Andrei Linde Inflation

Total Page:16

File Type:pdf, Size:1020Kb

Andrei Linde� � Inflation Andrei Linde! ! Inflation! Starobinsky, 1980 – modified gravity, R + R2 a complicated but almost working model! Guth, 1981 - old inflation. Great idea, but did not work, and did not predict inflationary perturbations! A.L., 1982 - new inflation 1983 - chaotic inflation! 1991 - hybrid inflation! (also Albrecht, Steinhardt)! ! n" What was before the Big Bang?! n" Why is our universe so homogeneous (better than 1 part in 10000) ?! n" Why is it isotropic (the same in all directions)?! n" Why all of its parts started expanding simultaneously?! n" Why is it flat? Why parallel lines do not intersect? Why it contains so many particles? ! Energy in the Big Bang theory! According to the Big Bang theory, the total mass of the universe soon after the Big Bang was greater than 1080 kg! Mass = Energy: E = mc2! Before the Big Bang there was NOTHING, and then suddenly we got A HUGE AMOUNT OF ENERGY ! Where did it come from?! To create our universe we would need more than 1080 tons of high tech explosive compressed to a size of 1cm, and exploded simultaneously, with accuracy 10-43 s.! Who could do it?…! solves many problems of the old Big Bang theory, and explains how the whole universe could be created from less than a milligram of matter! # Chaotic Inflation! Eternal Inflation! Equations of motion: n" Einstein equation:! n" Klein-Gordon equation:! Compare with equation for the harmonic oscillator with friction:! Logic of Inflation:! Large φ large H! large friction! field φ moves very slowly, so that its potential energy for a long time remains nearly constant! This is the stage of inflation! Inflation makes the universe flat, homogeneous and isotropic! In this simple model the universe typically grows 101000000000000 times during inflation. ! ! Now we can see just a tiny part of the universe of size ct = 1010 light yrs. That is why the universe looks homogeneous, isotropic, and flat. ! Quantum fluctuations produced during inflation! φ x! Small quantum fluctuations of all physical fields exist everywhere. They are similar to waves, which appear and then rapidly oscillate, move and disappear. Inflation stretched them, together with stretching the universe. When the wavelength of the fluctuations becomes sufficiently large, they stop moving and oscillating, and do not disappear. They look like frozen waves.! φ x! When expansion of the universe continues, new quantum fluctuations become stretched, stop oscillating, and freeze on top of the previously frozen fluctuations.! φ x! This process continues, and eventually the universe becomes populated by inhomogeneous scalar field. Its energy takes different values in different parts of the universe. These inhomogeneities are responsible for the formation of galaxies.! Sometimes these fluctuations are so large that they can increase the value of the scalar field in some parts of the universe. Then inflation in these parts of the universe occurs again and again. In other words, the process of inflation becomes eternal.! We will illustrate it now by computer simulation of this process.! Observations! WMAP and the temperature of the sky! WMAP7 + Acbar + QUaD! Predictions of Inflation:! The universe should be homogeneous, isotropic and flat, ! Ω = 1 + O(10-4) ! Observed: the universe is homogeneous, isotropic and flat, Ω = 1 + O(10-2)! ! Inflationary perturbations should be gaussian and adiabatic, -1 with flat spectrum, ns = 1+ O(10 )! ! Observed: perturbations are gaussian and adiabatic, with flat spectrum, ! -2 ns = 1 + O(10 )! ! But ! if they are even slightly non-gaussian, at the level of 0.1% (to be explored by Planck), it may rule out all single-field inflationary models!! ! This will force us to develop a class of more complicated models involving many scalar fields – but it will be still much less complicated than MSSM! ! Can we have large non-gaussianity ?! A.L., Mukhanov, 1996,! V! Lyth, Wands, Ungarelli, 2002! V σ Inflaton! Curvaton! Decay of perturbed field σ adiabatic perturbations! σ is determined by quantum fluctuations, so δ H is different in different places. Curvaton perturbations can be strongly non- gaussian! Kachru, Kallosh, A.L., Trivedi 2003! aρ W = W0 + Ae− ρ = σ + iα V V 0.5 1.2 σ s 100 150 200 250 300 350 400 1 -0.5 0.8 0.6 -1 0.4 -1.5 0.2 σ s -2 100 150 200 250 300 350 400 Stabilization in a Uplifting to dS supersymmetric breaks SUSY! AdS minimum! m2 = V /3 3/2 | AdS | String Cosmology and the Gravitino Mass Kallosh, A.L. 2004! 2 The height of the KKLT barrier is smaller than |VAdS| =3m 3/2. The inflationary potential Vinfl cannot be much higher than the height of the barrier. Inflationary 2 2 Hubble constant is H = Vinfl/3 < |VAdS/3| ~m 3/2.! V uplifting! 4 Modification of V at large H! 3 2 1 100 150 200 250 Σ VAdS! Constraint on the Hubble constant in this class of models:! H < m3/2! Kallosh, A.L. 2007! superheavy gravitino unobservable A discovery or non-discovery of tensor modes would be a crucial test for string theory and SUSY phenomenology! Modern versions of string theory! Discovery of SUSY Discovery of gravity particles at LHC! waves! Any 2 of these 3 items are compatible with each other. Can all 3 of them live in peace?! There are several ways to address this issue: Kallosh, A.L. 2004; Badziak and M. Olechowski 2008, 2010; Conlon, Kallosh, A.L. and Quevedo 2008; He, Kachru and Westphal 2010; Kallosh, A.L., Olive, Rube ! ! One should remember, however, that there is a certain price to pay for the desire to have low scale SUSY breaking. Split supersymmetry?! ! Big Bang! Earth! Astronomers use our universe as a “time machine”. By looking at the stars ose to us, we see them as they were several hundreds years ago.! Big Bang! Earth! The light from distant galaxies travel to us for billions of years, so we see them in the form they had billions of years ago. ! Big Bang! Earth! Looking even further, we can detect photons emitted 400000 years after the Big Bang. But 30 years ago everyone believed that there is nothing beyond the cosmic fire created in the Big Bang at the time t = 0.! Big Bang! Earth! Inflationary theory tells us that this cosmic fire was created not at the time t = 0, but after inflation. If we look beyond the circle of fire surrounding us, we will see enormously large empty space filled only by a scalar field. ! Big Bang! Inflation If we look there very carefully, we will see small perturbations of space, which are responsible for galaxy formation. And if we look even further, we will see how new parts of inflationary universe are created by quantum fluctuations.! Thus, uniformity of our world is explained by inflation: Exponential stretching of the universe makes our part of the universe almost exactly uniform.! However, the same theory predicts that on a much greater scale, the universe is 100% non-uniform.! Inflationary universe becomes a multiverse! A.L. 1982! Genetic code of the Universe ! ! There may be one fundamental law of physics, like a single genetic code for the whole Universe. However, this law may have different realizations. For example, water can be liquid, solid or gas. In elementary particle physics, the effective laws of physics depend on the values of the scalar fields.! Quantum fluctuations during inflation can take the scalar fields from one minimum of their potential energy to another, altering its genetic code. Once it happens in a small part of the universe, inflation makes this part exponentially big. ! This is the cosmological mutation mechanism! ! From the Universe to the Multiverse! There are many scalar fields, and their potential energy has many different minima. Each minimum corresponds to different masses of particles and different laws of their interactions.! V! SU(5)! SU(4)xU(1)! SU(3)xSU(2)xU(1)! Quantum fluctuations during eternal inflation can bring the scalar fields to different minima in different parts of the universe. The universe becomes divided into many exponentially large parts with different laws of physics operating in each of them. ! Landscape of eternal inflation! In string theory, genetic code is written in properties of compactification of extra dimensions! 500 Up to 10 different combinations ! Self-reproducing Inflationary Universe! We live here! Big Bang ?! It is said that there is no such thing as a free lunch. But the universe is the ultimate free lunch. ! Alan Guth 1981! ! Now we know that the universe is not just a free lunch: It is an eternal feast were ALL possible types of dishes are served.! ! A.L. 1983! ! ! ! ! All vacuum states in string theory are UNSTABLE. After a very long time, vacuum will decay. At that time, our part of the universe will become ten-dimensional, or it will collapse and disappear. ! ! But because of eternal inflation, the universe as a whole is immortal ! ! This theory provides the only known explanation of numerous anthropic coincidences (extremely small vacuum energy, strange masses of elementary particles, etc.) In this sense, it was already tested.! “When you have eliminated the impossible, whatever remains, however improbable, must be the truth.”! Sherlock Holmes!.
Recommended publications
  • Inflation, Large Branes, and the Shape of Space
    Inflation, Large Branes, and the Shape of Space Brett McInnes National University of Singapore email: [email protected] ABSTRACT Linde has recently argued that compact flat or negatively curved spatial sections should, in many circumstances, be considered typical in Inflationary cosmologies. We suggest that the “large brane instability” of Seiberg and Witten eliminates the negative candidates in the context of string theory. That leaves the flat, compact, three-dimensional manifolds — Conway’s platycosms. We show that deep theorems of Schoen, Yau, Gromov and Lawson imply that, even in this case, Seiberg-Witten instability can be avoided only with difficulty. Using a specific cosmological model of the Maldacena-Maoz type, we explain how to do this, and we also show how the list of platycosmic candidates can be reduced to three. This leads to an extension of the basic idea: the conformal compactification of the entire Euclidean spacetime also has the topology of a flat, compact, four-dimensional space. arXiv:hep-th/0410115v2 19 Oct 2004 1. Nearly Flat or Really Flat? Linde has recently argued [1] that, at least in some circumstances, we should regard cosmological models with flat or negatively curved compact spatial sections as the norm from an Inflationary point of view. Here we wish to argue that cosmic holography, in the novel form proposed by Maldacena and Maoz [2], gives a deep new interpretation of this idea, and also sharpens it very considerably to exclude the negative case. This focuses our attention on cosmological models with flat, compact spatial sections. Current observations [3] show that the spatial sections of our Universe [as defined by observers for whom local isotropy obtains] are fairly close to being flat: the total density parameter Ω satisfies Ω = 1.02 0.02 at 95% confidence level, if we allow the imposition ± of a reasonable prior [4] on the Hubble parameter.
    [Show full text]
  • Eternal Inflation and Its Implications
    IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 40 (2007) 6811–6826 doi:10.1088/1751-8113/40/25/S25 Eternal inflation and its implications Alan H Guth Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: [email protected] Received 8 February 2006 Published 6 June 2007 Online at stacks.iop.org/JPhysA/40/6811 Abstract Isummarizetheargumentsthatstronglysuggestthatouruniverseisthe product of inflation. The mechanisms that lead to eternal inflation in both new and chaotic models are described. Although the infinity of pocket universes produced by eternal inflation are unobservable, it is argued that eternal inflation has real consequences in terms of the way that predictions are extracted from theoretical models. The ambiguities in defining probabilities in eternally inflating spacetimes are reviewed, with emphasis on the youngness paradox that results from a synchronous gauge regularization technique. Although inflation is generically eternal into the future, it is not eternal into the past: it can be proven under reasonable assumptions that the inflating region must be incomplete in past directions, so some physics other than inflation is needed to describe the past boundary of the inflating region. PACS numbers: 98.80.cQ, 98.80.Bp, 98.80.Es 1. Introduction: the successes of inflation Since the proposal of the inflationary model some 25 years ago [1–4], inflation has been remarkably successful in explaining many important qualitative and quantitative properties of the universe. In this paper, I will summarize the key successes, and then discuss a number of issues associated with the eternal nature of inflation.
    [Show full text]
  • 8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics
    8.962 General Relativity, Spring 2017 Massachusetts Institute of Technology Department of Physics Lectures by: Alan Guth Notes by: Andrew P. Turner May 26, 2017 1 Lecture 1 (Feb. 8, 2017) 1.1 Why general relativity? Why should we be interested in general relativity? (a) General relativity is the uniquely greatest triumph of analytic reasoning in all of science. Simultaneity is not well-defined in special relativity, and so Newton's laws of gravity become Ill-defined. Using only special relativity and the fact that Newton's theory of gravity works terrestrially, Einstein was able to produce what we now know as general relativity. (b) Understanding gravity has now become an important part of most considerations in funda- mental physics. Historically, it was easy to leave gravity out phenomenologically, because it is a factor of 1038 weaker than the other forces. If one tries to build a quantum field theory from general relativity, it fails to be renormalizable, unlike the quantum field theories for the other fundamental forces. Nowadays, gravity has become an integral part of attempts to extend the standard model. Gravity is also important in the field of cosmology, which became more prominent after the discovery of the cosmic microwave background, progress on calculations of big bang nucleosynthesis, and the introduction of inflationary cosmology. 1.2 Review of Special Relativity The basic assumption of special relativity is as follows: All laws of physics, including the statement that light travels at speed c, hold in any inertial coordinate system. Fur- thermore, any coordinate system that is moving at fixed velocity with respect to an inertial coordinate system is also inertial.
    [Show full text]
  • Sacred Rhetorical Invention in the String Theory Movement
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public.
    [Show full text]
  • The Center for Theoretical Physics: the First 50 Years
    CTP50 The Center for Theoretical Physics: The First 50 Years Saturday, March 24, 2018 50 SPEAKERS Andrew Childs, Co-Director of the Joint Center for Quantum Information and Computer CTPScience and Professor of Computer Science, University of Maryland Will Detmold, Associate Professor of Physics, Center for Theoretical Physics Henriette Elvang, Professor of Physics, University of Michigan, Ann Arbor Alan Guth, Victor Weisskopf Professor of Physics, Center for Theoretical Physics Daniel Harlow, Assistant Professor of Physics, Center for Theoretical Physics Aram Harrow, Associate Professor of Physics, Center for Theoretical Physics David Kaiser, Germeshausen Professor of the History of Science and Professor of Physics Chung-Pei Ma, J. C. Webb Professor of Astronomy and Physics, University of California, Berkeley Lisa Randall, Frank B. Baird, Jr. Professor of Science, Harvard University Sanjay Reddy, Professor of Physics, Institute for Nuclear Theory, University of Washington Tracy Slatyer, Jerrold Zacharias CD Assistant Professor of Physics, Center for Theoretical Physics Dam Son, University Professor, University of Chicago Jesse Thaler, Associate Professor, Center for Theoretical Physics David Tong, Professor of Theoretical Physics, University of Cambridge, England and Trinity College Fellow Frank Wilczek, Herman Feshbach Professor of Physics, Center for Theoretical Physics and 2004 Nobel Laureate The Center for Theoretical Physics: The First 50 Years 3 50 SCHEDULE 9:00 Introductions and Welcomes: Michael Sipser, Dean of Science; CTP Peter
    [Show full text]
  • 2012-2013 Chair James Rosenzweig
    Department of Physics Astronomy ANNUAL REPORT 2013 219728_AnnualReport.indd 1 11/18/13 4:02 PM UCLA Physics and Astronomy Department 2012-2013 Chair James Rosenzweig Chief Administrative Officer Will Spencer Feature Article Eric Hudson Editorial Assistants Corinna Koehnenkamp, D.L. MacLaughlan-Dumes, Laurie Ultan-Thomas Design Mary Jo Robertson © 2013 by the Regents of the University of California All rights reserved. Requests for additional copies of the publication UCLA Department of Physics and Astronomy 2012-2013 Annual Report may be sent to: Office of the Chair UCLA Department of Physics and Astronomy 430 Portola Plaza Box 951547 Los Angeles California 90095-1547 For more information on the Department see our website: http://www.pa.ucla.edu/ UCLA DEPARTMENT OF PHYSICS & ASTRONOMY 219728_AnnualReport.indd 2 11/18/13 4:02 PM Department of Physics Astronomy& 2013 Annual Report UNIVERSITY OF CALIFORNIA, LOS ANGELES 219728_AnnualReport.indd 3 11/18/13 4:02 PM CONTENTS FEATURE ARTICLE: P.7 “Harnessing quantum interactions for the future of science and technology” GIVING TO THE DEPARTMENT P.15 UCLA ALUMNI P.18 ASTRONOMY & ASTROPHYSICS P.19 ASTROPARTICLE PHYSICS P.31 PHYSICS RESEARCH HIGHLIGHTS P.37 PHYSICS & ASTRONOMY FACULTY/RESEARCHERS P.60 DEPARTMENT NEWS P.61 OUTREACH-ASTRONOMY LIVE P. 64 GRADUATION 2012-13 P.66 219728_AnnualReport.indd 4 11/18/13 4:02 PM Message from the Chair As Chair of the UCLA Department of Physics and Astronomy, it is with pride that I present to you our 2013 Annual Report. This document is intended to give an overview of the departmental accomplishments recorded in the last year, extending from recog- nition of faculty excellence in teaching and research, to the welcoming of new members to our ranks.
    [Show full text]
  • Finding the Radiation from the Big Bang
    Finding The Radiation from the Big Bang P. J. E. Peebles and R. B. Partridge January 9, 2007 4. Preface 6. Chapter 1. Introduction 13. Chapter 2. A guide to cosmology 14. The expanding universe 19. The thermal cosmic microwave background radiation 21. What is the universe made of? 26. Chapter 3. Origins of the Cosmology of 1960 27. Nucleosynthesis in a hot big bang 32. Nucleosynthesis in alternative cosmologies 36. Thermal radiation from a bouncing universe 37. Detecting the cosmic microwave background radiation 44. Cosmology in 1960 52. Chapter 4. Cosmology in the 1960s 53. David Hogg: Early Low-Noise and Related Studies at Bell Lab- oratories, Holmdel, N.J. 57. Nick Woolf: Conversations with Dicke 59. George Field: Cyanogen and the CMBR 62. Pat Thaddeus 63. Don Osterbrock: The Helium Content of the Universe 70. Igor Novikov: Cosmology in the Soviet Union in the 1960s 78. Andrei Doroshkevich: Cosmology in the Sixties 1 80. Rashid Sunyaev 81. Arno Penzias: Encountering Cosmology 95. Bob Wilson: Two Astronomical Discoveries 114. Bernard F. Burke: Radio astronomy from first contacts to the CMBR 122. Kenneth C. Turner: Spreading the Word — or How the News Went From Princeton to Holmdel 123. Jim Peebles: How I Learned Physical Cosmology 136. David T. Wilkinson: Measuring the Cosmic Microwave Back- ground Radiation 144. Peter Roll: Recollections of the Second Measurement of the CMBR at Princeton University in 1965 153. Bob Wagoner: An Initial Impact of the CMBR on Nucleosyn- thesis in Big and Little Bangs 157. Martin Rees: Advances in Cosmology and Relativistic Astro- physics 163.
    [Show full text]
  • Reversed out (White) Reversed
    Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments.
    [Show full text]
  • Section 1: Facts and History (PDF)
    Section 1 Facts and History Fields of Study 11 Digital Learning 12 Research Laboratories, Centers, and Programs 13 Academic and Research Affiliations 14 Education Highlights 16 Research Highlights 21 Faculty and Staff 30 Faculty 30 Researchers 32 Postdoctoral Scholars 33 Awards and Honors of Current Faculty and Staff 34 MIT Briefing Book 9 MIT’s commitment to innovation has led to a host of Facts and History scientific breakthroughs and technological advances. The Massachusetts Institute of Technology is one of Achievements of the Institute’s faculty and graduates the world’s preeminent research universities, dedi- have included the first chemical synthesis of penicillin cated to advancing knowledge and educating students and vitamin A, the development of inertial guidance in science, technology, and other areas of scholarship systems, modern technologies for artificial limbs, and that will best serve the nation and the world. It is the magnetic core memory that enabled the develop- known for rigorous academic programs, cutting-edge ment of digital computers. Exciting areas of research research, a diverse campus community, and its long- and education today include neuroscience and the standing commitment to working with the public and study of the brain and mind, bioengineering, energy, private sectors to bring new knowledge to bear on the the environment and sustainable development, infor- world’s great challenges. mation sciences and technology, new media, financial technology, and entrepreneurship. William Barton Rogers, the Institute’s founding presi- dent, believed that education should be both broad University research is one of the mainsprings of and useful, enabling students to participate in “the growth in an economy that is increasingly defined by humane culture of the community” and to discover technology.
    [Show full text]
  • Our Cosmic Origins
    Chapter 5 Our cosmic origins “In the beginning, the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move”. Douglas Adams, in The Restaurant at the End of the Universe “Oh no: he’s falling asleep!” It’s 1997, I’m giving a talk at Tufts University, and the legendary Alan Guth has come over from MIT to listen. I’d never met him before, and having such a luminary in the audience made me feel both honored and nervous. Especially nervous. Especially when his head started slumping toward his chest, and his gaze began going blank. In an act of des- peration, I tried speaking more enthusiastically and shifting my tone of voice. He jolted back up a few times, but soon my fiasco was complete: he was o↵in dreamland, and didn’t return until my talk was over. I felt deflated. Only much later, when we became MIT colleagues, did I realize that Alan falls asleep during all talks (except his own). In fact, my grad student Adrian Liu pointed out that I’ve started doing the same myself. And that I’ve never noticed that he does too because we always go in the same order. If Alan, I and Adrian sit next to each other in that order, we’ll infallibly replicate a somnolent version of “the wave” that’s so popular with soccer spectators. I’ve come to really like Alan, who’s as warm as he’s smart. Tidiness isn’t his forte, however: the first time I visited his office, I found most of the floor covered with a thick layer of unopened mail.
    [Show full text]
  • Higgs Inflation
    Higgs inflation Javier Rubio Institut fur¨ Theoretische Physik, Ruprecht-Karls-Universitat¨ Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany —————————————————————————————————————————— Abstract The properties of the recently discovered Higgs boson together with the absence of new physics at collider experiments allows us to speculate about consistently extending the Standard Model of particle physics all the way up to the Planck scale. In this context, the Standard Model Higgs non- minimally coupled to gravity could be responsible for the symmetry properties of the Universe at large scales and for the generation of the primordial spectrum of curvature perturbations seeding structure formation. We overview the minimalistic Higgs inflation scenario, its predictions, open issues and extensions and discuss its interplay with the possible metastability of the Standard Model vacuum. —————————————————————————————————————————— arXiv:1807.02376v3 [hep-ph] 13 Mar 2019 Email: [email protected] 1 Contents 1 Introduction and summary3 2 General framework7 2.1 Induced gravity . .7 2.2 Higgs inflation from approximate scale invariance . .8 2.3 Tree-level inflationary predictions . 11 3 Effective field theory interpretation 14 3.1 The cutoff scale . 14 3.2 Relation between high- and low-energy parameters . 16 3.3 Potential scenarios and inflationary predictions . 17 3.4 Vacuum metastability and high-temperature effects . 21 4 Variations and extensions 22 4.1 Palatini Higgs inflation . 23 4.2 Higgs-Dilaton model . 24 5 Concluding remarks 26 6 Acknowledgments 26 2 1 Introduction and summary Inflation is nowadays a well-established paradigm [1–6] able to explain the flatness, homogene- ity and isotropy of the Universe and the generation of the primordial density fluctuations seeding structure formation [7–10].
    [Show full text]
  • MIT Briefing Book 2015 April Edition
    MIT Briefing Book 2015 April edition Massachusetts Institute of Technology MIT Briefing Book © 2015, Massachusetts Institute of Technology April 2015 Cover images: Christopher Harting Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 02139-4307 Telephone Number 617.253.1000 TTY 617.258.9344 Website http://web.mit.edu/ The Briefing Book is researched and written by a variety of MIT faculty and staff, in particular the members of the Office of the Provost’s Institutional Research group, Industrial Liaison Program, Student Financial Services, and the MIT Washington Office. Executive Editors Maria T. Zuber, Vice President for Research [email protected] William B. Bonvillian, Director, MIT Washington Office [email protected] Editors Shirley Wong [email protected] Lydia Snover, to whom all questions should be directed [email protected] 2 MIT Briefing Book MIT Senior Leadership President Vice President for Finance L. Rafael Reif Glen Shor Chairman of the Corporation Director, Lincoln Laboratory Robert B. Millard Eric D. Evans Provost Dean, School of Architecture and Planning Martin A. Schmidt Hashim Sarkis Chancellor Dean, School of Engineering Cynthia Barnhart Ian A. Waitz Executive Vice President and Treasurer Dean, School of Humanities, Arts, and Social Sciences Israel Ruiz Deborah K. Fitzgerald Vice President for Research Dean, School of Science Maria T. Zuber Michael Sipser Vice President Dean, Sloan School of Management Claude R. Canizares David C. Schmittlein Vice President and General Counsel Associate Provost Mark DiVincenzo Karen Gleason Chancellor for Academic Advancement Associate Provost W. Eric L. Grimson Philip S. Khoury Vice President Director of Libraries Kirk D. Kolenbrander Chris Bourg Vice President for Communications Institute Community and Equity Officer Nathaniel W.
    [Show full text]