Novel Split Trehalase-Based Biosensors for the Detection of Biomarkers of Infectious Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Novel Split Trehalase-Based Biosensors for the Detection of Biomarkers of Infectious Diseases University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2019-05-15 Novel split trehalase-based biosensors for the detection of biomarkers of infectious diseases Drikic, Marija Drikic, M. (2019). Novel split trehalase-based biosensors for the detection of biomarkers of infectious diseases (Unpublished doctoral thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/110360 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Novel split trehalase-based biosensors for the detection of biomarkers of infectious diseases by Marija Drikic A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN VETERINARY MEDICAL SCIENCES CALGARY, ALBERTA MAY, 2019 © Marija Drikic 2019 1 ABSTRACT Infectious diseases remain a serious public health challenge in the field of human and veterinary medicine. For instance, infectious diseases were among the leading causes of mortality worldwide in 2016 according to the WHO. In veterinary medicine, infectious diseases have a significant negative impact on animal productivity and welfare leading to decreased profits and increased health-associated costs. Furthermore, the WHO estimates that 61% of diseases affecting the human population are zoonotic. Therefore, programs to control and eradicate these diseases are of crucial importance. Correct diagnosis, supported by robust diagnostic tests, is an essential first step in achieving these goals. An ideal diagnostic test needs to be accurate and robust while being easily accessible and widely available. Although different studies over the years have aimed to develop such a diagnostic test, there have not been many that have managed to enter into clinical practice. The most successful class of biosensors currently on the market is the glucometer used to monitor blood glucose. Glucometer's sensitivity and specificity, as well as its performance in clinical samples, have been mainly perfected. Measuring devices have been miniaturized and their production costs optimized. In this thesis, we developed and characterized a novel biosensor able to detect antibodies and other infectious disease markers. The biosensor is based on the protein complementation principle and uses an E. coli glycolytic enzyme, trehalase (TreA), as a reporter. Trehalase converts trehalose to glucose, which can then be detected by a glucometer. TreA was split into two non-functional fragments, and each fragment was fused to the sensing element that was specific for the targeted analyte. In the presence of the analyte, the sensing elements bind to it and induce the dimerization of the TreA which then becomes active. In the second chapter, we demonstrated that conditional complementation of the trehalase fragments leading to trehalose hydrolysis and glucose production could be used to detect antibodies, bacterial cells, small molecule, protein-protein interaction, and protein aggregation. We also 2 demonstrated the retention of activity of split TreA in undiluted clinical samples like blood or milk. In the third chapter, we attempted to increase the sensitivity and shorten the time for signal detection of the TreA biosensor by introducing split inteins. We placed the inteins within the previously developed biosensor, but we were not successful in achieving analyte-mediated dimerization of the two biosensor components. In the fourth chapter, we applied this TreA biosensor to develop and validate a new diagnostic tool for the quantification of the total amount of immunoglobulins in bovine colostrum and serum (named STIGA). We demonstrated that STIGA performs more efficiently in quantifying total immunoglobulins in colostrum and calf serum than other diagnostic tools (Colostrometer and Brix) that are used on a farm. Therefore, it is a suitable detection assay to establish colostrum quality and calf immune status in the field. We also proposed a modified format of STIGA for this on-farm application and demonstrated that its performance remained high. In the fifth chapter, we explored the applicability of a modified STIGA with the anticipation to detect immunoglobulins in different animal species. We analyzed 29 animal species and proved that the same detection protocol could be applied with success to the majority of animal species. In conclusion, we engineered a trehalase-based biosensor that requires minimal sample preparation and can be integrated with existing glucometers or sensors, which offers a versatile and convenient method for point-of-care applications. 3 PREFACE This dissertation consists of four manuscripts and two appendixes. Two manuscripts have been already published while the third one is accepted for publication. The first author was involved in the design of all the studies included in the thesis, experimental data acquisition, analysis, and interpretation, drafting the manuscript and critical revision. This work was done under the guidance of the senior author and supervisor. All authors provided critical reviews of the manuscripts. After receiving written permission from the publishers and co-authors, all five manuscripts were reproduced in their entirety as chapters in this dissertation. Manuscript 1) Drikic M, De Buck J. Split trehalase as a versatile reporter for a wide range of biological analytes. Biotechnol Bioeng. 2018;115(5):1128-36. Epub 2018/02/08. Manuscript 2) Drikic M, De Buck J. Engineering split inteins to be activated by ligand-induced dimerization. Manuscript 3) Drikic M, Windeyer C, Olsen S, Fu Y, Doepel L, De Buck J. Determining the IgG concentrations in bovine colostrum and calf sera with a novel enzymatic assay. J Anim Sci Biotechnol. 2018;9:69. Epub 2018/09/15. Manuscript 4) Drikic M, Olsen S, De Buck J. Detecting total immunoglobulins in different animal species with a novel split enzymatic assay. BMC Veterinary Research. 2019; Appendix 1) Drikic M, and De Buck J. Directed evolution of TreA. Appendix 2) Drikic M, and De Buck J. Trehalase features. 4 ACKNOWLEDGMENTS I would like to acknowledge my supervisor and mentor Dr. Jeroen De Buck for his doctorate guidance, moderate patience, and scientific challenges. He always believed in me and encouraged me to explore different paths and develop as a scientist. His approach taught me strength and resilience, his questions sparked my curiosity, and his enthusiasm inspired my persistence even when my experiments were failing. I would like to thank him for all the valuable lessons that will serve me well even outside of the lab. I would like to acknowledge my committee members Drs. Ray Turner, John Gilleard and Tao Dong for their support and guidance through this journey. Their advice and perspective were valuable for the completion of this thesis. I would particularly like to thank them for always having my best interest in mind. I would like to give my warm appreciation to three research assistants that were directly supporting my work, Evan Compton, Steven Olsen and especially Yongpeng Fu. Firstly, Steven, your hard work was appreciated; thanks. Secondly, I will always be grateful for Evan Compton for helping me settle into the lab and teaching me all the nuances of living and surviving in Canada; thank you. And finally, special recognition goes to Yongpeng Fu who was always ready to support my work, help me out with EndNote issues, patiently listen to my complaints and provide moral support even for non-lab related problems; You are a dear friend; thank you very much. Special recognition also goes to all my summer students Crystal Ma, Seung Won Choi, Jan Y Xue, and Andy YW Lam. Without them, this thesis and my Ph.D. experience would have been as great of an experience. Thank you for your life long friendship, dedication, patience, and curiosity. Thank you for all the long nights you spent in the lab with me, for all the long hikes we took together, for all the 5 questions you asked about science and life. Thank you for giving me the opportunity to learn how to be a supervisor. I became a better student and a better person thanks to you all. Thank you, Rakel Arrazuria Fernandez, for your warm friendship and your patience. It was a pleasure spending my lunch breaks with you enjoying all the stimulating and never-ending discussions. Thank you for always understanding. Ravi Holani and Juliette De Francesco, you shared this journey with me. Thank you for their friendship and moral support, for all the coffee's, late night dinners, parties and all the great adventures we went through together. I will never forget it. I would also like to thank Uliana Kanevets for her friendliness and laboratory experience and to James Wang for his patience and laboratory managing, who indirectly supported me through all these years. I would like to thank Kasia Wojdyla Judycki for having answers to all my questions even when they were not related to the veterinary medicine program. I would like to thank her of all the meaningful conversations we had over the years. I would also like to thank Diego Nobrega and Sohail Naushad for all their life advice, moral support, and warm friendships. Thanks to all the past and present members of the De Buck lab. Thank you all for your support, advice and constructive discussions in our lab meetings. Thanks to all other students from the lab groups Cobo, Orsel, Barkema, Kutz, and Gilleard which I had a chance to meet, share the office and take part in meaningful discussions. I would like to thank all my friends outside of academia, my Zouk friends, Canadian, Italian and Serbian friends. Many of you will not read these acknowledgments, but if you ever do, you should know that you kept my heart warm and my spirit alive.
Recommended publications
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • 1. Budorcas Taxicolor Tibetanus Milne-Edwards.- a Horn of an Adult and Skins and Skulls of Two Very Young Animals, Tai-Pa-Shiang, August 16 and October 25
    59.9(51.4) Article XXIX.- MAMMALS FROM SHEN-SI PROVINCE, CHINA. By J. A. ALLEN. A small collection of mammals from Mount Tai-pai, Shen-si Province, China, recently acquired by the Museum through Mr. Alan Owston of Yokohama, contains several species of interest. It comprises 55 specimens, representing 16 species, some of which appear to be undescribed. The material is rather poorly prepared, the skulls having been left in the skins, and when removed were found to be more or less mutilated, some of them lacking the whole of the postorbital portion. The collection is of interest as coming from a hitherto unexplored locality, the Tai-pa-shiang mountains, on the western border of Shen-si, which are said to reach an altitude of about 11,000 feet. The specimens are mostly labeled simply "Tai-pa- shiang," with the sex of the specimen and date of collection, but a few are labeled as from "Yumonko, foot of Tai-pa-shiang," and others are marked "Si-Tai-pa-shiang." In no case is the altitude indicated. 1. Budorcas taxicolor tibetanus Milne-Edwards.- A horn of an adult and skins and skulls of two very young animals, Tai-pa-shiang, August 16 and October 25. The two specimens are respectively male and female, and differ much in color, the male having the body, except the ventral surface and the dorsal stripe, pale yellowish, the dorsal stripe, the ventral surface and limbs dark dull reddish brown; top of nose and edge of ears blackish. The other has the body nearly white, with the underparts and limbs dark brown; the dorsal stripe is dark brown only over the shoulders, and black mixed with white on the top of the neck and posterior two-thirds of the dorsal line; black hairs are also appearing on the limbs.
    [Show full text]
  • Introduction to Risk Assessments for Methods Used in Wildlife Damage Management
    Human Health and Ecological Risk Assessment for the Use of Wildlife Damage Management Methods by USDA-APHIS-Wildlife Services Chapter I Introduction to Risk Assessments for Methods Used in Wildlife Damage Management MAY 2017 Introduction to Risk Assessments for Methods Used in Wildlife Damage Management EXECUTIVE SUMMARY The USDA-APHIS-Wildlife Services (WS) Program completed Risk Assessments for methods used in wildlife damage management in 1992 (USDA 1997). While those Risk Assessments are still valid, for the most part, the WS Program has expanded programs into different areas of wildlife management and wildlife damage management (WDM) such as work on airports, with feral swine and management of other invasive species, disease surveillance and control. Inherently, these programs have expanded the methods being used. Additionally, research has improved the effectiveness and selectiveness of methods being used and made new tools available. Thus, new methods and strategies will be analyzed in these risk assessments to cover the latest methods being used. The risk assements are being completed in Chapters and will be made available on a website, which can be regularly updated. Similar methods are combined into single risk assessments for efficiency; for example Chapter IV contains all foothold traps being used including standard foothold traps, pole traps, and foot cuffs. The Introduction to Risk Assessments is Chapter I and was completed to give an overall summary of the national WS Program. The methods being used and risks to target and nontarget species, people, pets, and the environment, and the issue of humanenss are discussed in this Chapter. From FY11 to FY15, WS had work tasks associated with 53 different methods being used.
    [Show full text]
  • The Distribution of Trehalase, Sucrase, Α-Amylase, Glucoamylase and Lactase
    Downloaded from Br. J. Nutr. (197z),28, 129 https://www.cambridge.org/core The distribution of trehalase, sucrase, a-amylase, glucoamylase and lactase (8-galactosidase) along the small intestine of five pigs BY J. A. S'I'EVENS" AND D. E. KIDDER . IP address: Departments of Animal Husbandry and Veterinary Medicine, University of Bristol Langfwd House, Lungford, Bristol BSI 8 70U 170.106.40.40 (Received 24 September 1971 - Accepted 30 December 1971) I. Sucrase, trehalase (EC 3.2. I .28), a-amylase (RC 3.2.I. I) and glucoamylase ("-1.4 , on glucan glucohydrolase, BC 3.2.I .3) activities have been measured in the small intestine 25 Sep 2021 at 22:09:31 mucosa of five pigs varying in age from 19-30 weeks. The determinations were made at frequent intervals along the entire length starting 5 x 10-l m from the pylorus. Lactasc (/I-galactosidase, EC 3.2,I .23) has similarly been measured in one pig. 2. All these enzymes were present in the sample obtained from nearest to the pylorus and rose rapidly in the first few metres. 3. Trehalase and lactase were similarly distributed with a peak activity in the proximal quarter of the small intestine, falling to very low levels in the distal half. 4. Sucrase and glucoamylase resembled one another in distribution pattern with a peak , subject to the Cambridge Core terms of use, available at approximately midway along the small intestine, followed by a slight decrease in sucrase activity distally and a rather greater decrease with glucoamylase. 5. a-Amylasc activity, assumed to be duc to adsorhcd pancrcatic enzyme, had no regular pattern of distribution.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_001431645Cyc: Stenotrophomonas panacihumi JCM 16536 Cellular Overview Connections between pathways are omitted for legibility. Anamika Kothari molybdate spermidine ammonium phosphate putrescine RS01245 RS09040 RS02020 RS09210 RS06445 ModC RS13295 RS07950 RS10935 RS05290 CcmE RS10150 RS15175 CcmA TatC RS15730 PotA FliR FliN FliF RS16780 RS13205 RS11350 RS08505 RS08615 RS04655 HtpX MreD RodA RS11935 SecA Amt RS14010 RS09060 RS11475 FliJ FtsE Cls FtsY SecF RS04370 RS14605 RS03760 RS08055 RS10260 RS10235 RS11315 RarD RS07635 RS12840 RS06270 RS15230 MurJ RS07085 RS02925 FlhA RS06365 AmpE MgtE RS05150 RS17505 PstB spermidine molybdate ammonium putrescine phosphate RS11800 FliD Cofactor, Carrier, and Vitamin Biosynthesis Amino Acid Degradation Aromatic Compound Macromolecule Modification tRNA-uridine 2-thiolation NADH repair (prokaryotes) Degradation di-trans,octa-cis UDP-N-acetyl- ditrans,octacis- a peptidoglycan with UDP-N-acetyl-α-D- L-alanyl-γ-D- an N-terminal- an N-terminal- a peptidoglycan (R)-4-hydroxy-
    [Show full text]
  • Liley Et Al., 2006B)
    Date: March 2010; Version: FINAL Recommended Citation: Liley D., Lake, S., Underhill-Day, J., Sharp, J., White, J. Hoskin, R. Cruickshanks, K. & Fearnley, H. (2010). Welsh Seasonality Habitat Vulnerability Review. Footprint Ecology / CCW. 1 Summary It is increasingly recognised that recreational access to the countryside has a wide range of benefits, such as positive effects on health and well-being, economic benefits and an enhanced understanding of and connection with the natural environment. There are also negative effects of access, however, as people’s presence in the countryside can impact on the nature conservation interest of sites. This report reviews these potential impacts to the Welsh countryside, and we go on to discuss how such impacts could be mapped across the entirety of Wales. Such a map (or series of maps) would provide a tool for policy makers, planners and access managers, highlighting areas of the countryside particularly sensitive to access and potentially guiding the location and provision of access infrastructure, housing etc. We structure the review according to four main types of impacts: contamination, damage, fire and disturbance. Contamination includes impacts such as litter, nutrient enrichment and the spread of exotic species. Within the section on damage we consider harvesting and the impacts of footfall on vegetation and erosion of substrates. The fire section addresses the impacts of fire (accidental or arson) on animals, plant communities and the soil. Disturbance is typically the unintentional consequences of people’s presence, sometimes leading to animals avoiding particular areas and impacts on breeding success, survival etc. We review the effects of disturbance to mammals, birds, herptiles and invertebrates and also consider direct mortality, for example trampling of nests or deliberate killing of reptiles.
    [Show full text]
  • Jan 2021 ZSL Stocklist.Pdf (699.26
    Zoological Society of London - January 2021 stocklist ZSL LONDON ZOO Status at 01.01.2021 m f unk Invertebrata Aurelia aurita * Moon jellyfish 0 0 150 Pachyclavularia violacea * Purple star coral 0 0 1 Tubipora musica * Organ-pipe coral 0 0 2 Pinnigorgia sp. * Sea fan 0 0 20 Sarcophyton sp. * Leathery soft coral 0 0 5 Sinularia sp. * Leathery soft coral 0 0 18 Sinularia dura * Cabbage leather coral 0 0 4 Sinularia polydactyla * Many-fingered leather coral 0 0 3 Xenia sp. * Yellow star coral 0 0 1 Heliopora coerulea * Blue coral 0 0 12 Entacmaea quadricolor Bladdertipped anemone 0 0 1 Epicystis sp. * Speckled anemone 0 0 1 Phymanthus crucifer * Red beaded anemone 0 0 11 Heteractis sp. * Elegant armed anemone 0 0 1 Stichodactyla tapetum Mini carpet anemone 0 0 1 Discosoma sp. * Umbrella false coral 0 0 21 Rhodactis sp. * Mushroom coral 0 0 8 Ricordea sp. * Emerald false coral 0 0 19 Acropora sp. * Staghorn coral 0 0 115 Acropora humilis * Staghorn coral 0 0 1 Acropora yongei * Staghorn coral 0 0 2 Montipora sp. * Montipora coral 0 0 5 Montipora capricornis * Coral 0 0 5 Montipora confusa * Encrusting coral 0 0 22 Montipora danae * Coral 0 0 23 Montipora digitata * Finger coral 0 0 6 Montipora foliosa * Hard coral 0 0 10 Montipora hodgsoni * Coral 0 0 2 Pocillopora sp. * Cauliflower coral 0 0 27 Seriatopora hystrix * Bird nest coral 0 0 8 Stylophora sp. * Cauliflower coral 0 0 1 Stylophora pistillata * Pink cauliflower coral 0 0 23 Catalaphyllia jardinei * Elegance coral 0 0 4 Euphyllia ancora * Crescent coral 0 0 4 Euphyllia glabrescens * Joker's cap coral 0 0 2 Euphyllia paradivisa * Branching frog spawn 0 0 3 Euphyllia paraancora * Branching hammer coral 0 0 3 Euphyllia yaeyamaensis * Crescent coral 0 0 4 Plerogyra sinuosa * Bubble coral 0 0 1 Duncanopsammia axifuga + Coral 0 0 2 Tubastraea sp.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • GFAT and PFK Genes Show Contrasting Regulation of Chitin
    www.nature.com/scientificreports OPEN GFAT and PFK genes show contrasting regulation of chitin metabolism in Nilaparvata lugens Cai‑Di Xu1,3, Yong‑Kang Liu2,3, Ling‑Yu Qiu2, Sha‑Sha Wang2, Bi‑Ying Pan2, Yan Li2, Shi‑Gui Wang2 & Bin Tang2* Glutamine:fructose‑6‑phosphate aminotransferase (GFAT) and phosphofructokinase (PFK) are enzymes related to chitin metabolism. RNA interference (RNAi) technology was used to explore the role of these two enzyme genes in chitin metabolism. In this study, we found that GFAT and PFK were highly expressed in the wing bud of Nilaparvata lugens and were increased signifcantly during molting. RNAi of GFAT and PFK both caused severe malformation rates and mortality rates in N. lugens. GFAT inhibition also downregulated GFAT, GNPNA, PGM1, PGM2, UAP, CHS1, CHS1a, CHS1b, Cht1-10, and ENGase. PFK inhibition signifcantly downregulated GFAT; upregulated GNPNA, PGM2, UAP, Cht2‑4, Cht6‑7 at 48 h and then downregulated them at 72 h; upregulated Cht5, Cht8, Cht10, and ENGase; downregulated Cht9 at 48 h and then upregulated it at 72 h; and upregulated CHS1, CHS1a, and CHS1b. In conclusion, GFAT and PFK regulated chitin degradation and remodeling by regulating the expression of genes related to the chitin metabolism and exert opposite efects on these genes. These results may be benefcial to develop new chitin synthesis inhibitors for pest control. Chitin is a linear polymer composed of N-acetylglucosamine units connected by β-1, 4-glycoside bonds and is the second most abundant biopolymer in nature. It is widely distributed in fungi, nematodes, and arthropods1. In insects, chitin is a major component of the exoskeleton, trachea, and the peritrophic matrix that lines the midgut epithelium1–4.
    [Show full text]
  • Unraveling the Function of Trehalose Biosynthesis Genes in Lateral Root Development
    Acknowledgement Unraveling the function of trehalose biosynthesis genes in lateral root development Celine DE MAESSCHALCK Master‟s dissertation submitted to obtain the degree of Master of Biochemistry and Biotechnology Major Plant Biotechnology Academic year 2009-2010 Promoter(s): Prof. Dr. Tom Beeckman Scientific supervisor: Drs. Lorena López Department Plant Biotechnology and Genetics VIB - Department Plant Systems Biology II Acknowledgement ACKNOWLEDGEMENTS First I would like to thank Prof. Dr. T. Beeckman for the opportunities to make my Master thesis possible in his Lab. También me gustaría agradecer a Lorena por haber sido tan buena consejera y por la preocupación que siempre ha mostrado. Ella me ha apoyado durante todo el proceso de componer y analizar los informes. I also need to thank the other people in the lab, Gert, Dominique, Boris, Giel, Marlies, Leen, Wei and Maria, who helps me when I had some questions or problems during the pratical work and to motivate me during writing. Daarnaast moet ik mijn medestudenten bedanken: Evy, Isabel, Morgane, Silke, Lynda, Brecht en Wolf, voor de leuke vijf jaar als student. Ook een dankwoordje voor de klimmers, Bram, Kristof en Thomas die steeds luisterden naar mijn avonturen over epjes wegen en zijwortels tellen. Bram wil ik nog eens extra bedanken voor het nalezen en verbeteren van mijn thesis en steeds klaar te staan met nuttige tips and tricks. Thomas zorgde dan weer voor de muzikale noot gedurende mijn thesis. Ook de brugse vrienden en vriendinnen moet ik bedanken: Loesje voor de Girls-talk en er gewoon te zijn wanneer het nodig was, Charlotte voor het leren van mijn eerste zinnetjes spaans, de scouts,….
    [Show full text]
  • Trehalose-Mediated Enhancement of Glycosaminoglycan Degradation in the Lysosomal Storage Disorder Mucopolysaccharidosis III
    Aus dem Institut für Humangenetik der Universität zu Köln Direktorin: Frau Universitätsprofessor Dr. rer. nat. B. Wirth Trehalose-mediated enhancement of glycosaminoglycan degradation in the lysosomal storage disorder Mucopolysaccharidosis III Trehalose vermittelte Steigerung des Glykosaminoglykan-Abbaus in der lysosomalen Speichererkrankung Mukopolysaccharidose III Inaugural-Dissertation zur Erlangung der Doktorwürde der Hohen Medizinischen Fakultät der Universität zu Köln vorgelegt von Victor Mauri aus Stuttgart promoviert am 29. Januar 2014 Gedruckt mit Genehmigung der Medizinischen Fakultät der Universität zu Köln, 2014 Dekan: Universitätsprofessor Dr. med. Dr. h.c. Th. Krieg 1. Berichterstatterin: Frau Universitätsprofessor Dr. rer. nat. B. Wirth 2. Berichterstatter: Professor Dr. rer. nat. F.-G. Hanisch Erklärung Ich erkläre hiermit, dass ich die vorliegende Dissertationsschrift ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskriptes habe ich Unterstützungsleistungen von folgenden Personen erhalten: Univ.-Prof. Dr. rer. nat. Brunhilde Wirth Marco Sardiello, PhD, Assistant Professor BCM Christian Schaaf, MD, PhD, Assistant Professor BCM Weitere Personen waren an der geistigen Herstellung der vorliegenden Arbeit nicht beteiligt. Insbesondere habe ich nicht die Hilfe einer Promotionsberaterin/eines
    [Show full text]
  • Allosteric Activation of Yeast Enzyme Neutral Trehalase by Calcium and 14-3-3 Protein
    Physiol. Res. 68: 147-160, 2019 https://doi.org/10.33549/physiolres.933950 REVIEW Allosteric Activation of Yeast Enzyme Neutral Trehalase by Calcium and 14-3-3 Protein M. ALBLOVA1, A. SMIDOVA1, D. KALABOVA1, D. LENTINI SANTO2, T. OBSIL1,2, V. OBSILOVA1 1Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic, 2Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic Received May 30, 2018 Accepted October 3, 2018 Epub Ahead of Print January 10, 2019 Summary ergot of rye in 1832. Trehalose has been known as Neutral trehalase 1 (Nth1) from Saccharomyces cerevisiae trehalose since 1858 when Marcellin Berthelot isolated catalyzes disaccharide trehalose hydrolysis and helps yeast to this disaccharide as sweet trehala manna from weevil survive adverse conditions, such as heat shock, starvation or cocoons (reviewed in Elbein 1974, Nwaka and Holzer oxidative stress. 14-3-3 proteins, master regulators of hundreds 1998). In the following decades, trehalose was discovered of partner proteins, participate in many key cellular processes. also in the yeast S. cerevisiae (Koch and Koch 1925) and Nth1 is activated by phosphorylation followed by 14-3-3 protein in bacteria, plants, fungi, insects and other invertebrates (Bmh) binding. The activation mechanism is also potentiated by but never in mammals (Elbein 1974, Thevelein 1984b, Ca2+ binding within the EF-hand-like motif. This review Nwaka and Holzer 1998). Because no trehalose synthesis summarizes the current knowledge about trehalases and the molecular and structural basis of Nth1 activation. The crystal has been shown in vertebrates, the trehalose pathway can structure of fully active Nth1 bound to 14-3-3 protein provided be a target for the development of drugs against the first high-resolution view of a trehalase from a eukaryotic pathological fungi (Van Dijck et al.
    [Show full text]