Flushing Species List
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Stages of Fishes in the Western North Atlantic Ocean Volume
ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation. -
Population and Reproductive Biology of the Channeled Whelk, Busycotypus Canaliculatus, in the US Mid-Atlantic
W&M ScholarWorks VIMS Articles 2017 Population and Reproductive Biology of the Channeled Whelk, Busycotypus canaliculatus, in the US Mid-Atlantic Robert A. Fisher Virginia Institute of Marine Science, [email protected] David Rudders Virginia Institute of Marine Science, [email protected] Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Fisher, Robert A. and Rudders, David, "Population and Reproductive Biology of the Channeled Whelk, Busycotypus canaliculatus, in the US Mid-Atlantic" (2017). VIMS Articles. 304. https://scholarworks.wm.edu/vimsarticles/304 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Shellfish Research, Vol. 36, No. 2, 427–444, 2017. POPULATION AND REPRODUCTIVE BIOLOGY OF THE CHANNELED WHELK, BUSYCOTYPUS CANALICULATUS, IN THE US MID-ATLANTIC ROBERT A. FISHER* AND DAVID B. RUDDERS Virginia Institute of Marine Science, College of William and Mary, PO Box 1346, Gloucester Point, VA 23062 ABSTRACT Channeled whelks, Busycotypus canaliculatus, support commercial fisheries throughout their range along the US Atlantic seaboard. Given the modest amounts of published information available on channeled whelk, this study focuses on understanding the temporal and spatial variations in growth and reproductive biology in the Mid-Atlantic region. Channeled whelks were sampled from three inshore commercially harvested resource areas in the US Mid-Atlantic: Ocean City, MD (OC); Eastern Shore of Virginia (ES); and Virginia Beach, VA (VB). The largest whelk measured 230-mm shell length (SL) and was recorded from OC. -
The Lightning Whelk: an Enduring Icon of Southeastern North American Spirituality ⇑ William H
Journal of Anthropological Archaeology 42 (2016) 1–26 Contents lists available at ScienceDirect Journal of Anthropological Archaeology journal homepage: www.elsevier.com/locate/jaa The lightning whelk: An enduring icon of southeastern North American spirituality ⇑ William H. Marquardt a, , Laura Kozuch b a Florida Museum of Natural History, University of Florida, PO Box 117800, Gainesville, FL 32611, USA b Illinois State Archaeological Survey, 23 E. Stadium Drive, Champaign, IL 61820, USA article info abstract Article history: We describe the lightning whelk (Busycon sinistrum) and show how its shells were used among coastal Received 19 March 2015 peoples along the Gulf of Mexico and lower Atlantic coast. During the Middle and Late Archaic periods, Revision received 5 January 2016 lightning whelk shells were transported hundreds of km from the coasts to the Midsouth where they Available online 8 March 2016 were made into a variety of artifacts that were interred in graves. We explore the symbolic significance of sinistral (‘‘left-handed”) snails in post-Archaic times, focusing on the lightning whelk as a metaphor of Keywords: spiral/circle, fire/sun, and purification/continuity among Native Americans of the eastern United States. Lightning whelk This particular marine mollusk shell had special spiritual significance—and hence economic and political Shell artifacts value—for several millennia, particularly in the southeastern United States, but its ritual importance as Shell Mound Archaic Mississippian cultural icon resonates with cultures around the globe. The importance of the sinistral whelk as both Sinistral spiral medium and message has been inadequately appreciated by American archaeologists. Native American spirituality Ó 2016 Elsevier Inc. -
Imported Food Risk Statement Bivalve Molluscs and Domoic Acid
Imported food risk statement Bivalve molluscs and domoic acid Commodity: Bivalve Molluscs. This includes whole or portions of bivalve molluscs that are fresh, frozen, dried or canned, such as cockles, clams, mussels, oysters and scallops. The following products are excluded and therefore not covered by this risk statement: cephalopod molluscs (e.g. squid, octopus, cuttlefish) and jelly fish marinara mix. Analyte: Domoic acid (DA) Recommendation and rationale Is DA in bivalve molluscs a medium or high risk to public health: Yes No Uncertain, further scientific assessment required Rationale: Consumption of seafood containing DA has resulted in human poisoning incidents and deaths. DA is a potent neurotoxin that causes amnesic shellfish poisoning (ASP) within 24-48 hours following ingestion. There is no antidote for ASP. DA is not destroyed by cooking, freezing or other food processing. General description Nature of the analyte: DA is a water-soluble, non-protein amino acid. It is produced by some marine diatoms of the genus Pseudo- nitzschia spp., which are likely to be present to some extent in most coastal marine environments. Isomers of DA are less toxic. Domoic acid is not reliably destroyed by common cooking methods (Vidal et al. 2009) or by autoclaving (McCarron and Hess 2006). Adverse health effects: DA is a potent neurotoxin that causes amnesic shellfish poisoning (ASP) within 24-48 hours following ingestion. There is no antidote for ASP. Clinical signs of acute DA toxicity (or ASP) are mild gastrointestinal symptoms (vomiting, diarrhoea, and abdominal pain) from an oral dose ranging between 0.9 and 2 mg DA/kg bw. -
Miscellaneous Mollusc Resources of Pacific Islands
SPC/lnshore Fish. Res./WP2 29 February 1988 ORIGINAL : ENGLISH ( Noumea, New Caledonia, 14-25 March 1988) HISCELLANEOUS MOLLUSC RESOURCES OF PACIFIC ISLANDS BY Dr A.D. Lewis Introduction l Molluscs (Phylum Molluscs) we a diverse array of "shellfish", which include bivalves (clams, cockles, oysters, mussels - Class Pelecypoda) ,gastropods ( snails, abalone, seahares- Class Gastropods) and cephalopods (squids, octopus, cuttlefish - Class Cephalopoda). These support large marine fisheries, world landings of molluscs exceeding 6 millions tonnes in 1985 (Anon, 1987) and dominated by cephalopods ( 1.67 million mt,), clams, cockles and arkshells ( 1.6 1 million mt.) and oysters ( 1.03 million mt). 2. Previous sessions at the workshop have considered in detail the molluscs of major commercial importance to Pacific Islands. This include molluscs harvested primarily for Industrial purposes (eg. trochus, green snail and pearl shell, for their nacreous shell interiors) as well as those harvested primarily for human consumption (giant clams). 3. There is in addition, however a wide range of molluscs harvested throughout the Pacific Islands for subsistence purposes and in some cases small scale commercial exploitation. Many are gleaned from a variety of inshore habitats, including mud flats, mangrove roots, sandy beaches, reef flats and rubble areas. These molluscs are commonly collected by women, and have traditionally served as important reserve food sources during times of bad weather or poor line fishing. In (tensely populated atolls, they may become a primary fooAsource, Zann ( 1985) noting that in South Tarawa (Kiribati), landings of three lagoon bivalves exceed that of all finfish combined. 4. Othermoreactivemolluscsaretakenwithluresorbaits(cephalopoda).whilstothers are trawled (scallops). -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Age, Growth, Size at Sexual Maturity and Reproductive Biology of Channeled Whelk, Busycotypus Canaliculatus, in the U.S. Mid-Atlantic
Age, Growth, Size at Sexual Maturity and Reproductive Biology of Channeled Whelk, Busycotypus canaliculatus, in the U.S. Mid-Atlantic October 2015 Robert A. Fisher Virginia Institute of Marine Science Virginia Sea Grant-Affiliated Extension (In cooperation with Bernie’s Conchs) Robert A. Fisher Marine Advisory Services Virginia Institute of Marine Science P.O. Box 1346 Gloucester Point, VA 23062 804/684-7168 [email protected] www.vims.edu/adv VIMS Marine Resource Report No. 2015-15 VSG-15-09 Additional copies of this publication are available from: Virginia Sea Grant Communications Virginia Institute of Marine Science P.O. Box 1346 Gloucester Point, VA 23062 804/684-7167 [email protected] Cover Photo: Robert Fisher, VIMS MAS This work is affiliated with the Virginia Sea Grant Program, by NOAA Office of Sea Grant, U.S. Depart- ment of Commerce, under Grant No. NA10OAR4170085. The views expressed herein do not necessar- ily reflect the views of any of those organizations. Age, Growth, Size at Sexual Maturity and Reproductive Biology of Channeled Whelk, Busycotypus canaliculatus, in the U.S. Mid-Atlantic Final Report for the Virginia Fishery Resource Grant Program Project 2009-12 Abstract The channeled whelk, Busycotypus canaliculatus, was habitats, though mixing is observed inshore along shallow sampled from three in-shore commercially harvested waters of continental shelf. Channeled whelks are the resource areas in the US Mid-Atlantic: off Ocean City, focus of commercial fisheries throughout their range (Davis Maryland (OC); Eastern Shore of Virginia (ES); and and Sisson 1988, DiCosimo 1988, Bruce 2006, Fisher and Virginia Beach, Virginia (VB). -
Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo -
This Is Not a Citeable Document
This Meeting was Cancelled. THIS IS NOT A CITEABLE DOCUMENT NATIONAL SHELLFISHERIES ASSOCIATION Program and Abstracts of the 112th Annual Meeting March 29 – April 2, 2020 Baltimore, Maryland NSA 112th ANNUAL MEETING 1DWLRQDO6KHOO¿VKHULHV$VVRFLDWLRQ 7KH&URZQH3OD]D%DOWLPRUH,QQHU+DUERU+RWHO%$/7,025(0$5</$1' 0DUFK±$SULO 681'$<0$5&+ 6:30 PM 678'(1725,(17$7,21 DO NOT &DUUROO CITE 7:00 PM 35(6,'(17¶65(&(37,21 ,QWHUQDWLRQDO$%& 021'$<0$5&+ 678'(17%5($.)$67 VWXGHQWVRQO\ 6:30-8:00 AM +DOORI)DPH 3/(1$5</(&785(5RJHU0DQQ(9LUJLQLD,QVWLWXWHRI0DULQH6FLHQFH 8:00-8:50 AM ,QWHUQDWLRQDO$%& ,QWHUQDWLRQDO$ ,QWHUQDWLRQDO% ,QWHUQDWLRQDO& &DUUROO 21(+($/7+(3,*(120(6 6+(//),6+ 6+(//),6+*(1(7,&6 9:00-10:30 AM $1'0,&52%,20(6)520 5(6725$7,21$1' MUSSELS $1'*(120,&6 62,/723(23/(:25.6+23 &216(59$7,21 10:30-11:00AM 0251,1*%5($. 21(+($/7+(3,*(120(6 6+(//),6+ 6+(//),6+*(1(7,&6 6+(//),6+$48$&8/785( 11:00-12:30PM $1'0,&52%,20(6)520 5(6725$7,21$1' $1'*(120,&6 %86,1(66$1'(&2120,&6 62,/723(23/(:25.6+23 &216(59$7,21 12:30-1:30 PM /81&+%5($. 21(+($/7+(3,*(120(6 6+(//),6+ 6+(//),6+*(1(7,&6 1:30-2:15 PM $1'0,&52%,20(6)520 5(6725$7,21$1' /($6,1*$1'3(50,77,1* $1'*(120,&6 62,/723(23/(:25.6+23 &216(59$7,21 21(+($/7+(3,*(120(6 6+(//),6+ 6+(//),6+*(1(7,&6 2:15-3:00 PM $1'0,&52%,20(6)520 5(6725$7,21$1' /($6,1*$1'3(50,77,1* $1'*(120,&6 62,/723(23/(:25.6+23 &216(59$7,21 3:00-3:30 PM $)7(51221%5($. -
The Mussel Resources of the North Atlantic Region
United states Depa tment of the Interior, Oscar ~ . Chapman, Secretary Fish and ice, Albert M. Day, Director J Fishery Leaflet 364 Wash in ton 25 D. C. Januar 1950 THE MUSSEL RESOURCES OF THE NORTH ATLANTIC REGION ~RT J --THE SURVEY TO DISCOVER THE LOCATIONS AND AREAS OF THE NORTH ATLANTIC MUSSEL-PRODUCING BEDS By Leslie W. Scattergood~~ and Clyde C, Taylor ~d~ '!his is the first of three papers discussing the World War II pro motion of the North Atlantic mussel fishery. The present article is primarily concerned "'i th the quantitative resul ts of a survey of the productivi~ of mussel areas. INTRODUCTION During the recent war, the fishing industry had tte problem of increasing its production despite relative shortages of manpower, equipment, and materials o One of the ways of efficiently augmenting the catch of fish and shellfish was to uti lize species ordinarily disregarded. One of the probable sources of sea food was the edible mussel (yGtilus edulis), which is so common along , the North Atlantic Coast of the United States. This species cap be harvested dur ing that time of the year when the small-boat fishery is least active. In the late winter and the spring months, the mussels a,re in good con dition for marketing, as it is then that they reach their fattest condition, and in this period other fishing activities are at a low level. The mussel, although relatively unknown to the American public p has attained great popularity in Europe. Large quantities have been consumed in European coun tries for hundreds of yearso The annual English, Welsh, and Scotch production of this shellfish, as re corded in the statistical reports of the British Ministry of Agriculture and Fish eries" ave,raged about 19 million pounds ("in the shell" weight) for the lS-year period between 1924 and 1938. -
New York and New York and Long Island Field Offices Strategic Plan
New York and Long Island Field Offices Strategic Plan FY2012 Table of Contents Page Strategic Plan Introduction 6 New York Focal Area Map 8 ALLEGHENY FOCAL AREA 9 Allegheny Focal Area Map 10 Bald Eagle Species Action Plan 11 Broad-winged Hawk Species Action Plan 19 Brook Trout Species Action Plan 27 Cerulean Warbler Species Action Plan 35 Clubshell Species Action Plan 43 Eastern Hellbender Species Action Plan 51 Rayed Bean Species Action Plan 63 Spotted Darter Species Action Plan 70 FINGER LAKES ONONDAGA FOCAL AREA 78 Finger Lakes/Onondaga Focal Area Map 79 American Hart’s-tongue Fern Species Action Plan 80 American Black Duck Species Action Plan 86 Bog Turtle Species Action Plan 95 Brook Trout Species Action Plan 103 Cerulean Warbler Species Action Plan 113 Chittenango Ovate Amber Snail Species Action Plan 122 Indiana Bat Species Action Plan 129 Lake Sturgeon Species Action Plan 139 Leedy’s Roseroot Species Action Plan 148 Massasauga Rattlesnake Species Action Plan 154 GREAT LAKES FOCAL AREA 160 Great Lakes Focal Area Map 162 American Woodcock Species Action Plan 163 ii Bald Eagle Species Action Plan 173 American Black Duck Species Action Plan 182 Bobolink Species Action Plan 192 Bog Turtle Species Action Plan 199 Broad-winged Hawk Species Action Plan 205 Brook Trout Species Action Plan 212 Cerulean Warbler Species Action Plan 221 Common Tern Species Action Plan 229 Houghton’s Goldenrod Species Action Plan 237 Indiana Bat Species Action Plan 244 Lake Sturgeon Species Action Plan 253 Massasauga Rattlesnake Species Action Plan 262 Piping -
The Biology and Ecology of the Common Cuttlefish (Sepia Officinalis)
Supporting Sustainable Sepia Stocks Report 1: The biology and ecology of the common cuttlefish (Sepia officinalis) Daniel Davies Kathryn Nelson Sussex IFCA 2018 Contents Summary ................................................................................................................................................. 2 Acknowledgements ................................................................................................................................. 2 Introduction ............................................................................................................................................ 3 Biology ..................................................................................................................................................... 3 Physical description ............................................................................................................................ 3 Locomotion and respiration ................................................................................................................ 4 Vision ................................................................................................................................................... 4 Chromatophores ................................................................................................................................. 5 Colour patterns ................................................................................................................................... 5 Ink sac and funnel organ