Advances in Polymer Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2007 PMSE Fellow Ceremony
DIVISION OF POLYMERIC MATERIALS: SCIENCE & ENGINEERING 2007 PMSE Fellow Ceremony The American Chemical Society Division of Polymeric Materials: Science and Engineering (PMSE) has just completed its process to select a new class of Fellows for 2007, and the following people have been chosen: • James Crivello • Mohamed El-Aasser • James Stoffer • Wen-Li Wu They will be inducted as the eighth class of PMSE Fellows during the PMSE/POLY Awards Reception at the Chicago ACS National Meeting on Monday, March 26, 2007. PMSE is pleased to welcome this distinguished group of polymer scientists and engineers to the ranks of fellows. A short description of their work up to the point of the induction as a PMSE Fellow is on the following pages. http://www.pmsedivision.org DIVISION OF POLYMERIC MATERIALS: SCIENCE & ENGINEERING 2007 PMSE Fellow Induction Biographies 2007 PMSE Fellow James Crivello Rensselaer Polytechnic Institute Prof. James Crivello received his B.S. in chemistry from Aquinas College in Grand Rapids, Michigan in 1962 and his Ph.D. in organic chemistry from the University of Notre Dame in 1966. He joined the General Electric Corporate Research and Development Center in 1966 and was for several years a research project manger. His fields of activity include: organic nitrations, oxidations, and arylations, polyimides, silicones, and new photo- and thermal initiators for cationic and free radical polymerizations. In 1980, he was elected a Coolidge Fellow by the staff at GE Corporate Research and Development and spent the 1986-87 year as a visiting scientist at the University of Mainz with Prof. Helmut Ringsdorf in the Federal Republic of Germany. -
Liste Des Lauréats Français Du Prix Gay-Lussac Humboldt
Liste des lauréats français du prix Gay-Lussac Humboldt >Pierre AGOSTINI (2003), Physique atomique et moléculaire, CEA* Saclay > Ohio State University Josef DEUTSCHER (2005), Microbiologie, Institut National de la Recherche Agronomique - Jacques F. ARVIEUX (1994), Physique nucléaire, Université Paris 11 CNRS, Grignon Alain ASPECT (1999), Physique, Institut d’optique, Université Paris 11 – CNRS Georges DIDI-HUBERMAN (2006), Histoire de l’art, Ecole des Hautes Etudes en Sciences Didier ASTRUC (1988), Chimie, Université Bordeaux 1 Sociales Monique AUMAILLEY (1991), Biochimie cellulaire, Université Claude Bernard - Lyon 1 > Université Pierre-Henri DIXNEUF (1989), Chimie, Université Rennes 1 de Cologne Abdelhak DJOUADI (2007), Physique des particules, Université Paris 11 Claude BARDOS (1993), Mathématiques, Université Denis Diderot - Paris 7 Jean-François DUBREMETZ (1996), Biologie, Institut national de la santé et de la recherche Jean-Marie BASSET (1987), Chimie inorganique, CNRS**, Laboratoire de chimie médicale, Villeneuve d’Ascq CNRS - Université Montpellier 2 organométallique de surface, Lyon Magda ERICSON (1992), Physique nucléaire, Université Claude Bernard - Lyon I Henri C. BENOIT (1986), Chimie macromoléculaire, Université Louis Pasteur - Strasbourg 1 Gérard FEREY (2004), Chimie, Université de Versailles - Saint-Quentin Alain BENSOUSSAN (1983), Informatique, Institut national de recherche en informatique Jean-Marie FLAUD (1998), Chimie physique, Université Paris 11 et en automatique > Centre national d’études spatiales Christos FLYTZANIS -
Ivan Julian Dmochowski, Ph.D
Ivan Julian Dmochowski, Ph.D. Department of Chemistry, University of Pennsylvania 231 South 34 th Street, Philadelphia, PA 19104-6323 P: 215-898-6459; Email: [email protected] URL: http://dmochowskigroup.chem.upenn.edu/index.html Academic Appointments Professor of Chemistry, University of Pennsylvania, July, 2015 – Present Undergraduate Chair of Chemistry, University of Pennsylvania, Jan, 2015 – Present Associate Professor of Chemistry, University of Pennsylvania, 2010 – 2015 Assistant Professor of Chemistry, University of Pennsylvania, 2003 – 2010 Education California Institute of Technology, Pasadena, CA Helen Hay Whitney Postdoctoral Scholar in Biophysics, Sept. 2000 – Dec. 2002 California Institute of Technology, Pasadena, CA Ph.D. in Chemistry, May 2000, 1995-00 Johannes Gutenberg Universität, Mainz, Germany Research Fellow in Chemistry, 1994-95 Harvard College, Cambridge, MA A.B. in Chemistry, Magna cum Laude, 1990-94 Selected Honors 2016 Crano Award, Akron Section, American Chemical Society 2012 Awardee, McKnight Technological Innovations in Neuroscience 2011 Awardee, McGroddy Frontiers in Science, St. Joseph’s Univ. 2010 Invitee, National Academies Keck Futures Initiative Imaging Meeting 2007 Camille and Henry Dreyfus Teacher-Scholar Award 2005 NSF CAREER Award 2003 Camille and Henry Dreyfus New Faculty Award 2000 Herbert Newby McCoy Award, Caltech Chemistry Department 1990 United States Presidential Scholar Fellowships 2001-02 Helen Hay Whitney Postdoctoral Fellow 1999-00 N.I.H. Bioorganic/Bioinorganic Training Grant 1996-99 N.I.H. Biotechnology Training Grant Peer-Reviewed Publications 1 1. J.A. Rego, S. Kumar, I.J. Dmochowski, H. Ringsdorf, Synthesis of novel mixed tail triphenylene discotic liquid crystals - The search for higher order . Chem. Comm. (9) 1031- 1032, 1996. -
Dendronized Poly(2-Oxazoline) Displays Within Only Five Monomer Repeat Units Liquid Quasicrystal, A15 and Σ Frank−Kasper Phases † † ⊥ † † ‡ § Marian N
Communication Cite This: J. Am. Chem. Soc. 2018, 140, 16941−16947 pubs.acs.org/JACS Dendronized Poly(2-oxazoline) Displays within only Five Monomer Repeat Units Liquid Quasicrystal, A15 and σ Frank−Kasper Phases † † ⊥ † † ‡ § Marian N. Holerca, Dipankar Sahoo, , Benjamin E. Partridge, Mihai Peterca, , Xiangbing Zeng, § ∥ † Goran Ungar, , and Virgil Percec*, † Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States ‡ Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, United States § Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom ∥ State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China *S Supporting Information discovered for self-assembling dendrons a few years later.2f ABSTRACT: Liquid quasicrystals (LQC) have been Subsequently, these three periodic and quasiperiodic arrays,10 discovered in self-assembling benzyl ether, biphenylmeth- and additional Frank−Kasper phases including the C14 and C15 yl ether, phenylpropyl ether, biphenylpropyl ether and Laves phases,11 have been transplanted to other types of soft some of their hybrid dendrons and subsequently in block matter12,13 including block copolymers,11b,14 lyotropic surfac- copolymers, surfactants and other assemblies. These tants,15 lipids and glycolipids,16 colloidal nanocrystals,17 and quasiperiodic arrays, which lack long-range translational molecules based on silsesquioxane cages.18 Frank−Kasper periodicity, are approximated by two Frank−Kasper phases and quasicrystals generated from soft matter have been periodic arrays, Pm3̅n cubic (Frank−Kasper A15) and subjected to various theoretical investigations that have − σ P42/mnm tetragonal (Frank Kasper ), which have been examined the energetic and entropic basis for their forma- discovered in complex soft matter in the same order and tion.9c,10,19 compounds. -
Polymer Therapeutics: Concepts and Applications Rainer Haag* and Felix Kratz*
Reviews R. Haag and F. Kratz DOI: 10.1002/anie.200502113 Medicinal Chemistry Polymer Therapeutics: Concepts and Applications Rainer Haag* and Felix Kratz* Keywords: Dedicated to Professor Helmut Ringsdorf cancer therapy · dendrimers · functional polymers · gene transfection · multivalent interactions Angewandte Chemie 1198 www.angewandte.org 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2006, 45, 1198 – 1215 Angewandte Polymer Therapeutics Chemie Polymer therapeutics encompass polymer–protein conjugates, drug– From the Contents polymer conjugates, and supramolecular drug-delivery systems. Numerous polymer–protein conjugates with improved stability and 1. Introduction 1199 pharmacokinetic properties have been developed, for example, by 2. Macromolecules as Drug- anchoring enzymes or biologically relevant proteins to polyethylene Delivery Systems: Biological glycol components (PEGylation). Several polymer–protein conjugates Rationale 1201 have received market approval, for example the PEGylated form of adenosine deaminase. Coupling low-molecular-weight anticancer 3. Approaches and Applications: “In Vivo Veritas” 1203 drugs to high-molecular-weight polymers through a cleavable linker is an effective method for improving the therapeutic index of clinically 4. Summary and Conclusions 1213 established agents, and the first candidates have been evaluated in clinical trials, including, N-(2-hydroxypropyl)methacrylamide conju- gates of doxorubicin, camptothecin, paclitaxel, and platinum(ii) complexes. Another class of polymer therapeutics are drug-delivery systems based on well-defined multivalent and dendritic polymers. is covalently linked to polymers such These include polyanionic polymers for the inhibition of virus as proteins, polysaccharides, or syn- thetic polymers. attachment, polycationic complexes with DNA or RNA (polyplexes), The coupling of drugs to macro- and dendritic core–shell architectures for the encapsulation of drugs. -
Contribution to the Historical Development of Macromolecular Chemistry – Exemplified on Cellulose
CELLULOSE CHEMISTRY AND TECHNOLOGY CONTRIBUTION TO THE HISTORICAL DEVELOPMENT OF MACROMOLECULAR CHEMISTRY – EXEMPLIFIED ON CELLULOSE PETER ZUGENMAIER Institute of Physical Chemistry, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany Dedicated to Professor Elfriede Husemann, on the occasion of her 100th birthday in December 2008. She was an admirable and internationally highly recognized scientist and the first director of the Institute of Macromolecular Chemistry (Hermann-Staudinger-Haus) of the Albert-Ludwigs-Universität Freiburg; the foundation of the institute owing to the eminent scientific success and recognition of the work of Hermann Staudinger, leading to the Nobel Prize in the field of macromolecular chemistry. Received October 20, 2009 The development of the structure determination for cellulose and its derivatives as macromolecules is described from the beginning of the 20th century to the 1940s. The first correct presentation of the constitution of cellulose as a linear chain macromolecule of 1-4 linked β-D-anhydroglucopyranose, with the help of organic chemistry, dates from 1928. The size and shape of cellulose molecules still remained a controversial topic for some time. On the one hand, there were proposals of micelles i.e. aggregates of cyclic mono- or oligoanhydroglucose or micelles of small macromolecules of 30-50 glucose units. On the other hand, cellulose was seen as large macromolecules with more than 3000 glucose units for structures considered in solution as well as in fibres. The final clarification of the cellulose structure as a semi-flexible macromolecule of high molecular weight was extremely hindered by the inadequate interpretation of experimental results. Later, additional experimental and theoretical methods led to a consistent picture of the cellulose structure with high precision. -
Construction and Characterization of Hybrid
CONSTRUCTION AND CHARACTERIZATION OF HYBRID NANOPARTICLES VIA BLOCK COPOLYMER BLENDS AND KINETIC CONTROL OF SOLUTION ASSEMBLY by Yingchao Chen A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Material Science and Engineering 2015 Spring © 2015 Yingchao Chen All Rights Reserved ProQuest Number: 3730204 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 3730204 Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 CONSTRUCTION AND CHARACTERIZATION OF HYBRID NANOPARTICLES VIA BLOCK COPOLYMER BLENDS AND KINETIC CONTROL OF SOLUTION ASSEMBLY by Yingchao Chen Approved: __________________________________________________________ Darrin J. Pochan, Ph.D. Chair of the Department of Material Science and Engineering Approved: __________________________________________________________ Babatunde A. Ogunnaike, Ph.D. Dean of the College of Engineering Approved: __________________________________________________________ James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. -
Ivan Julian Dmochowski, Ph.D
Ivan Julian Dmochowski, Ph.D. Department of Chemistry, University of Pennsylvania 231 South 34 th Street, Philadelphia, PA 19104-6323 URL: http://www.sas.upenn.edu/~ivandmo/ Phone: 215-898-6459; Fax: 215-898-2037 Email: [email protected] Academic Appointments Associate Professor of Chemistry, University of Pennsylvania, 2010 – Present Assistant Professor of Chemistry, University of Pennsylvania, 2003 – 2009 Education California Institute of Technology, Pasadena, CA Helen Hay Whitney Postdoctoral Scholar in Biophysics, Sept. 2000 – Dec. 2002 California Institute of Technology, Pasadena, CA Ph.D. in Chemistry, May 2000, 1995-00 Johannes Gutenberg Universität, Mainz, Germany Research Fellow in Chemistry, 1994-95 Harvard College, Cambridge, MA A.B. in Chemistry, Magna cum Laude, 1990-94 Selected Honors 2012 Awardee, McKnight Technological Innovations in Neuroscience 2011 Awardee, McGroddy Frontiers in Science, St. Joseph’s Univ. 2010 Invitee, National Academies Keck Futures Initiative Imaging Meeting 2007 Camille and Henry Dreyfus Teacher-Scholar Award 2005 NSF CAREER Award 2003 Camille and Henry Dreyfus New Faculty Award 2000 Herbert Newby McCoy Award, Caltech Chemistry Department 1990 United States Presidential Scholar Fellowships 2001-02 Helen Hay Whitney Postdoctoral Fellow 1999-00 N.I.H. Bioorganic/Bioinorganic Training Grant 1996-99 N.I.H. Biotechnology Training Grant Peer-Reviewed Publications: h-index = 21 (March, 2013) 1. J.A. Rego, S. Kumar, I.J. Dmochowski, H. Ringsdorf, Synthesis of novel mixed tail triphenylene discotic liquid crystals - The search for higher order. Chem. Comm. (9) 1031- 1032, 1996. 1 2. J.J. Wilker, I.J. Dmochowski, J.H. Dawson, J.R. Winkler, H.B. Gray, Substrates for rapid delivery of electrons and holes to buried active sites in proteins . -
Helmut Ringsdorf
Helmut Ringsdorf Department of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, Phone +49 (0)6131 3922402, Fax +49 (0)6131 3923145, e-mail: [email protected] Helmut Ringsdorf was born in Gießen/Germany in 1929. He grew up in the Rhine Valley, studied Chemistry, Politics and Geology at the Universities in Frankfurt, Darmstadt, and Freiburg. In 1955 he entered Hermann Staudingers Lab as his very last student. After his Ph.D. in Freiburg in 1958, he was a Postdoctoral Fellow with C.G. Overberger and Herman F. Mark at the Polytechnic Institute of Brooklyn (1960-1962). He taught Polymer Science and Organic Chemistry at the Universities Marburg (1962-1970) and Mainz (1971-1994). He still has the good fortune to be with young scientists as Adjunct Professor at the School of Pharmacy, University Cardiff/U.K. and at the Jilin University, Changchun/China. His awards include the H. Staudinger (Germany) as well as the H. Mark (Austria) Award, Polymer Science Award (USA). Honorary doctors from four Universities in four countries, the Friendship Award of the Chinese Government, member of Academies in Germany (Mainz, Düsseldorf), Russia (Moscow), and Italy (Catania). Based on the concept of molecular engineering of functional polymers and molecular assemblies the research interests of the group in Mainz were centred around the attempt to bridge the gap between Materials Science and Life Science as summarized in the following figure. Main research themes: Molecular architecture of functional liquid crystalline polymers, polymerization in oriented systems (micelles, multicompartment micelles, liposomes, monolayers, multilayers), properties of functional supramolecular systems, attempts to mimic biomembrane processes (enzyme functions, protein docking) and polymer therapeutics, e.g. -
LIQUID CRYSTAL NEWSLIQUID NEWS $(%(&' "!!#$(%(&'"!!# GW Gray Medal for 2006 Professor Heino Finkelmann
LIQUID CRYSTAL NEWSLIQUID NEWS $(%(&' "!!#$(%(&'"!!# GW Gray Medal for 2006 Professor Heino Finkelmann as originally intended in Krakow. Since these days, we have met very frequently, for example, when I was privileged to lecture in Professor Finkelmann’s Institute and at many other scientific meetings not least of which was the Twelfth International Liquid Crystal Conference held in 1988 in Freiburg itself and chaired and organised by Professor Finkelmann. My wife and I well remember enjoying a glass of wine with Heino and his wife and two boys at their home after the closing ceremonies were complete and people like conference chairmen are at last allowed to relax. I have put the material in the above paragraph early in this article about Heino Finkelmann, because I wanted to stress that his very great contributions to the subject of liquid crystals have been not only in the area of scientific research, but also, by his readiness to travel far and wide to Heino Finkelmann was born in Gronau in Lower give lectures, by spreading the word on the subject, by Saxony in 1945. After school, his studies at the Scientific serving on the editorial boards of relevant journals, by Technical Academy at Isny were in the field of chemical organising meetings and conferences such as the 12th engineering and on the way to qualifying in 1969, he spent ILCC, by serving as he has twice done on the Board of time with Unilever Research and with British Petroleum in Directors of the International Liquid Crystal Society and by Hamburg. He then studied Chemistry at the Technical acting as Chairman of the German Liquid Crystal Society University of Berlin, and it was here that he first began as he did for many years. -
Marc Antoniu Ilies
Curriculum Vitae MARC A. ILIES, Ph. D. ____________________________________________________________________________________________________________________ Office Address: Home address: Temple University School of Pharmacy 2616 Parrish Street Department of Pharmaceutical Sciences Philadelphia, PA-19130 3307 North Broad Street, Suite 517 Philadelphia, PA-19140 Phone: 215-707-1749 ; Fax: 215-707-5620 Email: [email protected] PRESENT POSITION: Professor Director of the NMR facilities of TU School of Pharmacy Member of the Moulder Center for Drug Discovery Research, TUSP Collaborating member of Temple Fox Chase Cancer Center Molecular Therapeutics Program and Imaging Consortium EDUCATION NRSA/NIH Postdoctoral fellow, University of Pennsylvania Health System, Department of Pharmacology (2006-2007); Mentors: Professors Vladimir Muzykantov and Ian Blair Postdoctoral fellow, University of Pennsylvania, Department of Chemistry (2004- 2006); Mentor: Professor Virgil Percec Welch postdoctoral fellow, Texas A&M University, Galveston, TX, and Visiting scientist, University of Texas Medical Branch at Galveston, TX; (2001-2004); Mentors: Professors Alexandru T. Balaban, William A. Seitz, and E. Brad Thompson Ph. D., Chemistry, University “Politehnica” Bucharest, Romania, 2001 Thesis title: “Novel pyrylium and pyridinium salts with biological activity” Adviser: Professor Alexandru T. Balaban F. Rom. Acad. Sci. (presently Professor at Texas A&M University at Galveston, Galveston, TX) M. S., Chemistry, University of Bucharest, Bucharest, Romania, 1996 -
Curriculum Vitae MARC A
Curriculum Vitae MARC A. ILIES, Ph. D. ____________________________________________________________________________________________________________________ Office Address: Home address: Temple University School of Pharmacy 2616 Parrish Street Department of Pharmaceutical Sciences Philadelphia, PA-19130 3307 North Broad Street, Suite 517 Philadelphia, PA-19140 Phone: 215-707-1749 ; Fax: 215-707-5620 Email: [email protected] PRESENT POSITION: Associate Professor Director of the NMR facilities of TU School of Pharmacy Member of the Moulder Center for Drug Discovery Research Member of the Temple Materials Institute Associate Member of the Center for Targeted Therapeutics and Translational Nanomedicine of the University of Pennsylvania Member of Temple Fox Chase Cancer Center Imaging Consortium EDUCATION NRSA/NIH Postdoctoral fellow, University of Pennsylvania Health System, Department of Pharmacology (2006-2007); Mentors: Professors Vladimir Muzykantov and Ian Blair Postdoctoral fellow, University of Pennsylvania, Department of Chemistry (2004-2006); Mentor: Professor Virgil Percec Welch postdoctoral fellow, Texas A&M University, Galveston, TX, and Visiting scientist, University of Texas Medical Branch at Galveston, TX; (2001-2004); Mentors: Professors Alexandru T. Balaban, William A. Seitz, and E. Brad Thompson Ph. D., Chemistry, University “Politehnica” Bucharest, Romania, 2001 Thesis title: “Novel pyrylium and pyridinium salts with biological activity” Adviser: Professor Alexandru T. Balaban F. Rom. Acad.