Polymer Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Polymer Chemistry Polymer Chemistry Basic Principles and Introduction Prof. Y.M. Lee School of Chemical Engineering, College of Engineering Hanyang University Spring 2004 WeWe livelive inin aa polymerpolymer age!!age!! RubberRubber Elastomers PlasticsPlastics Elastomers FibersFibers CoatingsCoatings ProteinProtein CelluloseCellulose AdhesivesAdhesives Spring 2004 Polymer: large molecules made up of simple repeating units Greek poly, meaning many, and mer, meaning part Synonymous Term: Macromolecules Synthesis of Polymer: Synthesized from simple molecules called “monomers” 1) Addition Polymerization Ethylene H C CH 2 2 * CH2 CH2 n * CH CH Styrene H2C CH * 2 n * Spring 2004 2) Condensation Polymerization -H O 2 Ethylene glycol OCH CH HOCH2CH2OH * 2 2 n * 4-Hydroxymethyl HOCH CO H benzoic acid 2 2 O -H2O * O CH2 C n * Spring 2004 Historical Milestones in Polymer Science • Prehistory – 19th Century Mankind relies on natural polymeric materials like wood, bone, and fur. •1833 Polymer was first used by the Swedish chemist Berzelius. • 1839 Charles Goodyear vulcanizes natural rubber with sulfur, launches rubber industry. The polymerization of styrene was firstly reported. •1860s Poly(ethylene glycol) and poly(ethylene succinate) was published. O O * * n * * n O Spring 2004 Historical Milestones in Polymer Science •1870 John Wesley Hyatt invents Celluloid through chemical treatment of natural cellulose (nitrated cellulose). •1887 Count Hilaire deChardonnet spins cellulose nitrate into Chardonnet silk •1909 American inventor Leo Baekeland (who had already earned considerable success with his light-sensitive photographic paper) treated phenol with formaldehyde to produce Bakelite, the first successful fully synthetic polymer material. Spring 2004 Historical Milestones in Polymer Science •1920 German chemist Hermann Staudinger proposes his Macromolecular Hypothesis, claims giant molecules exist (revealing view is that plastics are assemblies of small molecules). Staudinger is widely criticized but eventually becomes the first polymer chemist to win the Nobel Prize in Chemistry (in 1953). •1928 German chemists Kurt Meyer and Herman Mark confirm the existence of macromolecules through x-ray studies. Spring 2004 Historical Milestones in Polymer Science •1928 DuPont hires Professor Wallace Hume Carothers from Harvard to start first basic R&D lab in the USA. •1930s - An explosion of new materials. Wallace Carothers -Polyamide (Nylon) Polychloroprene (Neoprene) Waldo Semon - Polyvinyl chloride (PVC) Roy Plunket - Polytetrafluoroethylene (Teflon) Paul Flory - Theory of gelation •1940s WWII leads to synthetic rubber program Professor Peter Debye develops light scattering for MW measurement Flory and Huggins develop theory of polymer thermodynamics Spring 2004 Historical Milestones in Polymer Science •1953 German chemist Karl Ziegler and Italian chemist Giulio Natta develop effective catalysts for olefin polymerization allowing large scale production of polyethylene and polypropylene. They receive the Nobel Prize in 1963. • 1974 Professor Paul Flory is awarded the Nobel Prize in Chemistry for his many contributions to polymer science. •1986 Chemical Engineering Professor Robert Langer and Medical Doctor Joseph Vacanti demonstrate the use of polymers in tissue engineering. Liver cells grown on a special polymer can be transplanted and still function. Spring 2004 Historical Milestones in Polymer Science •2000 The Nobel Prize in Chemistry is given “for the discovery and development of electrically conductive polymers.” Professor Alan J. Heeger at the University of California at Santa Barbara, USA Professor Alan G. MacDiarmid at the University of Pennsylvania, USA Professor Hideki Shirakawa at the University of Tsukuba, Japan Polymer Science and Technology remains a vital and exciting field! Spring 2004 Important Advances in Polymer Science • High thermal and oxidation-stable polymer: high performance aerospace applications • Engineering plastics – polymers designed to replace metals • High strength aromatic fibers – a variety of applications from tire cord to cables for anchoring oceanic oil-drilling platforms • Non flammable polymers – emit a minimum of smoke or toxic fumes • Degradable polymers – allow controlled release of drugs or agricultural chemicals • Polymer for a broad spectrum of medical applications – from degradable sutures to artificial organs • Conducting polymers – exhibit electrical conductivities comparable to those of metals • Polymer that serve as insoluble support for catalysts or for automated protein or nucleic acid synthesis (Bruce Merrifield, who originated solid-phase protein synthesis, was awarded the Nobel Prize in Chemistry in 1984) Spring 2004 Chap 2. Types of Polymers & Definitions Polymer: a large molecule whose structures depends on the monomer or monomers used in preparation Oligomer: low-molecular weight polymer (a few monomer units) Repeating unit (RU): monomeric units (examples: polyethylene) Degree of polymerization (DP): the total number of structural units, including end groups. It is related to both chain length and molecular weight n CH C H2C CH * n -2-2* Vinyl acetate O O (a important industrial C O C O monomer) CH3 CH3 If DP (n) = 500, for example, M.W.= 500 × 86(m.w. of structural unit) = 43,000 Because polymer chains within a given polymer sample are almost always of varying lengths (except for certain natural polymers like proteins), we normally refer to the average degree of Polymerization (DP). Spring 2004 Definitions Homopolymer: -A-A-A-A-A-A-A-A-A- Copolymer: (1) Alternating copolymer: -A-B-A-B-A-B-A-B-A-B-A-B- (2) Random copolymer: -A-A-B-A-B-B-A-B- (3) Block copolymer: -A-A-A-A-A-A-B-B-B-B-B-B- (4) Graft copolymer: -A-A-A-A-A-A-A-A-A-A-A-A- B B-B-B-B-B-B-B- Spring 2004 Representation of polymer types (a) Linear (b) Branched (c) Network (a) Star (b) Comb (c) Ladder (d) Semiladder Spring 2004 Network Polymers (Crosslinked polymers) Network polymers arise when polymer chains are linked together or when polyfunctional instead of difunctional monomers are used. Ex) Vulcanized rubber 1. Excellent dimensional stability Polymer crosslink 2. X-polymers will not melt or flow and cannot be molded. Chains (thermosetting or thermoset ÅÆ thermoplastic) 3. Usually insoluble, only swelling Spring 2004 Polymerization processes (traditional) Traditionally, polymers have been classified into two main groups: 1) addition polymers and 2) condensation polymers (first proposed by Carothers) 1. Polyester from lactone and ω-hydroxycarboxylic acid: 2. Polyamide from lactam and ω-amino acid Spring 2004 3. Polyurethane from diisocyanate and diol 4. Hydrocarbon polymer from ethylene and α,ω-dibromide by the Wurtz reaction Spring 2004 Polymerization processes (recent) In more recent years the emphasis has changed to classifying polymers according to whether the polymerization occurs in a stepwise fashion (step reaction or step growth) or by propagating from a growing chain (chain reaction or chain growth). 1. Step reaction polymerization AB * ABn * Reactive functional group in one molecule AA+ BB Two difunctional monomers * A A B B n * Ex) Polyesterification Å diol + dibasic acid or intermolecularly between hydroxy acid molecules Spring 2004 Carothers’ equation If one assumes that there are No molecules initially and N molecules (total) after a given reaction period, then amount reacted is No-N. The reaction conversion, p, is then given by the expression No − N p = or N = No (1− p) No N 1 o = DP = N 1− p Ex) At 98% conversion, p = 0.98 Æ DP = 50 Spring 2004 2. Chain-reaction polymerization Chain-reaction polymerization involves two distinct kinetic steps, initiation and propagation. Initiation . R . + H2C CH2 RCH2CH2 Propagation . RCH CH CH CH . RCH2CH2 + H2C CH2 2 2 2 2 In both addition and ring-opening polymerization, the reaction propagates at a reactive chain end and continues until a termination reaction renders the chain end inactive (e.g., combination of radicals), or until monomer is completely consumed. Spring 2004 3. Comparison of step-reaction and chain-reaction polymerization Step reaction Chain reaction Growth occurs throughout matrix by reaction Growth occurs by successive addition of monomer between monomers, oligomers, and polymers units to limited number of growing chains DP low to moderate DP can be very high Monomer consumed rapidly while molecular Monomer consumed relatively slowly, but molecular weight increases slowly weight increases rapidly No initiator needed; same reaction mechanism Initiation and propagation mechanisms different throughout No termination step; end groups still reactive Usually chain-terminating step involved Polymerization rate decreases steadily as Polymerization rate increases initially as initiator units functional groups consumed generated; remains relatively constant until monomer depleted Spring 2004 Nomenclatures Vinyl polymers Spring 2004 Nonvinyl polymers Spring 2004 Nonvinyl polymers Spring 2004 Industiral polymers Plastics Commodity plastics Spring 2004 Engineering plastics Spring 2004 Thermosetting plastics Spring 2004 Fibers Synthetic fibers Spring 2004 Rubber (elastomers) Synthetic rubber Spring 2004 Chap 3. Bonding in Polymers Primary Covalent Bond C C C H H δδ_ + O C O H N Hydrogen Bond δ _ H O δ + δ_ Dipole Interaction C N N C δ+ CO Ionic Bond O +1 _ Zn O CO Van der Waals CH2 CH2 Spring 2004 PE γm r Attraction Repulsion Spring 2004 Chap 4. Stereoisomerism Activity (Tacticity) CH3 CH3 Atactic C C C C C C C C C CH3 CH3 CH3 Isotactic C C C C C C C C C CH3 CH3 CH3 CH3 CH3 CH3 Syndiotactic
Recommended publications
  • "But She's an Avowed Communist!" L'affaire Curie at the American Chemical Society, 1953-1955
    ll. t. Ch. 20 ( 33 "BUT SHE'S AN AVOWED COMMUNIST!" L'AFFAIRE CURIE AT THE AMERICAN CHEMICAL SOCIETY, 1953-1955 Mrrt W. tr, Crnll Unvrt Intrdtn On ht hv xptd tht th Arn Chl St (ACS, n rnztn tht ld t b r n fr th dvnnt f htr nd nt n p ltl tt fr t brhp, ld rdl pt n ppltn fr bl lrt n htr. Yt th nt th th Irèn ltCr n . Aftr ntrntn ACS ffl rjtd hr brhp ppltn b f hr pltl rpttn (trnl lnd t th prCnt blf nd tvt f hr hbnd, rdr ltCr, nfrd hr f th dn bt v n rn, nd d nth n f thr tn pbll. Whn nth ltr hr frnd tnd nd pblzd hr rjtn, th b lèbr. h xtnv ntr nd rrpndn rrndn th pd t p bl t ntprr rtn t th d, hndln, nd nfn f th dn. Whn prd t n f th thr ntnt "th hnt" n th Untd Stt n th 40 nd 0, th pbl hrnt f ldn br f th Ar n Atn fr th Advnnt f Sn (AAAS, n n th dffrnt rtn. Whr th AAAS brd f drtr rpndd ttl t th ntnt rd b ltn E. U. Cndn nd Figure. 1 Irene Joliot-Curie (1897-1956). Shown here Krtl Mthr prdnt (, th ldr f th ACS late in life, Joliot-Curie shared the Nobel Prize in rfd t lt Md ltCr vn t br Chemistry with her husband Frederic in 1935. hp. "Affr Cr," t t b lld, l Intensely apolitical in her early life, she became more rvld trtrl tnn thn th ACS btn involved in French women's, socialist, and pro- th prttv ntnt f th br f th rd f Communist movements starting in the late 1930s.
    [Show full text]
  • Contribution to the Historical Development of Macromolecular Chemistry – Exemplified on Cellulose
    CELLULOSE CHEMISTRY AND TECHNOLOGY CONTRIBUTION TO THE HISTORICAL DEVELOPMENT OF MACROMOLECULAR CHEMISTRY – EXEMPLIFIED ON CELLULOSE PETER ZUGENMAIER Institute of Physical Chemistry, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany Dedicated to Professor Elfriede Husemann, on the occasion of her 100th birthday in December 2008. She was an admirable and internationally highly recognized scientist and the first director of the Institute of Macromolecular Chemistry (Hermann-Staudinger-Haus) of the Albert-Ludwigs-Universität Freiburg; the foundation of the institute owing to the eminent scientific success and recognition of the work of Hermann Staudinger, leading to the Nobel Prize in the field of macromolecular chemistry. Received October 20, 2009 The development of the structure determination for cellulose and its derivatives as macromolecules is described from the beginning of the 20th century to the 1940s. The first correct presentation of the constitution of cellulose as a linear chain macromolecule of 1-4 linked β-D-anhydroglucopyranose, with the help of organic chemistry, dates from 1928. The size and shape of cellulose molecules still remained a controversial topic for some time. On the one hand, there were proposals of micelles i.e. aggregates of cyclic mono- or oligoanhydroglucose or micelles of small macromolecules of 30-50 glucose units. On the other hand, cellulose was seen as large macromolecules with more than 3000 glucose units for structures considered in solution as well as in fibres. The final clarification of the cellulose structure as a semi-flexible macromolecule of high molecular weight was extremely hindered by the inadequate interpretation of experimental results. Later, additional experimental and theoretical methods led to a consistent picture of the cellulose structure with high precision.
    [Show full text]
  • William S. Johnson
    William S. Johnson February 24, 1913 - August 19, 1995 William S, Johnson was a highly respected leader among research chemists and educators while, at the same time, he was humble about his accomplishments. His career spanned an explosive period of rapid progress in science and he was at the cutting edge of many of the basic changes that have taken place. His deep respect and love for science led to a career that was characterized by creative, insightful and thorough research and resulted in a body of work on steroid synthesis that is unparalleled for its thorough comprehensive coverage. Bill Johnson did his undergraduate studies at Amherst College, an institution that has spawned a number of chemical leaders. After finishing his doctoral work with Professor Louis Fieser at Harvard University in late 1939 and a brief postdoctoral stint at Harvard with Professor R.P. Linstead, Johnson began his independent academic career at the University of Wisconsin in 1940. The research program that Johnson initiated was directed at the development of methodology for the synthesis of steroids. While the approaches would change over the years, this theme would become the dominant direction for Bill Johnson's research effort over his entire academic career. The "Wisconsin era" was devoted to a classical approach to the total synthesis of the steroid skeleton and resulted in the development of the benzylidene blocking group for the angular methylation of a-decalone type molecules, the use of the Stobbe reaction for the synthesis of the aromatic steroids equilenin and estrone, and the "hydrochrysene approach" to the total synthesis of nonaromatic steroids.
    [Show full text]
  • Books of HIST (MVO) Completed
    1 HIST’S SIXTY YEARS OF SPONSORED PUBLICATIONS: AN EXPANDED 2 BIBLIOGRAPHY 3 Mary Virginia Orna ([email protected]) 4 5 INTRODUCTION 6 For sixty years, the Division of the History of Chemistry (HIST) has sponsored publications 7 of history-related volumes drawn for the most part from symposia that were presented at 8 American Chemical Society (ACS) meetings. The origin of each volume depended upon 9 individuals who organized symposia, or in some cases, proposed book volumes. It has been 10 the practice of the Division to provide some financial support for these ventures; many 11 organizers were able to obtain additional support from various types of grants and 12 contributions. Generally, the editor of the volume was also the organizer of the event. Except 13 for the Archaeological Chemistry volumes, there were no set series or themes over the years, 14 but the volumes naturally fell into the six categories given in the Outline and Overview of 15 this article. 16 Since this paper has as its goal a permanent record of this HIST-initiated activity, 17 each volume will be highlighted with a re-publication of parts of its Preface and if warranted, 18 some additional information on the contents of the volume. Since a large percentage of the 19 volumes’ contents (titles and abstracts of papers) can be found on the ACS website, 20 [www.acs.org/publications], they will not be repeated here but a link to the volume on the 21 ACS website will be provided. However, several volumes were published elsewhere, and 22 even some volumes published by the ACS have no presence on its website.
    [Show full text]
  • Division of Polymer Chemistry (POLY)
    Division of Polymer Chemistry (POLY) Graphical Abstracts Submitted for the 258th ACS National Meeting & Exposition August 25 - 29, 2019 | San Diego, CA Table of Contents [click on a session time (AM/PM/EVE) for link to abstracts] Session SUN MON TUE WED THU AM AM Polymerization-Induced Nanostructural Transitions PM PM Paul Flory's "Statistical Mechanics of Chain Molecules: The 50th AM AM Anniversary of Polymer Chemistry" PM PM AM AM AM Eco-Friendly Polymerization PM PM EVE AM Characterization of Plastics in Aquatic Environments PM PM AM General Topics: New Synthesis & Characterization of Polymers AM PM AM PM EVE Future of Biomacromolecules at a Crossroads of Polymer Science & AM AM EVE Biology PM PM Industrial Innovations in Polymer Science PM AM AM Polymers for Defense Applications PM AM PM EVE Henkel Outstanding Graduate Research in Polymer Chemistry in AM Honor of Jovan Kamcev AM AM Polymeric Materials for Water Purification PM AM PM EVE Young Industrial Polymer Scientist Award in Honor of Jason Roland AM Biomacromolecules/Macromolecules Young Investigator Award PM Herman F. Mark Award in Honor of Nicholas Peppas AM DSM Graduate Student Award AM Overberger International Prize in Honor of Kenneth Wagner PM Note: ACS does not own copyrights to the individual abstracts. For permission, please contact the author(s) of the abstract. POLY 1: High throughput and solution phase TEM for discovery of new pisa reaction manifolds Nathan C. Gianneschi1, [email protected], Mollie A. Touve1, Adrian Figg1, Daniel Wright1, Chiwoo Park2, Joshua Cantlon3, Brent S. Sumerlin4. (1) Chemistry, Northwestern University, Evanston, Illinois, United States (2) Florida State University, Tallahassee, Florida, United States (3) SCIENION, San Francisco, California, United States (4) Department of Chemistry, University of Florida, Gainesville, Florida, United States We describe the development of a high-throughput, automated method for conducting TEM characterization of materials, to remove this bottleneck from the discovery process.
    [Show full text]
  • 2014 Technical Strategic Plan
    AIR FORCE OFFICE OF SCIENTIFIC RESEARCH 2014 TECHNICAL STRATEGIC PLAN 1 Message from the Director Dr. Patrick Carrick Acting Director, Air Force Office of Scientific Research Our vision is bold: The U.S. Air Force dominates I am pleased to present the Air Force Office of Scientific Research (AFOSR) Technical Strategic Plan. AFOSR is air, space, and cyberspace the basic research component of the Air Force Research DISCOVER through revolutionary Laboratory. For over 60 years, AFOSR has directed the basic research. Air Force’s investments in basic research. AFOSR was an early investor in the scientific research that directly enabled capabilities critical to the technology superiority of today’s Our mission is challenging: U.S. Air Force, such as stealth, GPS, and laser-guided We discover, shape, and weapons. This plan describes our strategy for ensuring that champion basic science we continue to impact the Air Force of the future. that profoundly impacts the Our basic research investment attracts highly creative SHAPE future Air Force. scientists and engineers to work on Air Force challenges. AFOSR builds productive, enduring relationships with scientists and engineers who look beyond the limits of today’s technology to enable revolutionary Air Force capabilities. Over its history, AFOSR has supported more than 70 researchers who went on to become Nobel Laureates. Three enduring core strategic Furthermore, AFOSR’s basic research investment educates new scientists and engineers in goals ensure that AFOSR stays fields critical to the Air Force. These scientists and engineers contribute not only to our Nation’s committed to the long-term continued security, but also to its economic vitality and technological preeminence.
    [Show full text]
  • Mosher Award Recipient Plastic Solar Cell with Engineered Interfaces • Chair’S Message Dr
    Newsletter December 2010 Santa Clara Valley Section American Chemical Society Volume 32 No. 12 DECEMBER 2010 NEWSLETTER TOPICS Reminder January Dinner Meeting Reminder • January Dinner Meeting Reminder: Mosher Award Recipient Mosher Award Recipient Plastic Solar Cell with Engineered Interfaces • Chair’s Message Dr. Tobin J. Marks • Nobel Laureates Speak at the 25th Annual William S. Johnson Abstract to solar power conversion efficien- Symposium The ability to fabricate molec- cies as high as 5.6% - 7.3%, along • Teach the Teachers Returns ularly-tailored interfaces with nano- with far greater cell durability. scale precision can selectively modu- Biography • Donate to the American Chemical Society or any other Charitable late charge transport across hard The 2010 Harry and Carol Organization matter-soft matter interfaces, facili- Mosher award recipient is Dr. tating transport of the “correct Tobin J. Marks. Dr. Marks is the • Welcome to the Santa Clara Valley charges” while blocking transport of Vladimir N. Ipatieff Professor of Section of ACS the “incorrect charges.” This interfacial tailor- Chemistry and Professor of Materials Science • New Members List for November ing can also control defect densities at such and Engineering at Northwestern University. • Calling all Stanford Chemistry and interfaces and stabilize them with respect to continued on next page Chemical Engineering Alumni physical/thermal decohesion. In this lecture, • National Chemistry Week 2010 -- It’s challenges and opportunities are illustrated for a Wrap! three specific and related areas of research: 1) January • How to Grow a Borax Crystal charge transport across hard matter-soft mat- Snowflake ter interfaces in organic electroluminescent Dinner Meeting • Cabrillo College Instructor Wins 2010 devices, 2) charge transport across hard mat- Date: Thursday, January 20, 2011 Teacher-Scholar Award ter-soft matter interfaces in organic photovol- Time: 6:00 Social Hour • Highlights from the November 15th taic cells, 3) charge transport to unconven- 7:00 Dinner Dinner Meeting tional electrodes.
    [Show full text]
  • Special Collections of the University of Miami Libraries ASM0466 Kursunoglu, Behram Papers Container List
    Special Collections of the University of Miami Libraries ASM0466 Kursunoglu, Behram Papers Container List Box Title or No. Description 1 Papers and Bound Periodicals 1967-1978 2 Videocassettes 3 Videocassettes 4 Videocassettes 5 Videocassettes 6 Videocassettes 7 Videocassettes 8 Audiocassettes 9 Documents pertaining to visiting professors A-E 10 Documents pertaining to visiting professors F-On 11 Documents pertaining to visiting professors Op-Sn 12 Documents pertaining to visiting professors St-Z The following is a list of visiting professors that are represented in the collection: * = Nobel Laureate The numbers after the names signify the number of files. *Nikolai Basov, Russian Academy of Sciences, Lebedev Institute *Hans A. Bethe, Cornell University Gregory Breit, Yale University Nikolai Bogolubov, Soviet Academy of Sciences, Moscow University * Walter H. Brattain, Columbia University Special Collections of the University of Miami Libraries ASM0466 Kursunoglu, Behram Papers Container List Box Title or No. Description Jocelyn Bell Burnell, Cambridge University H.B.G. Casimir, Phillips, Eindhoven, Netherlands Britton Chance, University of Pennsylvania *Leon Cooper, Brown University Jean Couture, Former Sec. of Energy for France *Francis H.C. Crick, Salk Institute Richard Dalitz, Oxford University *Hans G. Dehmelt, University of Washington *Max Delbruck, of California Tech. *P.A.M. Dirac (16), Cambridge University Freeman Dyson (2), Institute For Advanced Studies, Princeton *John C. Eccles, University of Buffalo *Gerald Edelman, Rockefeller University, NY *Manfred Eigen, Max Planck Institute Göttingen *Albert . Einstein (2), Institute For Advance Studies, Princeton *Richard Feynman, of California Tech. *Paul Flory, Stanford University *Murray Gell-Mann, of CaliforniaTech. *Dona1d Glaser, Berkeley, UniversityCa1. Thomas Gold, Cornell University Special Collections of the University of Miami Libraries ASM0466 Kursunoglu, Behram Papers Container List Box Title or No.
    [Show full text]
  • Microanalysis of Polymer Chain Diffusion in Heat Seals Russell Cooper Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 12-2014 Microanalysis of Polymer Chain Diffusion in Heat Seals Russell Cooper Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Engineering Science and Materials Commons, Materials Science and Engineering Commons, and the Polymer Science Commons Recommended Citation Cooper, Russell, "Microanalysis of Polymer Chain Diffusion in Heat Seals" (2014). All Theses. 2039. https://tigerprints.clemson.edu/all_theses/2039 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MICROANALYSIS OF POLYMER CHAIN DIFFUSION IN HEAT SEALS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Packaging Science by Russell Timms Cooper December 2014 Accepted by: Dr. Duncan Darby, Committee Chair Dr. Robert Kimmel Dr. Patrick Gerard ABSTRACT Heat sealing is an integral method for the closure and protection of packaging. Previous work has shown that seal strength is developed by the interdiffusion of polymer chains within heat seals. Heat seals were made between two dissimilar materials. Poly(ethylene-co-acrylic acid) (EAA) was heat sealed to ionomer. Diffusion within the EAA-ionomer heat seals was estimated. The diffusion estimates were then related to resulting seal strength in the EAA-ionomer sealant system. Heated tooling sealing was utilized to make heat seals at 40 psi (275.79 kPa), 0.5 seconds, and a range of temperatures between 180˚F (82.22˚C) and 300˚F (148.89˚C).
    [Show full text]
  • Universiv Micrdrilms International 300 N
    INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
    [Show full text]
  • Historical Group NEWSLETTER and SUMMARY of PAPERS
    Historical Group NEWSLETTER and SUMMARY OF PAPERS No. 76 Summer 2019 Registered Charity No. 207890 COMMITTEE Chairman: Dr Peter J T Morris Dr Christopher J Cooksey (Watford, 5 Helford Way, Upminster, Essex RM14 1RJ Hertfordshire) [e-mail: [email protected]] Prof Alan T Dronsfield (Swanwick) Secretary: Prof. John W Nicholson Dr John A Hudson (Cockermouth) 52 Buckingham Road, Hampton, Middlesex, Prof Frank James (Royal Institution) TW12 3JG [e-mail: [email protected]] Dr Michael Jewess (Harwell, Oxon) Membership Prof Bill P Griffith Dr Fred Parrett (Bromley, London) Secretary: Department of Chemistry, Imperial College, Prof Henry Rzepa (Imperial College) London, SW7 2AZ [e-mail: [email protected]] Treasurer: Prof Richard Buscall Exeter, Devon [e-mail: [email protected]] Newsletter Dr Anna Simmons Editor Epsom Lodge, La Grande Route de St Jean, St John, Jersey, JE3 4FL [e-mail: [email protected]] Newsletter Dr Gerry P Moss Production: School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS [e-mail: [email protected]] https://www.qmul.ac.uk/sbcs/rschg/ http://www.rsc.org/historical/ 1 Contents From the Editor (Anna Simmons) 2 RSC HISTORICAL GROUP JOINT AUTUMN MEETING 3 William Crookes (1832-1919) 3 RSC HISTORICAL GROUP NEWS 4 Secretary’s Report for 2018 (John Nicholson) 4 MEMBERS’ PUBLICATIONS 4 PUBLICATIONS OF INTEREST 4 NEWS FROM CATALYST (Alan Dronsfield) 5 FORTHCOMING EXHIBITIONS 6 SOCIETY NEWS 6 OTHER NEWS 6 SHORT ESSAYS 7 How Group VIII Elements Posed a Problem for Mendeleev (Bill Griffith) 7 Norium, Mnemonics and Mackay (William.
    [Show full text]
  • Advances in Polymer Science
    262 Advances in Polymer Science Editorial Board: A. Abe, Tokyo, Japan A.-C. Albertsson, Stockholm, Sweden G.W. Coates, Ithaca, NY, USA J. Genzer, Raleigh, NC, USA S. Kobayashi, Kyoto, Japan K.-S. Lee, Daejeon, South Korea L. Leibler, Paris, France T.E. Long, Blacksburg, VA, USA M. Mo¨ller, Aachen, Germany O. Okay, Istanbul, Turkey B.Z. Tang, Hong Kong, China E.M. Terentjev, Cambridge, UK M.J. Vicent, Valencia, Spain B. Voit, Dresden, Germany U. Wiesner, Ithaca, NY, USA X. Zhang, Beijing, China For further volumes: http://www.springer.com/series/12 Aims and Scope The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputa- tion in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important refer- ences for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
    [Show full text]