Whole-Genome Resequencing Reveals Brassica Napus Origin and Genetic Loci Involved in Its Improvement
ARTICLE https://doi.org/10.1038/s41467-019-09134-9 OPEN Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement Kun Lu 1,2,3, Lijuan Wei1,2, Xiaolong Li4, Yuntong Wang4, Jian Wu5, Miao Liu1, Chao Zhang1, Zhiyou Chen1, Zhongchun Xiao1, Hongju Jian1, Feng Cheng 5, Kai Zhang1, Hai Du1,2,3, Xinchao Cheng3, Cunming Qu1,2,3, Wei Qian1,2,3, Liezhao Liu1,2,3, Rui Wang1,2,3, Qingyuan Zou1, Jiamin Ying1, Xingfu Xu1,2, Jiaqing Mei1,2, Ying Liang1,2,3, You-Rong Chai1,2,3, Zhanglin Tang1,2,3, Huafang Wan1,YuNi1,2,3, Yajun He1, Na Lin1, Yonghai Fan1, Wei Sun1, Nan-Nan Li2, Gang Zhou 4, Hongkun Zheng 4, Xiaowu Wang5, 1234567890():,; Andrew H. Paterson6 & Jiana Li1,2,3 Brassica napus (2n = 4x = 38, AACC) is an important allopolyploid crop derived from inter- specific crosses between Brassica rapa (2n = 2x = 20, AA) and Brassica oleracea (2n = 2x = 18, CC). However, no truly wild B. napus populations are known; its origin and improvement processes remain unclear. Here, we resequence 588 B. napus accessions. We uncover that the A subgenome may evolve from the ancestor of European turnip and the C subgenome may evolve from the common ancestor of kohlrabi, cauliflower, broccoli, and Chinese kale. Additionally, winter oilseed may be the original form of B. napus. Subgenome-specific selection of defense-response genes has contributed to environmental adaptation after for- mation of the species, whereas asymmetrical subgenomic selection has led to ecotype change. By integrating genome-wide association studies, selection signals, and transcriptome analyses, we identify genes associated with improved stress tolerance, oil content, seed quality, and ecotype improvement.
[Show full text]