Trehalose-Mediated Enhancement of Glycosaminoglycan Degradation in the Lysosomal Storage Disorder Mucopolysaccharidosis III

Total Page:16

File Type:pdf, Size:1020Kb

Trehalose-Mediated Enhancement of Glycosaminoglycan Degradation in the Lysosomal Storage Disorder Mucopolysaccharidosis III Aus dem Institut für Humangenetik der Universität zu Köln Direktorin: Frau Universitätsprofessor Dr. rer. nat. B. Wirth Trehalose-mediated enhancement of glycosaminoglycan degradation in the lysosomal storage disorder Mucopolysaccharidosis III Trehalose vermittelte Steigerung des Glykosaminoglykan-Abbaus in der lysosomalen Speichererkrankung Mukopolysaccharidose III Inaugural-Dissertation zur Erlangung der Doktorwürde der Hohen Medizinischen Fakultät der Universität zu Köln vorgelegt von Victor Mauri aus Stuttgart promoviert am 29. Januar 2014 Gedruckt mit Genehmigung der Medizinischen Fakultät der Universität zu Köln, 2014 Dekan: Universitätsprofessor Dr. med. Dr. h.c. Th. Krieg 1. Berichterstatterin: Frau Universitätsprofessor Dr. rer. nat. B. Wirth 2. Berichterstatter: Professor Dr. rer. nat. F.-G. Hanisch Erklärung Ich erkläre hiermit, dass ich die vorliegende Dissertationsschrift ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskriptes habe ich Unterstützungsleistungen von folgenden Personen erhalten: Univ.-Prof. Dr. rer. nat. Brunhilde Wirth Marco Sardiello, PhD, Assistant Professor BCM Christian Schaaf, MD, PhD, Assistant Professor BCM Weitere Personen waren an der geistigen Herstellung der vorliegenden Arbeit nicht beteiligt. Insbesondere habe ich nicht die Hilfe einer Promotionsberaterin/eines Promotionsberaters in Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertationsschrift stehen. Die Dissertationsschrift wurde von mir bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt. Köln, den 19. August 2013 ______________________ Unterschrift Die in dieser Arbeit präsentierten Untersuchungen wurden zwischen März 2011 und Oktober 2011 im Department of Human and Molecular Genetics des Baylor College of Medicine am Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA, in der Arbeitsgruppe von Assistant Professor Marco Sardiello, PhD, durchgeführt. Die Mehrzahl der dieser Arbeit zugrunde liegenden Experimente sind nach entsprechender Anleitung durch Herrn Dr. Marco Sardiello von mir selbstständig durchgeführt worden. Bei den Cloning-Experimenten habe ich Unterstützung von Herrn Dr. Alberto di Ronza bekommen. Das Experiment zur zeitlichen Linearität des NAG-Assays sowie die Experimente zur Z‘-Faktor-Berechnung wurden von Frau Dr. Parisa Lotfi durchgeführt. Bei der Messung der intestinalen Trehalase-Aktivität bin ich von der labor- technischen Assistentin Frau Sanagasetti unterstützt worden. Acknowledgment This thesis would not have been possible without the help, the guidance and the encouragement of several persons who in one way or another contributed to the completion of the studies and the preparation of this thesis. First, I wish to express my sincere gratitude to Dr. Marco Sardiello, my principal investigator and supervisor at Baylor College of Medicine, for giving me the opportunity to work in his lab on this highly interesting project, for being an excellent scientific mentor, for sharing his great knowledge, curiosity and experience, for valuable discussions, encouragement and for many good moments inside and outside the lab. I also owe my deepest gratitude to Professor Brunhilde Wirth, director of the Institute of Human Genetics and my supervisor in Köln, Germany, for her helpfulness and great support to make this German-American thesis happen, for her time, for valuable conversations and suggestions while writing the manuscript. Without her support it would not have been possible to write in Germany about the experiments performed in Houston. Many thanks go also to the other members of the Sardiello-Lab for providing me such a stimulating and friendly working environment, Dr. Alberto di Ronza and Dr. Michela Palmieri for teaching me basic and not so basic laboratory techniques and for their endless help with almost endless problems. Dr. Parisa Lotfi for performing experiments during the review process of our paper. Deepthi Sanagasetti for technical support. I thank Alberto di Ronza, not just for being a great teacher and lab mate and for his helpfulness at any time, but mostly for his friendship, for being such an invaluable friend inside and outside the lab. I would like to thank Dr. Christian Schaaf for his constant support and help during my time in the USA, for initially introducing me to Dr. Sardiello, for his invaluable feedback on the manuscript, for his great book “Mit Vollgas zum Doktor” and for his advice on scientific and personal issues. I would also like to thank the Team Sanfilippo Foundation as well as the Beyond Batten Disease Foundation for their generous funding of this and many other projects to eventually help children with Sanfilippo Syndrome, Batten Disease and other rare, but devastating diseases. I also owe my deepest gratitude to my parents and my sister, for their everlasting support and encouragement, their confidence in me and my ideas, and for everything they taught me, which seems to be an excellent foundation for life. Last, but not least, I owe my warmest thanks to Isabel, my “better half”. Thank you for your support at any time and your love! Table of contents Table of contents Table of contents .................................................................................... I Glossary ............................................................................................... VI 1 INTRODUCTION ............................................................................... 1 1.1. Lysosomes and Lysosomal Storage Disorders ..................................... 1 1.1.1. The lysosome .......................................................................................... 1 1.1.2. TFEB and the CLEAR network................................................................ 3 1.1.3. Lysosomal storage disorders .................................................................. 5 1.2. Mucopolysaccharidosis III/Sanfilippo Syndrome ................................. 11 1.2.1. The mucopolysaccharidoses ................................................................. 11 1.2.2. MPSIII: history, biochemistry and genetic aspects ................................ 13 1.2.3. MPSIII: epidemiology, clinical presentation and diagnosis .................... 15 1.2.3.1. Epidemiology ............................................................................................ 15 1.2.3.2. Clinical picture .......................................................................................... 15 1.2.3.3. Diagnosis ................................................................................................. 16 1.2.4. Therapeutic strategies for MPS III (and other LSDs) ............................. 17 1.2.4.1. Enzyme replacement therapy ................................................................... 17 1.2.4.2. Gene therapy ........................................................................................... 18 1.2.4.3. Cell-based therapy ................................................................................... 18 1.2.4.4. Substrate reduction therapy ..................................................................... 19 1.2.4.5. Pharmaceutical chaperon therapy (PCT) .................................................. 19 1.2.4.6. Stop codon read-through (SCRT) ............................................................. 20 1.3. Trehalose ............................................................................................. 20 1.3.1. Chemical properties and natural occurrence ......................................... 20 1.3.2. Metabolism ............................................................................................ 21 1.3.3. Safety and toxicity ................................................................................. 22 1.3.4. Functions of trehalose ........................................................................... 22 1.3.4.1. Protection from various stress conditions ................................................. 22 1.3.4.2. Induction of autophagy and degradation of macromolecules .................... 24 I Table of contents 2 AIMS ............................................................................................... 26 3 MATERIAL AND METHODS .......................................................... 28 3.1. Cell lines .............................................................................................. 28 3.1.1. Fibroblast cell lines derived from MPS III patients and control subjects 28 3.1.2. HEK 293T and HeLa cells ..................................................................... 29 3.2. Equipment, Chemicals, Reagents and Kits ......................................... 29 3.2.1. Equipment ............................................................................................. 29 3.2.2. Mouse dissection equipment ................................................................. 30 3.2.3. Chemicals ............................................................................................. 30 3.2.4. Reagents and other materials ............................................................... 31 3.2.5. Kits .......................................................................................................
Recommended publications
  • Comparison of the Effects on Mrna and Mirna Stability Arian Aryani and Bernd Denecke*
    Aryani and Denecke BMC Research Notes (2015) 8:164 DOI 10.1186/s13104-015-1114-z RESEARCH ARTICLE Open Access In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability Arian Aryani and Bernd Denecke* Abstract Background: MicroRNA has become important in a wide range of research interests. Due to the increasing number of known microRNAs, these molecules are likely to be increasingly seen as a new class of biomarkers. This is driven by the fact that microRNAs are relatively stable when circulating in the plasma. Despite extensive analysis of mechanisms involved in microRNA processing, relatively little is known about the in vitro decay of microRNAs under defined conditions or about the relative stabilities of mRNAs and microRNAs. Methods: In this in vitro study, equal amounts of total RNA of identical RNA pools were treated with different ribonucleases under defined conditions. Degradation of total RNA was assessed using microfluidic analysis mainly based on ribosomal RNA. To evaluate the influence of the specific RNases on the different classes of RNA (ribosomal RNA, mRNA, miRNA) ribosomal RNA as well as a pattern of specific mRNAs and miRNAs was quantified using RT-qPCR assays. By comparison to the untreated control sample the ribonuclease-specific degradation grade depending on the RNA class was determined. Results: In the present in vitro study we have investigated the stabilities of mRNA and microRNA with respect to the influence of ribonucleases used in laboratory practice. Total RNA was treated with specific ribonucleases and the decay of different kinds of RNA was analysed by RT-qPCR and miniaturized gel electrophoresis.
    [Show full text]
  • Enzymes Handling/Processing
    Enzymes Handling/Processing 1 Identification of Petitioned Substance 2 3 This Technical Report addresses enzymes used in used in food processing (handling), which are 4 traditionally derived from various biological sources that include microorganisms (i.e., fungi and 5 bacteria), plants, and animals. Approximately 19 enzyme types are used in organic food processing, from 6 at least 72 different sources (e.g., strains of bacteria) (ETA, 2004). In this Technical Report, information is 7 provided about animal, microbial, and plant-derived enzymes generally, and more detailed information 8 is presented for at least one model enzyme in each group. 9 10 Enzymes Derived from Animal Sources: 11 Commonly used animal-derived enzymes include animal lipase, bovine liver catalase, egg white 12 lysozyme, pancreatin, pepsin, rennet, and trypsin. The model enzyme is rennet. Additional details are 13 also provided for egg white lysozyme. 14 15 Chemical Name: Trade Name: 16 Rennet (animal-derived) Rennet 17 18 Other Names: CAS Number: 19 Bovine rennet 9001-98-3 20 Rennin 25 21 Chymosin 26 Other Codes: 22 Prorennin 27 Enzyme Commission number: 3.4.23.4 23 Rennase 28 24 29 30 31 Chemical Name: CAS Number: 32 Peptidoglycan N-acetylmuramoylhydrolase 9001-63-2 33 34 Other Name: Other Codes: 35 Muramidase Enzyme Commission number: 3.2.1.17 36 37 Trade Name: 38 Egg white lysozyme 39 40 Enzymes Derived from Plant Sources: 41 Commonly used plant-derived enzymes include bromelain, papain, chinitase, plant-derived phytases, and 42 ficin. The model enzyme is bromelain.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • The Coffee Protective Effect on Catalase System in the Preneoplastic Induced Rat Liver
    Hindawi Publishing Corporation Journal of Chemistry Volume 2016, Article ID 8570321, 9 pages http://dx.doi.org/10.1155/2016/8570321 Research Article The Coffee Protective Effect on Catalase System in the Preneoplastic Induced Rat Liver Cristiana Schmidt de Magalhães,1 Jéssica Emi Takarada,1 Nathália Costa Carvalho,1 Dayene do C. Carvalho,2 Felipe Lopes de Andrade,1 Eric Batista Ferreira,1 Pedro Orival Luccas,2 and Luciana Azevedo3 1 Exact Sciences Institute, Federal University of Alfenas, Rua Gabriel Monteiro da Silva 700, Centro, 37130-000 Alfenas, MG, Brazil 2Chemistry Institute, Federal University of Alfenas, Rua Gabriel Monteiro da Silva 700, Centro, 37130-000 Alfenas, MG, Brazil 3Nutrition Faculty, Federal University of Alfenas, Rua Gabriel Monteiro da Silva 700, Centro, 37130-000 Alfenas, MG, Brazil Correspondence should be addressed to Cristiana Schmidt de Magalhaes;˜ [email protected] Received 15 October 2015; Revised 2 March 2016; Accepted 28 March 2016 Academic Editor: Philippe Jeandet Copyright © 2016 Cristiana Schmidt de Magalhaes˜ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This study aimed to evaluate the effect of organic/conventional coffee in liver tissues in the cancer process, taking into account the level and activities of catalase. The experiments were carried out with 8 groups of rats during 12 weeks. They received two injections of ethylenediaminetetraacetic acid solution 1.5% (v/v) prepared in 0.9% NaCl or 1,2-dimethylhydrazine (DMH) subcutaneous dose −1 −1 of 40 mg⋅kg ⋅bw for 2 weeks.
    [Show full text]
  • The Distribution of Trehalase, Sucrase, Α-Amylase, Glucoamylase and Lactase
    Downloaded from Br. J. Nutr. (197z),28, 129 https://www.cambridge.org/core The distribution of trehalase, sucrase, a-amylase, glucoamylase and lactase (8-galactosidase) along the small intestine of five pigs BY J. A. S'I'EVENS" AND D. E. KIDDER . IP address: Departments of Animal Husbandry and Veterinary Medicine, University of Bristol Langfwd House, Lungford, Bristol BSI 8 70U 170.106.40.40 (Received 24 September 1971 - Accepted 30 December 1971) I. Sucrase, trehalase (EC 3.2. I .28), a-amylase (RC 3.2.I. I) and glucoamylase ("-1.4 , on glucan glucohydrolase, BC 3.2.I .3) activities have been measured in the small intestine 25 Sep 2021 at 22:09:31 mucosa of five pigs varying in age from 19-30 weeks. The determinations were made at frequent intervals along the entire length starting 5 x 10-l m from the pylorus. Lactasc (/I-galactosidase, EC 3.2,I .23) has similarly been measured in one pig. 2. All these enzymes were present in the sample obtained from nearest to the pylorus and rose rapidly in the first few metres. 3. Trehalase and lactase were similarly distributed with a peak activity in the proximal quarter of the small intestine, falling to very low levels in the distal half. 4. Sucrase and glucoamylase resembled one another in distribution pattern with a peak , subject to the Cambridge Core terms of use, available at approximately midway along the small intestine, followed by a slight decrease in sucrase activity distally and a rather greater decrease with glucoamylase. 5. a-Amylasc activity, assumed to be duc to adsorhcd pancrcatic enzyme, had no regular pattern of distribution.
    [Show full text]
  • „Transformation Von Phospholipiden Durch Phospholipasen A1 Und
    „Transformation von Phospholipiden durch Phospholipasen A1 und Phospholipasen D“ Kumulative Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Martin Dippe geboren am 3. August 1981 in Wernigerode (Harz) Gutachter: 1. Prof. Renate Ulbrich-Hofmann (Martin-Luther-Universität Halle-Wittenberg) 2. Prof. Ingo Heilmann (Martin-Luther-Universität Halle-Wittenberg) 3. Prof. Uwe T. Bornscheuer (Ernst-Moritz-Arndt-Universität Greifswald) Halle (Saale), den 08. Dezember 2011 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis .............................................................................................................. 1 Abkürzungsverzeichnis ..................................................................................................... 2 1 Einleitung und Zielstellung .......................................................................................... 3 2 Theoretischer Teil ....................................................................................................... 5 2.1. Phospholipide – Molekularer Bau, Verwendung und chemische Synthese .... 6 2.2. Phospholipase-vermittelte Modifizierung von Phospholipiden ....................... 8 2.3. PLD-Enzyme............................................................................................... 10 2.3.1. Funktion und Mechanismus ............................................................ 10 2.3.2. Kopfgruppenaustausch
    [Show full text]
  • Morelloflavone and Its Semisynthetic Derivatives As Potential Novel Inhibitors of Cysteine and Serine Proteases
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/276087209 Morelloflavone and its semisynthetic derivatives as potential novel inhibitors of cysteine and serine proteases ARTICLE in JOURNAL OF MEDICINAL PLANT RESEARCH · APRIL 2015 Impact Factor: 0.88 · DOI: 10.5897/JMPR2014.5641 DOWNLOADS VIEWS 2 17 8 AUTHORS, INCLUDING: Ihosvany Camps Claudio Viegas-jr Universidade Federal de Alfenas Universidade Federal de Alfenas 35 PUBLICATIONS 128 CITATIONS 6 PUBLICATIONS 22 CITATIONS SEE PROFILE SEE PROFILE Available from: Ihosvany Camps Retrieved on: 08 September 2015 Vol. 9(13), pp. 426-434, 3 April, 2015 DOI: 10.5897/JMPR2014.5641 Article Number: A42115152263 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Full Length Research Paper Morelloflavone and its semisynthetic derivatives as potential novel inhibitors of cysteine and serine proteases Vanessa Silva Gontijo1, Jaqueline Pereira Januário1, Wagner Alves de Souza Júdice2, Alyne Alexandrino Antunes2, Ingridy Ribeiro Cabral1, Diego Magno Assis3, Maria Aparecida Juliano3, Ihosvany Camps4, Marcos José Marques4, Claudio Viegas Junior1 and Marcelo Henrique dos Santos1* 1Department of Exact Science, Laboratory of Phytochemistry and Medicinal Chemistry, Federal University of Alfenas, MG, Brazil. 2Interdisciplinary Center of Biochemical Investigation, Mogi das Cruzes University, Mogi das Cruzes, SP, Brazil. 3Department of Biophysics, Federal University of São Paulo, SP, Brazil. 4Department of Biological Sciences, Laboratory of Molecular Biology, Federal University of Alfenas, MG, Brazil. Received 9 October, 2014; Accepted 11 March, 2015 This article reports the three biflavonoids isolated from the fruit pericarp of Garcinia brasiliensis Mart.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_001431645Cyc: Stenotrophomonas panacihumi JCM 16536 Cellular Overview Connections between pathways are omitted for legibility. Anamika Kothari molybdate spermidine ammonium phosphate putrescine RS01245 RS09040 RS02020 RS09210 RS06445 ModC RS13295 RS07950 RS10935 RS05290 CcmE RS10150 RS15175 CcmA TatC RS15730 PotA FliR FliN FliF RS16780 RS13205 RS11350 RS08505 RS08615 RS04655 HtpX MreD RodA RS11935 SecA Amt RS14010 RS09060 RS11475 FliJ FtsE Cls FtsY SecF RS04370 RS14605 RS03760 RS08055 RS10260 RS10235 RS11315 RarD RS07635 RS12840 RS06270 RS15230 MurJ RS07085 RS02925 FlhA RS06365 AmpE MgtE RS05150 RS17505 PstB spermidine molybdate ammonium putrescine phosphate RS11800 FliD Cofactor, Carrier, and Vitamin Biosynthesis Amino Acid Degradation Aromatic Compound Macromolecule Modification tRNA-uridine 2-thiolation NADH repair (prokaryotes) Degradation di-trans,octa-cis UDP-N-acetyl- ditrans,octacis- a peptidoglycan with UDP-N-acetyl-α-D- L-alanyl-γ-D- an N-terminal- an N-terminal- a peptidoglycan (R)-4-hydroxy-
    [Show full text]
  • Immobilization of Trypsin for Peptide Synthesis and Hydrolysis Reactions
    IMMOBILIZATION OF TRYPSIN FOR PEPTIDE SYNTHESIS AND HYDROLYSIS REACTIONS zur Erlangung des akademischen Grades eines DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.) der Fakultät für Chemieingenieurwesen und Verfahrenstechnik des Karlsruher Instituts für Technologie (KIT) vorgelegte genehmigte DISSERTATION von Dipl. Biol. (t.o.) Julia Andre geb. Stolarow aus Odessa, Ukraine Referent: Prof. Dr. rer. nat. Christoph Syldatk Korreferent: Prof. Dr.-Ing. Rudolf Hausmann Tag der mündlichen Prüfung: 19. November 2015 Maybe I will be something that you would be good at Für meine Eltern Acknowledgements I wish to express my sincere thanks to people who continuously supported and guided me throughout my work. Prof. Dr. rer. nat. Christoph Syldatk for giving me the opportunity to conduct my research work at his group, his guidance and his enormous scientific knowledge giving me a great opportunity to learn. Prof. Dr.-Ing. Rudolf Hausmann for his supervision, productive scientific discussions, his motivating personality and professional advice helping me to overcome many obstacles in my research work. Former and current members of the Technical Biology group for the great friendly and supporting atmosphere during my work and spare time: Dr.-Ing. Ines Schulze, Dr. rer. nat. Mareike Perzborn, Laura Krämer, Dr.-Ing. Berna Gerçe, Dr.-Ing. Martin Pöhnlein, Dipl.-Ing. Melanie Gerlitzki, Dipl.-Biotechnol. Johannes Kügler, Dr.-Ing. Marius Henkel, Dr. rer. nat. Markus Andre, Dr.-Ing. Ulrike Engel, M. Sc. Janina Beuker, Dipl.-Ing. Michaela Zwick, M. Sc. Judit Willenbacher, M. Sc. Sarah Dold, M. Sc. Christin Slomka, Sandra Baumann, Dr.-Ing. Katrin Ochsenreither, Dipl.-Ing. Florian Oswald, Desiree Westermann, Werner Mandel, Harald Gotzmann, Siegfried Almstedt, Katja Rupp, Susanne Warth, M.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • GFAT and PFK Genes Show Contrasting Regulation of Chitin
    www.nature.com/scientificreports OPEN GFAT and PFK genes show contrasting regulation of chitin metabolism in Nilaparvata lugens Cai‑Di Xu1,3, Yong‑Kang Liu2,3, Ling‑Yu Qiu2, Sha‑Sha Wang2, Bi‑Ying Pan2, Yan Li2, Shi‑Gui Wang2 & Bin Tang2* Glutamine:fructose‑6‑phosphate aminotransferase (GFAT) and phosphofructokinase (PFK) are enzymes related to chitin metabolism. RNA interference (RNAi) technology was used to explore the role of these two enzyme genes in chitin metabolism. In this study, we found that GFAT and PFK were highly expressed in the wing bud of Nilaparvata lugens and were increased signifcantly during molting. RNAi of GFAT and PFK both caused severe malformation rates and mortality rates in N. lugens. GFAT inhibition also downregulated GFAT, GNPNA, PGM1, PGM2, UAP, CHS1, CHS1a, CHS1b, Cht1-10, and ENGase. PFK inhibition signifcantly downregulated GFAT; upregulated GNPNA, PGM2, UAP, Cht2‑4, Cht6‑7 at 48 h and then downregulated them at 72 h; upregulated Cht5, Cht8, Cht10, and ENGase; downregulated Cht9 at 48 h and then upregulated it at 72 h; and upregulated CHS1, CHS1a, and CHS1b. In conclusion, GFAT and PFK regulated chitin degradation and remodeling by regulating the expression of genes related to the chitin metabolism and exert opposite efects on these genes. These results may be benefcial to develop new chitin synthesis inhibitors for pest control. Chitin is a linear polymer composed of N-acetylglucosamine units connected by β-1, 4-glycoside bonds and is the second most abundant biopolymer in nature. It is widely distributed in fungi, nematodes, and arthropods1. In insects, chitin is a major component of the exoskeleton, trachea, and the peritrophic matrix that lines the midgut epithelium1–4.
    [Show full text]
  • Characterisation, Classification and Conformational Variability Of
    Characterisation, Classification and Conformational Variability of Organic Enzyme Cofactors Julia D. Fischer European Bioinformatics Institute Clare Hall College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 11 April 2011 This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the word limit of 60,000 words. Acknowledgements I would like to thank all the members of the Thornton research group for their constant interest in my work, their continuous willingness to answer my academic questions, and for their company during my time at the EBI. This includes Saumya Kumar, Sergio Martinez Cuesta, Matthias Ziehm, Dr. Daniela Wieser, Dr. Xun Li, Dr. Irene Pa- patheodorou, Dr. Pedro Ballester, Dr. Abdullah Kahraman, Dr. Rafael Najmanovich, Dr. Tjaart de Beer, Dr. Syed Asad Rahman, Dr. Nicholas Furnham, Dr. Roman Laskowski and Dr. Gemma Holli- day. Special thanks to Asad for allowing me to use early development versions of his SMSD software and for help and advice with the KEGG API installation, to Roman for knowing where to find all kinds of data, to Dani for help with R scripts, to Nick for letting me use his E.C. tree program, to Tjaart for python advice and especially to Gemma for her constant advice and feedback on my work in all aspects, in particular the chemistry side. Most importantly, I would like to thank Prof. Janet Thornton for giving me the chance to work on this project, for all the time she spent in meetings with me and reading my work, for sharing her seemingly limitless knowledge and enthusiasm about the fascinating world of enzymes, and for being such an experienced and motivational advisor.
    [Show full text]