green Rust Sodium Sulfate and Associated Reaction Mechanisms Andrew N. Thomas 1,*, Elisabeth Eiche 1, Jörg Göttlicher 2, Ralph Steininger 2, Liane G. Benning 3,4 , Helen M. Freeman 3,† , Knud Dideriksen 5 and Thomas Neumann 6 1 Institute for Applied Geosciences, Karlsruhe Institute of Technology, Adenauerring 20b, Building 50.40, 76135 Karlsruhe, Germany; [email protected] 2 Institute for Synchrotron Radiation, Karlsruhe Institute of Technology, Herman-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; [email protected] (J.G.); [email protected] (R.S.) 3 GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; [email protected] (L.G.B.); [email protected] (H.M.F.) 4 Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany 5 Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; [email protected] 6 Department of Applied Geosciences, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany; [email protected] * Correspondence: [email protected] † Current address: School of Chemical and Process Engineering, University of Leeds, Leeds LS29JT, UK. Received: 28 September 2018; Accepted: 25 October 2018; Published: 29 October 2018 Abstract: The efficacy of in vitro Cr(VI) reduction by green rust sulfate suggests that this mineral is potentially useful for remediation of Cr-contaminated groundwater. Previous investigations studied this reaction but did not sufficiently characterize the intermediates and end products at 2− chromate (CrO4 ) concentrations typical of contaminant plumes, hindering identification of the dominant reaction mechanisms under these conditions. -
REVISION 2 Kinetics of Fe(III) Mineral Crystallization from Ferrihydrite in The
1 REVISION 2 2 3 Kinetics of Fe(III) mineral crystallization from ferrihydrite in the presence of Si at alkaline 4 conditions 5 Paul Clarence M. Francisco1*, Tsutomu Sato1*, Tsubasa Otake1, Takeshi Kasama2 6 1Environmental Geology Laboratory, Division of Sustainable Resources Engineering, 7 Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Sapporo, 060-8628, Japan 8 2Center for Electron Nanoscopy, Technical University of Denmark, 9 DK-2800 Kongens Lyngby, Denmark 10 *correspondence: [email protected]; [email protected] 11 12 ABSTRACT 13 Fe(III) minerals are ubiquitous in diverse near-surface environments, where they exert 14 important controls on trace species transport. In alkaline environments such as the glass-steel 15 interface in geological high-level radioactive waste disposal sites that use cement for plugging and 16 grouting, Fe minerals are closely associated with Si that may affect their crystallization behavior as 17 well as their capacities to regulate hazardous element cycling. While it is well-known that Si retards 18 Fe mineral crystallization, there is currently an overall lack of quantitative information on the rates 19 of crystallization of stable Fe minerals in the presence of Si at alkaline conditions. Crystallization of 20 Fe(III) minerals goethite and hematite from ferrihydrite co-precipitated with different amounts of Si 21 was studied at pH 10 and at temperatures ranging from 50 to 80°C using powder x-ray diffraction 22 (XRD) and transmission electron microscopy (TEM). Mineral abundances evaluated from Rietveld 23 refinement of XRD data show that the proportion of goethite in the final assemblage decreases 24 relative to hematite with increasing Si. -
Into Hematite During Ferrihydrite Transformation
Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2020 Electronic Supplementary Information for Incorporation of Pb(II) into hematite during ferrihydrite transformation Yang Lu,a Shiwen Hu,a Zheng Liang,b Mengqiang Zhu,c Zimeng Wang,d Xiaoming Wang,e Yuzhen Liang,a Zhi Dang,a Zhenqing Shi*,a a The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China b Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, Guangdong, People’s Republic of China c Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, 82071, United States d Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People’s Republic of China e Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China *Corresponding author: Zhenqing Shi; Email: [email protected]; Tel: 86-20-39380503. Number of pages: 22 Number of figures: 15 Number of tables: 3 S1 S1. Details of Experimental Procedures (1) Iron oxide transformation experiments Ferrihydrite and Pb coprecipitates were synthesized using the method described 1 by Schwertmann and Cornell, in which the 0.1 M Fe(NO3)3·9H2O solution was titrated with 1 M NaOH with continuous stirring until the pH was stabilized at 7.5. Then the suspensions were shaken at a rotator of 200 rpm for 24 h at room temperature (25 ℃). -
New Perspectives on Iron-Based Nanostructures
processes Review New Perspectives on Iron-Based Nanostructures Seyedeh-Masoumeh Taghizadeh 1,2, Aydin Berenjian 3,*, Marziyeh Zare 4 and Alireza Ebrahiminezhad 5,* 1 Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; [email protected] 2 Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran 3 School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton 3240, New Zealand 4 Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71336-54361, Iran; [email protected] 5 Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71336-54361, Iran * Correspondence: [email protected] (A.B.); [email protected] (A.E.) Received: 5 August 2020; Accepted: 24 August 2020; Published: 10 September 2020 Abstract: Among all minerals, iron is one of the elements identified early by human beings to take advantage of and be used. The role of iron in human life is so great that it made an era in the ages of humanity. Pure iron has a shiny grayish-silver color, but after combining with oxygen and water it can make a colorful set of materials with divergent properties. This diversity sometimes appears ambiguous but provides variety of applications. In fact, iron can come in different forms: zero-valent iron (pure iron), iron oxides, iron hydroxides, and iron oxide hydroxides. By taking these divergent materials into the nano realm, new properties are exhibited, providing us with even more applications. -
Reductive Dissolution of Arsenic-Bearing Ferrihydrite
ARTICLE IN PRESS Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta xxx (2010) xxx–xxx www.elsevier.com/locate/gca Reductive dissolution of arsenic-bearing ferrihydrite Jasmine J. Erbs a, Thelma S. Berquo´ b, Brian C. Reinsch c,d, Gregory V. Lowry c,d, Subir K. Banerjee b, R. Lee Penn a,* a Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA b Department of Geology and Geophysics, Institute for Rock Magnetism, University of Minnesota, Minneapolis, MN 55455, USA c Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA d Center for Environmental Implications of NanoTechnology (CEINT), Pittsburgh, PA 15213, USA Received 8 June 2009; accepted in revised form 2 January 2010 Abstract Ferrihydrites were prepared by coprecipitation (COP) or adsorption (ADS) of arsenate, and the products were character- ized using solid-state methods. In addition, the kinetics of reductive dissolution by hydroquinone of these well-characterized materials were quantified. Characterization and magnetism results indicate that the 10 wt% As COP ferrihydrite is less crys- talline and possibly has smaller crystallite size than the other ferrihydrites, which all have similar crystallinity and particle size. The results from reductive dissolution experiments show similar reaction rates, reaction mechanism, and activation energy for ferrihydrite precipitated with or without added arsenate. However, a marked decrease in reactivity was observed for 10 wt% As ADS ferrihydrite. The decrease is not attributed to differences in activation energy but rather the preferential blocking of active sites on the ferrihydrite surface. Results demonstrate that arsenic may be released by the reductive dissolution of arsenic-bearing ferrihydrite regardless of whether the arsenic is coprecipitated with or adsorbed onto the ferrihydrite. -
The Transformation of Ferrihydrite Into Goethite Or Hematite, Revisited Yannick Cudennec, André Lecerf
The transformation of ferrihydrite into goethite or hematite, revisited Yannick Cudennec, André Lecerf To cite this version: Yannick Cudennec, André Lecerf. The transformation of ferrihydrite into goethite or hematite, revisited. Journal of Solid State Chemistry, Elsevier, 2006, 179 (3), pp.716-722. 10.1016/j.jssc.2005.11.030. hal-02495178 HAL Id: hal-02495178 https://hal.archives-ouvertes.fr/hal-02495178 Submitted on 3 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Solid State Chemistry 179 (2AAO) 703-709 The transformation of ferrihydrite into goethite or hematite, revisited Yannick Cudennec_, Andre' Lecerf Groupe de Recherche en Chimie et Me'tallurgie, Institut National des Sciences Applique'es de Rennes, 20 avenue des buttes de Coe"smes,35043 Rennes cedex, France The transformation of ferrihydrite into goethite or hematite, revisited Yannick Cudennec , André Lecerf Groupe de Recherche en Chimie et Métallurgie, Institut National des Sciences Appliquées de Rennes, 20 avenue des buttes de Coësmes, 35043 Rennes cedex, France. Abstract During the oxidation of iron, poorly crystallized phases are firstly formed: 2 line-ferrihydrite and 6-line ferrihydrite, which present for the last phase, a similarity with wustite FeO but also with hematite o-FezO3. -
Transformation of Goethite/Ferrihydrite to Hematite and Maghemite Under Temperate Humid Conditions in Denmark
Geophysical Research Abstracts Vol. 14, EGU2012-3400, 2012 EGU General Assembly 2012 © Author(s) 2012 Transformation of goethite/ferrihydrite to hematite and maghemite under temperate humid conditions in Denmark P. Nørnberg (1), K. Finster (2), H.P. Gunnlaugsson (3), S.K. Jensen (4), J.P. Merrison (5), and A.L. Vendelboe (6) (1) Aarhus University, Department of Geosciences, Aarhus, Denmark ([email protected]), (2) Aarhus University, Department of Bioscience, Aarhus, Denmark, (3) Aarhus University, Department of Physics and Astronomy, Aarhus, Denmark, (4) Aarhus University, Department of Chemistry, Aarhus, Denmark, (5) Aarhus University, Department of Physics and Astronomy, Aarhus, Denmark, (6) Aarhus University, Department of Agroecology, Tjele, Denmark At a number of sandy soil sites in Mid Jutland, Denmark, with iron content of 1-2%, very red spots (Munsell colour: dusky red 10R 3/4) of a few square meters are found. These spots are most likely due to burning events. After the fire ashes raised pH. This dispersed silt and clay size soil particles which were then transported with seepage water down into lower soil horizons. These particles contain hematite and maghemite due to influence of the fire. However, a long-standing unresolved question is how hematite and maghemite can also be present along with goethite and ferrihydrite, in the same geographical region, and in extended areas with high iron content (8-40 %) in the topsoil. Hematite and particularly maghemite would normally not be expected to form under the temperate humid Danish climate, but be interpreted as the result of high temperature as found in tropical regions or as seen in soils exposed to fire. -
Properties of Synthetic Goethites and Their Effect on Sulfate Adsorption Munoz, Miguel A., Ph.D
Order Number 8824578 Properties of synthetic goethites and their effect on sulfate adsorption Munoz, Miguel A., Ph.D. The Ohio State University, 1988 Copyright ©1988by Munoz, Miguel A. All rights reserved. UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark •/ . 1. Glossy photographs or pages. 2. Colored illustrations, paper or print • 3. Photographs with dark background _____ 4. Illustrations are poor copy ____ 5. Pages with black marks, not original copy ^ 6. Print shows through as there is text on both sides of page ______ 7. Indistinct, broken or small print on several pages _______ 8. Print exceeds margin requirements______ 9. Tightly bound copy with print lost in spine _______ 10. Computer printout pages with indistinct print ______ 11. Page(s)___________ lacking when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pages S 15. Dissertation contains pages with print at a slant, filmed as received 16. Other PROPERTIES OF SYNTHETIC GOETHITES AND THEIR EFFECT ON SULFATE ADSORPTION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Miguel A. Munoz, B.S., M.S. The Ohio State University 1988 Dissertation Committee: Approved by Dr. J .M . Bigham Dr. S.J. -
Precipitation Pathways for Ferrihydrite Formation in Acidic Solutions
BNL-108457-2015-JA 1 Precipitation Pathways for Ferrihydrite Formation in Acidic Solutions 2 †, ‡, ∗ ⊥ § ∆ 3 Mengqiang Zhu, Cathrine Frandsen, Adam F. Wallace, Benjamin Legg,∥ Syed Khalid, ⊥ 4 Hengzhong Zhang,∥ Steen Mørup, Jillian F. Banfield ∥,‡ and Glenn A. Waychunas ‡ 5 6 † Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, 7 82071 8 9 ‡ Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 10 11 ⊥ Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark 12 13 § Department of Geological Sciences, University of Delaware, Newark, DE 19713 14 15 ∥ Department of Earth and Planetary Science, University of California, Berkeley, CA, 94720 16 17 ∆ National Synchrotron Light Sources, Brookhaven National Laboratory, Upton, NY, 11973 18 19 20 Submitted to Geochimica et Cosmochimica Acta 21 * Corresponding author: [email protected]. Phone: + 1 307 766-5523. Fax: +1 307 766-6403 1 22 Abstract 23 Iron oxides and oxyhydroxides form via Fe3+ hydrolysis and polymerization in many 24 aqueous environments, but the pathway from Fe3+ monomers to oligomers and then to solid phase 25 nuclei is unknown. In this work, using combined X-ray, UV-vis, and Mössbauer spectroscopic 26 approaches, we were able to identify and quantify the long-time sought ferric speciation over time 27 during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 3+ 28 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H2O)6 , µ-oxo aquo dimers 29 and ferrihydrite, and that with time, the µ-oxo dimer decreases while the other two species 30 increase in their concentrations. -
Direct Identification of Reaction Sites on Ferrihydrite
ARTICLE https://doi.org/10.1038/s42004-020-0325-y OPEN Direct identification of reaction sites on ferrihydrite ✉ Jean-François Boily 1 & Xiaowei Song 2 Hydroxyl groups are the cornerstone species driving catalytic reactions on mineral nano- 1234567890():,; particles of Earth’s crust, water, and atmosphere. Here we directly identify populations of these groups on ferrihydrite, a key yet misunderstood iron oxyhydroxide nanomineral in natural sciences. This is achieved by resolving an enigmatic set of vibrational spectroscopic signatures of reactive hydroxo groups and chemisorbed water molecules embedded in specific chemical environments. We assist these findings by exploring a vast array of con- figurations of computer-generated nanoparticles. We find that these groups are mainly disposed along rows at edges of sheets of iron octahedra. Molecular dynamics of nano- particles as large as 10 nm show that the most reactive surface hydroxo groups are pre- dominantly free, yet are hydrogen bond acceptors in an intricate network formed with less reactive groups. The resolved vibrational spectroscopic signatures open new possibilities for tracking catalytic reactions on ferrihydrite, directly from the unique viewpoint of its reactive hydroxyl groups. 1 Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden. 2 R&D, IKEA of Sweden AB, SE-343 34 Älmhult, Sweden. ✉email: [email protected] COMMUNICATIONS CHEMISTRY | (2020) 3:79 | https://doi.org/10.1038/s42004-020-0325-y | www.nature.com/commschem 1 ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-020-0325-y errihydrite (Fh) is a puzzling nanosized mineral with a 50- envisions crystalline Fh nanoparticles composed of (1) a defect- year-old history of debates over its structure, composition free core consisting of the low OH-bearing structure of Michel F 1–20 6 and formation mechanisms . -
Sorptive Interaction of Oxyanions with Iron Oxides: a Review
Pol. J. Environ. Stud. Vol. 22, No. 1 (2013), 7-24 Review Sorptive Interaction of Oxyanions with Iron Oxides: A Review Haleemat Iyabode Adegoke1*, Folahan Amoo Adekola1, Olalekan Siyanbola Fatoki2, Bhekumusa Jabulani Ximba2 1Department of Chemistry, University of Ilorin P.M.B. 1515, Ilorin, Nigeria 2Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town, South Africa Received: 5 December 2011 Accepted: 24 July 2012 Abstract Iron oxides are a group of minerals composed of Fe together with O and/or OH. They have high points of zero charge, making them positively charged over most soil pH ranges. Iron oxides also have relatively high surface areas and a high density of surface functional groups for ligand exchange reactions. In recent time, many studies have been undertaken on the use of iron oxides to remove harmful oxyanions such as chromate, arsenate, phosphate, and vanadate, etc., from aqueous solutions and contaminated waters via surface adsorp- tion on the iron oxide surface structure. This review article provides an overview of synthesis methods, char- acterization, and sorption behaviours of different iron oxides with various oxyanions. The influence of ther- modynamic and kinetic parameters on the adsorption process is appraised. Keywords: oxyanions, iron oxides, adsorption, isotherm, points of zero charge Introduction Iron oxides have been used as catalysts in the chemical industry [9, 10], and a potential photoanode for possible Iron oxides are a group of minerals composed of iron electrochemical cells [11, 12]. In medical applications, and oxygen and/or hydroxide. They are widespread in nanoparticle magnetic and superparamagnetic iron oxides nature and are found in soils and rocks, lakes and rivers, on have been used for drug delivery in the treatment of cancer the seafloor, in air, and in organisms.