Advances in Polymer Science

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Polymer Science 262 Advances in Polymer Science Editorial Board: A. Abe, Tokyo, Japan A.-C. Albertsson, Stockholm, Sweden G.W. Coates, Ithaca, NY, USA J. Genzer, Raleigh, NC, USA S. Kobayashi, Kyoto, Japan K.-S. Lee, Daejeon, South Korea L. Leibler, Paris, France T.E. Long, Blacksburg, VA, USA M. Mo¨ller, Aachen, Germany O. Okay, Istanbul, Turkey B.Z. Tang, Hong Kong, China E.M. Terentjev, Cambridge, UK M.J. Vicent, Valencia, Spain B. Voit, Dresden, Germany U. Wiesner, Ithaca, NY, USA X. Zhang, Beijing, China For further volumes: http://www.springer.com/series/12 Aims and Scope The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputa- tion in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important refer- ences for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in poly- mer and biopolymer science, at universities or in industry, graduate students. Special offer: For all clients with a standing order we offer the electronic form of Advances in Polymer Science free of charge. Virgil Percec Editor Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II With contributions by A. Abe Á K. Albrecht Á A.-K. Appel Á S. Bode Á D. Crespy Á T.J. Deming Á R. DeVane Á C. Dingels Á G. Fiorin Á F. Freire Á H. Frey Á N. Gangloff Á J. Groll Á D.M. Haddleton Á M.D. Hager Á K. Hur Á Z. Jia Á B. Kerscher Á M.L. Klein Á S. Kobayashi Á K. Landfester Á R. Luxenhofer Á M. Mo¨ller Á M.J. Monteiro Á R. Mu¨lhaupt Á K. Mu¨llen Á Y. Ohta Á E. Quin˜oa Á R. Riguera Á J.G. Rudick Á B. Rybtchinski Á B. Sandmann Á K. Schadt Á U.S. Schubert Á F. Schu¨ler Á J.M. Seco Á W. Shinoda Á S. Singh Á R.H. Staff Á F. Topuz Á U. Wiesner Á T. Yokozawa Á Q. Zhang Editor Virgil Percec Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania USA ISSN 0065-3195 ISSN 1436-5030 (electronic) ISBN 978-3-319-03718-9 ISBN 978-3-319-03719-6 (eBook) DOI 10.1007/978-3-319-03719-6 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2013957881 # Springer International Publishing Switzerland 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword: Memories of Hermann Staudinger by one of his grandchildren I am delighted to contribute to this special issue of Advances in Polymer Science a few memories of my grandfather Hermann Staudinger, whom I knew for almost 20 years until his death in 1965. With his first wife, Dorothea Staudinger-Fo¨rster, he had four children: Eva, born 1907 in Strasbourg; my mother Hilde, born 1910 in Karlsruhe; Hansju¨rgen, born 1914 in Zu¨rich; and Klara, born 1916 in Zu¨rich. His daughters and his son married and had ten children that I still regularly see. Because my father, Theodore Ru¨egg, died soon after my birth in 1946, and since I was his only child, my mother arranged that I would often see her father and her brother Hansju¨rgen, who became my godfather. I thus had the unique opportunity of often seeing and talking to both of them and of being partly educated by them. These get-togethers started right after the end of World War II and took place either in Zu¨rich, where we lived, in Basel, or in nearby Freiburg (Germany). During that time, my mother often travelled north loaded with precious food such as butter, bread, sugar, meat, and coffee beans, the essential ingredient for preparing the preferred morning drink of my grandfather. He would also visit us in Zurich several times a year. As a result of the hard times he had endured during the Nazi regime, he had aged considerably and lost weight (Fig. 1). In the early 1950s, Hermann Staudinger visited his three daughters and their children in the Zu¨rich area at least twice a year, which would often be the occasion for a family reunion. On his 70th birthday, most family members travelled to Freiburg, as can be seen in Fig. 2. The get-togethers with him, his second wife Magda, and her parents Irmgard and Oskar Woit took place in their house in Freiburg. These visits impressed and influenced me greatly. My mother and I were picked up at the Freiburg train station by a chauffeur-driven Borgward car, which brought us to the impressive house at Lugostrasse 14, where the Staudingers welcomed us (Fig. 3). My grandfather often took me on walks through their large garden surrounding the house to show me the unique collection of plants and flowers. I have been told that he knew all of the more than 250 plants growing there, as well as their Latin names. He checked them daily and took care of them with the help of a gardener. v vi Foreword: Memories of Hermann Staudinger by one of his grandchildren Fig. 1 Hermann Staudinger with grandson Urs in Zurich in 1948 He originally wanted to become a botanist, but his high school teacher advised him to first study chemistry, the basis of plant and animal life, which we now call the “life sciences.” I remember that at Easter time, when the daffodils and tulips surrounding a small pond in the upper part of the garden were in bloom and smelling wonderfully, we strolled around the garden and I listened to my grand- father’s stories. These were inspired by Nature, most of them dealing with wild animals of the jungles and savannas: lions, giraffes, elephants, etc. They talked to each other and to the people around them, like in the stories of Doctor Doolittle. Foreword: Memories of Hermann Staudinger by one of his grandchildren vii Fig. 2 Family reunion in Freiburg on the 70th birthday of Hermann Staudinger on 23rd March 1951. From left to right: Hilde Ru¨egg-Staudinger, Dora Lezzi (at the back), Luzia Kaufmann (in front), Hermann Staudinger, Urs Ru¨egg (between his knees), Peter Kaufmann (at the back), Eva Lezzi-Staudinger, Hansju¨rgen Staudinger (at the back), Klara Kaufmann-Staudinger, Gabriele Staudinger-Schwarz, statue of Franz Staudinger (father of Hermann). Not in the picture: Magda Staudinger; Max, Ju¨rg and Markus Lezzi; Monika, Reinhard and Peter Staudinger; Gustav and Ulrich Kaufmann (Courtesy of Markus Lezzi) A follow-up came in the mornings, when I was invited to join my grandfather and Magda: He then told me stories by Wilhelm Hauff, for example the one about “Dwarf Nose,” in which a community is described whose only purpose in life is to work, buy and sell, and earn money. Later on, my grandfather’s arms and legs became parts of animals, some of them as dangerous as crocodile jaws; there was the frightening roar of lions that made me run away.
Recommended publications
  • 2007 PMSE Fellow Ceremony
    DIVISION OF POLYMERIC MATERIALS: SCIENCE & ENGINEERING 2007 PMSE Fellow Ceremony The American Chemical Society Division of Polymeric Materials: Science and Engineering (PMSE) has just completed its process to select a new class of Fellows for 2007, and the following people have been chosen: • James Crivello • Mohamed El-Aasser • James Stoffer • Wen-Li Wu They will be inducted as the eighth class of PMSE Fellows during the PMSE/POLY Awards Reception at the Chicago ACS National Meeting on Monday, March 26, 2007. PMSE is pleased to welcome this distinguished group of polymer scientists and engineers to the ranks of fellows. A short description of their work up to the point of the induction as a PMSE Fellow is on the following pages. http://www.pmsedivision.org DIVISION OF POLYMERIC MATERIALS: SCIENCE & ENGINEERING 2007 PMSE Fellow Induction Biographies 2007 PMSE Fellow James Crivello Rensselaer Polytechnic Institute Prof. James Crivello received his B.S. in chemistry from Aquinas College in Grand Rapids, Michigan in 1962 and his Ph.D. in organic chemistry from the University of Notre Dame in 1966. He joined the General Electric Corporate Research and Development Center in 1966 and was for several years a research project manger. His fields of activity include: organic nitrations, oxidations, and arylations, polyimides, silicones, and new photo- and thermal initiators for cationic and free radical polymerizations. In 1980, he was elected a Coolidge Fellow by the staff at GE Corporate Research and Development and spent the 1986-87 year as a visiting scientist at the University of Mainz with Prof. Helmut Ringsdorf in the Federal Republic of Germany.
    [Show full text]
  • Liste Des Lauréats Français Du Prix Gay-Lussac Humboldt
    Liste des lauréats français du prix Gay-Lussac Humboldt >Pierre AGOSTINI (2003), Physique atomique et moléculaire, CEA* Saclay > Ohio State University Josef DEUTSCHER (2005), Microbiologie, Institut National de la Recherche Agronomique - Jacques F. ARVIEUX (1994), Physique nucléaire, Université Paris 11 CNRS, Grignon Alain ASPECT (1999), Physique, Institut d’optique, Université Paris 11 – CNRS Georges DIDI-HUBERMAN (2006), Histoire de l’art, Ecole des Hautes Etudes en Sciences Didier ASTRUC (1988), Chimie, Université Bordeaux 1 Sociales Monique AUMAILLEY (1991), Biochimie cellulaire, Université Claude Bernard - Lyon 1 > Université Pierre-Henri DIXNEUF (1989), Chimie, Université Rennes 1 de Cologne Abdelhak DJOUADI (2007), Physique des particules, Université Paris 11 Claude BARDOS (1993), Mathématiques, Université Denis Diderot - Paris 7 Jean-François DUBREMETZ (1996), Biologie, Institut national de la santé et de la recherche Jean-Marie BASSET (1987), Chimie inorganique, CNRS**, Laboratoire de chimie médicale, Villeneuve d’Ascq CNRS - Université Montpellier 2 organométallique de surface, Lyon Magda ERICSON (1992), Physique nucléaire, Université Claude Bernard - Lyon I Henri C. BENOIT (1986), Chimie macromoléculaire, Université Louis Pasteur - Strasbourg 1 Gérard FEREY (2004), Chimie, Université de Versailles - Saint-Quentin Alain BENSOUSSAN (1983), Informatique, Institut national de recherche en informatique Jean-Marie FLAUD (1998), Chimie physique, Université Paris 11 et en automatique > Centre national d’études spatiales Christos FLYTZANIS
    [Show full text]
  • Ivan Julian Dmochowski, Ph.D
    Ivan Julian Dmochowski, Ph.D. Department of Chemistry, University of Pennsylvania 231 South 34 th Street, Philadelphia, PA 19104-6323 P: 215-898-6459; Email: [email protected] URL: http://dmochowskigroup.chem.upenn.edu/index.html Academic Appointments Professor of Chemistry, University of Pennsylvania, July, 2015 – Present Undergraduate Chair of Chemistry, University of Pennsylvania, Jan, 2015 – Present Associate Professor of Chemistry, University of Pennsylvania, 2010 – 2015 Assistant Professor of Chemistry, University of Pennsylvania, 2003 – 2010 Education California Institute of Technology, Pasadena, CA Helen Hay Whitney Postdoctoral Scholar in Biophysics, Sept. 2000 – Dec. 2002 California Institute of Technology, Pasadena, CA Ph.D. in Chemistry, May 2000, 1995-00 Johannes Gutenberg Universität, Mainz, Germany Research Fellow in Chemistry, 1994-95 Harvard College, Cambridge, MA A.B. in Chemistry, Magna cum Laude, 1990-94 Selected Honors 2016 Crano Award, Akron Section, American Chemical Society 2012 Awardee, McKnight Technological Innovations in Neuroscience 2011 Awardee, McGroddy Frontiers in Science, St. Joseph’s Univ. 2010 Invitee, National Academies Keck Futures Initiative Imaging Meeting 2007 Camille and Henry Dreyfus Teacher-Scholar Award 2005 NSF CAREER Award 2003 Camille and Henry Dreyfus New Faculty Award 2000 Herbert Newby McCoy Award, Caltech Chemistry Department 1990 United States Presidential Scholar Fellowships 2001-02 Helen Hay Whitney Postdoctoral Fellow 1999-00 N.I.H. Bioorganic/Bioinorganic Training Grant 1996-99 N.I.H. Biotechnology Training Grant Peer-Reviewed Publications 1 1. J.A. Rego, S. Kumar, I.J. Dmochowski, H. Ringsdorf, Synthesis of novel mixed tail triphenylene discotic liquid crystals - The search for higher order . Chem. Comm. (9) 1031- 1032, 1996.
    [Show full text]
  • Dendronized Poly(2-Oxazoline) Displays Within Only Five Monomer Repeat Units Liquid Quasicrystal, A15 and Σ Frank−Kasper Phases † † ⊥ † † ‡ § Marian N
    Communication Cite This: J. Am. Chem. Soc. 2018, 140, 16941−16947 pubs.acs.org/JACS Dendronized Poly(2-oxazoline) Displays within only Five Monomer Repeat Units Liquid Quasicrystal, A15 and σ Frank−Kasper Phases † † ⊥ † † ‡ § Marian N. Holerca, Dipankar Sahoo, , Benjamin E. Partridge, Mihai Peterca, , Xiangbing Zeng, § ∥ † Goran Ungar, , and Virgil Percec*, † Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States ‡ Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, United States § Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom ∥ State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China *S Supporting Information discovered for self-assembling dendrons a few years later.2f ABSTRACT: Liquid quasicrystals (LQC) have been Subsequently, these three periodic and quasiperiodic arrays,10 discovered in self-assembling benzyl ether, biphenylmeth- and additional Frank−Kasper phases including the C14 and C15 yl ether, phenylpropyl ether, biphenylpropyl ether and Laves phases,11 have been transplanted to other types of soft some of their hybrid dendrons and subsequently in block matter12,13 including block copolymers,11b,14 lyotropic surfac- copolymers, surfactants and other assemblies. These tants,15 lipids and glycolipids,16 colloidal nanocrystals,17 and quasiperiodic arrays, which lack long-range translational molecules based on silsesquioxane cages.18 Frank−Kasper periodicity, are approximated by two Frank−Kasper phases and quasicrystals generated from soft matter have been periodic arrays, Pm3̅n cubic (Frank−Kasper A15) and subjected to various theoretical investigations that have − σ P42/mnm tetragonal (Frank Kasper ), which have been examined the energetic and entropic basis for their forma- discovered in complex soft matter in the same order and tion.9c,10,19 compounds.
    [Show full text]
  • Polymer Therapeutics: Concepts and Applications Rainer Haag* and Felix Kratz*
    Reviews R. Haag and F. Kratz DOI: 10.1002/anie.200502113 Medicinal Chemistry Polymer Therapeutics: Concepts and Applications Rainer Haag* and Felix Kratz* Keywords: Dedicated to Professor Helmut Ringsdorf cancer therapy · dendrimers · functional polymers · gene transfection · multivalent interactions Angewandte Chemie 1198 www.angewandte.org 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2006, 45, 1198 – 1215 Angewandte Polymer Therapeutics Chemie Polymer therapeutics encompass polymer–protein conjugates, drug– From the Contents polymer conjugates, and supramolecular drug-delivery systems. Numerous polymer–protein conjugates with improved stability and 1. Introduction 1199 pharmacokinetic properties have been developed, for example, by 2. Macromolecules as Drug- anchoring enzymes or biologically relevant proteins to polyethylene Delivery Systems: Biological glycol components (PEGylation). Several polymer–protein conjugates Rationale 1201 have received market approval, for example the PEGylated form of adenosine deaminase. Coupling low-molecular-weight anticancer 3. Approaches and Applications: “In Vivo Veritas” 1203 drugs to high-molecular-weight polymers through a cleavable linker is an effective method for improving the therapeutic index of clinically 4. Summary and Conclusions 1213 established agents, and the first candidates have been evaluated in clinical trials, including, N-(2-hydroxypropyl)methacrylamide conju- gates of doxorubicin, camptothecin, paclitaxel, and platinum(ii) complexes. Another class of polymer therapeutics are drug-delivery systems based on well-defined multivalent and dendritic polymers. is covalently linked to polymers such These include polyanionic polymers for the inhibition of virus as proteins, polysaccharides, or syn- thetic polymers. attachment, polycationic complexes with DNA or RNA (polyplexes), The coupling of drugs to macro- and dendritic core–shell architectures for the encapsulation of drugs.
    [Show full text]
  • Contribution to the Historical Development of Macromolecular Chemistry – Exemplified on Cellulose
    CELLULOSE CHEMISTRY AND TECHNOLOGY CONTRIBUTION TO THE HISTORICAL DEVELOPMENT OF MACROMOLECULAR CHEMISTRY – EXEMPLIFIED ON CELLULOSE PETER ZUGENMAIER Institute of Physical Chemistry, Clausthal University of Technology, D-38678 Clausthal-Zellerfeld, Germany Dedicated to Professor Elfriede Husemann, on the occasion of her 100th birthday in December 2008. She was an admirable and internationally highly recognized scientist and the first director of the Institute of Macromolecular Chemistry (Hermann-Staudinger-Haus) of the Albert-Ludwigs-Universität Freiburg; the foundation of the institute owing to the eminent scientific success and recognition of the work of Hermann Staudinger, leading to the Nobel Prize in the field of macromolecular chemistry. Received October 20, 2009 The development of the structure determination for cellulose and its derivatives as macromolecules is described from the beginning of the 20th century to the 1940s. The first correct presentation of the constitution of cellulose as a linear chain macromolecule of 1-4 linked β-D-anhydroglucopyranose, with the help of organic chemistry, dates from 1928. The size and shape of cellulose molecules still remained a controversial topic for some time. On the one hand, there were proposals of micelles i.e. aggregates of cyclic mono- or oligoanhydroglucose or micelles of small macromolecules of 30-50 glucose units. On the other hand, cellulose was seen as large macromolecules with more than 3000 glucose units for structures considered in solution as well as in fibres. The final clarification of the cellulose structure as a semi-flexible macromolecule of high molecular weight was extremely hindered by the inadequate interpretation of experimental results. Later, additional experimental and theoretical methods led to a consistent picture of the cellulose structure with high precision.
    [Show full text]
  • Construction and Characterization of Hybrid
    CONSTRUCTION AND CHARACTERIZATION OF HYBRID NANOPARTICLES VIA BLOCK COPOLYMER BLENDS AND KINETIC CONTROL OF SOLUTION ASSEMBLY by Yingchao Chen A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Material Science and Engineering 2015 Spring © 2015 Yingchao Chen All Rights Reserved ProQuest Number: 3730204 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. ProQuest 3730204 Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 CONSTRUCTION AND CHARACTERIZATION OF HYBRID NANOPARTICLES VIA BLOCK COPOLYMER BLENDS AND KINETIC CONTROL OF SOLUTION ASSEMBLY by Yingchao Chen Approved: __________________________________________________________ Darrin J. Pochan, Ph.D. Chair of the Department of Material Science and Engineering Approved: __________________________________________________________ Babatunde A. Ogunnaike, Ph.D. Dean of the College of Engineering Approved: __________________________________________________________ James G. Richards, Ph.D. Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Ivan Julian Dmochowski, Ph.D
    Ivan Julian Dmochowski, Ph.D. Department of Chemistry, University of Pennsylvania 231 South 34 th Street, Philadelphia, PA 19104-6323 URL: http://www.sas.upenn.edu/~ivandmo/ Phone: 215-898-6459; Fax: 215-898-2037 Email: [email protected] Academic Appointments Associate Professor of Chemistry, University of Pennsylvania, 2010 – Present Assistant Professor of Chemistry, University of Pennsylvania, 2003 – 2009 Education California Institute of Technology, Pasadena, CA Helen Hay Whitney Postdoctoral Scholar in Biophysics, Sept. 2000 – Dec. 2002 California Institute of Technology, Pasadena, CA Ph.D. in Chemistry, May 2000, 1995-00 Johannes Gutenberg Universität, Mainz, Germany Research Fellow in Chemistry, 1994-95 Harvard College, Cambridge, MA A.B. in Chemistry, Magna cum Laude, 1990-94 Selected Honors 2012 Awardee, McKnight Technological Innovations in Neuroscience 2011 Awardee, McGroddy Frontiers in Science, St. Joseph’s Univ. 2010 Invitee, National Academies Keck Futures Initiative Imaging Meeting 2007 Camille and Henry Dreyfus Teacher-Scholar Award 2005 NSF CAREER Award 2003 Camille and Henry Dreyfus New Faculty Award 2000 Herbert Newby McCoy Award, Caltech Chemistry Department 1990 United States Presidential Scholar Fellowships 2001-02 Helen Hay Whitney Postdoctoral Fellow 1999-00 N.I.H. Bioorganic/Bioinorganic Training Grant 1996-99 N.I.H. Biotechnology Training Grant Peer-Reviewed Publications: h-index = 21 (March, 2013) 1. J.A. Rego, S. Kumar, I.J. Dmochowski, H. Ringsdorf, Synthesis of novel mixed tail triphenylene discotic liquid crystals - The search for higher order. Chem. Comm. (9) 1031- 1032, 1996. 1 2. J.J. Wilker, I.J. Dmochowski, J.H. Dawson, J.R. Winkler, H.B. Gray, Substrates for rapid delivery of electrons and holes to buried active sites in proteins .
    [Show full text]
  • Helmut Ringsdorf
    Helmut Ringsdorf Department of Organic Chemistry, University of Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, Phone +49 (0)6131 3922402, Fax +49 (0)6131 3923145, e-mail: [email protected] Helmut Ringsdorf was born in Gießen/Germany in 1929. He grew up in the Rhine Valley, studied Chemistry, Politics and Geology at the Universities in Frankfurt, Darmstadt, and Freiburg. In 1955 he entered Hermann Staudingers Lab as his very last student. After his Ph.D. in Freiburg in 1958, he was a Postdoctoral Fellow with C.G. Overberger and Herman F. Mark at the Polytechnic Institute of Brooklyn (1960-1962). He taught Polymer Science and Organic Chemistry at the Universities Marburg (1962-1970) and Mainz (1971-1994). He still has the good fortune to be with young scientists as Adjunct Professor at the School of Pharmacy, University Cardiff/U.K. and at the Jilin University, Changchun/China. His awards include the H. Staudinger (Germany) as well as the H. Mark (Austria) Award, Polymer Science Award (USA). Honorary doctors from four Universities in four countries, the Friendship Award of the Chinese Government, member of Academies in Germany (Mainz, Düsseldorf), Russia (Moscow), and Italy (Catania). Based on the concept of molecular engineering of functional polymers and molecular assemblies the research interests of the group in Mainz were centred around the attempt to bridge the gap between Materials Science and Life Science as summarized in the following figure. Main research themes: Molecular architecture of functional liquid crystalline polymers, polymerization in oriented systems (micelles, multicompartment micelles, liposomes, monolayers, multilayers), properties of functional supramolecular systems, attempts to mimic biomembrane processes (enzyme functions, protein docking) and polymer therapeutics, e.g.
    [Show full text]
  • LIQUID CRYSTAL NEWSLIQUID NEWS $(%(&' "!!#$(%(&'"!!# GW Gray Medal for 2006 Professor Heino Finkelmann
    LIQUID CRYSTAL NEWSLIQUID NEWS $(%(&' "!!#$(%(&'"!!# GW Gray Medal for 2006 Professor Heino Finkelmann as originally intended in Krakow. Since these days, we have met very frequently, for example, when I was privileged to lecture in Professor Finkelmann’s Institute and at many other scientific meetings not least of which was the Twelfth International Liquid Crystal Conference held in 1988 in Freiburg itself and chaired and organised by Professor Finkelmann. My wife and I well remember enjoying a glass of wine with Heino and his wife and two boys at their home after the closing ceremonies were complete and people like conference chairmen are at last allowed to relax. I have put the material in the above paragraph early in this article about Heino Finkelmann, because I wanted to stress that his very great contributions to the subject of liquid crystals have been not only in the area of scientific research, but also, by his readiness to travel far and wide to Heino Finkelmann was born in Gronau in Lower give lectures, by spreading the word on the subject, by Saxony in 1945. After school, his studies at the Scientific serving on the editorial boards of relevant journals, by Technical Academy at Isny were in the field of chemical organising meetings and conferences such as the 12th engineering and on the way to qualifying in 1969, he spent ILCC, by serving as he has twice done on the Board of time with Unilever Research and with British Petroleum in Directors of the International Liquid Crystal Society and by Hamburg. He then studied Chemistry at the Technical acting as Chairman of the German Liquid Crystal Society University of Berlin, and it was here that he first began as he did for many years.
    [Show full text]
  • Marc Antoniu Ilies
    Curriculum Vitae MARC A. ILIES, Ph. D. ____________________________________________________________________________________________________________________ Office Address: Home address: Temple University School of Pharmacy 2616 Parrish Street Department of Pharmaceutical Sciences Philadelphia, PA-19130 3307 North Broad Street, Suite 517 Philadelphia, PA-19140 Phone: 215-707-1749 ; Fax: 215-707-5620 Email: [email protected] PRESENT POSITION: Professor Director of the NMR facilities of TU School of Pharmacy Member of the Moulder Center for Drug Discovery Research, TUSP Collaborating member of Temple Fox Chase Cancer Center Molecular Therapeutics Program and Imaging Consortium EDUCATION NRSA/NIH Postdoctoral fellow, University of Pennsylvania Health System, Department of Pharmacology (2006-2007); Mentors: Professors Vladimir Muzykantov and Ian Blair Postdoctoral fellow, University of Pennsylvania, Department of Chemistry (2004- 2006); Mentor: Professor Virgil Percec Welch postdoctoral fellow, Texas A&M University, Galveston, TX, and Visiting scientist, University of Texas Medical Branch at Galveston, TX; (2001-2004); Mentors: Professors Alexandru T. Balaban, William A. Seitz, and E. Brad Thompson Ph. D., Chemistry, University “Politehnica” Bucharest, Romania, 2001 Thesis title: “Novel pyrylium and pyridinium salts with biological activity” Adviser: Professor Alexandru T. Balaban F. Rom. Acad. Sci. (presently Professor at Texas A&M University at Galveston, Galveston, TX) M. S., Chemistry, University of Bucharest, Bucharest, Romania, 1996
    [Show full text]
  • Curriculum Vitae MARC A
    Curriculum Vitae MARC A. ILIES, Ph. D. ____________________________________________________________________________________________________________________ Office Address: Home address: ​ ​ Temple University School of Pharmacy 2616 Parrish Street Department of Pharmaceutical Sciences Philadelphia, PA-19130 3307 North Broad Street, Suite 517 Philadelphia, PA-19140 Phone: 215-707-1749 ; Fax: 215-707-5620 Email: [email protected] PRESENT POSITION: Associate Professor ​ Director of the NMR facilities of TU School of Pharmacy Member of the Moulder Center for Drug Discovery Research Member of the Temple Materials Institute Associate Member of the Center for Targeted Therapeutics and Translational Nanomedicine of the University of Pennsylvania Member of Temple Fox Chase Cancer Center Imaging Consortium ​ EDUCATION NRSA/NIH Postdoctoral fellow, University of Pennsylvania Health System, ​ ​ Department of Pharmacology (2006-2007); Mentors: Professors Vladimir ​ ​ Muzykantov and Ian Blair Postdoctoral fellow, University of Pennsylvania, Department of Chemistry ​ (2004-2006); Mentor: Professor Virgil Percec ​ Welch postdoctoral fellow, Texas A&M University, Galveston, TX, and Visiting ​ ​ scientist, University of Texas Medical Branch at Galveston, TX; (2001-2004); ​ ​ Mentors: Professors Alexandru T. Balaban, William A. Seitz, and E. Brad Thompson Ph. D., Chemistry, University “Politehnica” Bucharest, Romania, 2001 ​ Thesis title: “Novel pyrylium and pyridinium salts with biological activity” Adviser: Professor Alexandru T. Balaban F. Rom. Acad.
    [Show full text]