Terrestrial Small Mammal Diversity and Abundance in Taï National Park, Côte D’Ivoire

Total Page:16

File Type:pdf, Size:1020Kb

Terrestrial Small Mammal Diversity and Abundance in Taï National Park, Côte D’Ivoire Nature Conservation Research. Заповедная наука 2018. 3(Suppl.2): 66–75 DOI: 10.24189/ncr.2018.067 TERRESTRIAL SMALL MAMMAL DIVERSITY AND ABUNDANCE IN TAÏ NATIONAL PARK, CÔTE D’IVOIRE Bertin K. Akpatou1,*, Kouakou H. Bohoussou2,**, Blaise Kadjo1, Violaine Nicolas3 1Félix Houphouët-Boigny University, Côte d’Ivoire 2University of Man, Côte d’Ivoire 3National Museum of Natural History of Paris, France e-mail: *[email protected], **[email protected] Received: 22.04.2018 A terrestrial small mammal species survey was carried out in the Taï National Park from March to June 2010, using Sherman’s live traps and pitfall traps. The aim of the study was to determine the diversity and distribu- tion of rodents and shrews in three different habitats: primary, secondary and swamp forests. During the study period, 263 terrestrial small mammals belonging to 17 species (six Soricidae species and eleven Muridae spe- cies) were captured out of 8,610 trap-nights. For Rodents, the most frequent species were Malacomys edwardsi (n = 76) followed by Hylomyscus simus (n = 53), Praomys rostratus (n = 51) and Hybomys planifrons (n = 27). For shrews, the most frequent species was Crocidura buettikoferi (n = 12) followed by Crocidura eburnea (n = 7). The species richness (S) and diversity index (H’) were higher in the secondary forest (S = 15; H’ = 2.12) than the ones of the primary forest (S = 10; H’ = 1.79) and swamp forest (S = 8, H’ = 1.74) respectively. In the primary forest, the population of terrestrial small mammals was dominated by four species: Malacomys edwardsi (n = 32), Praomys rostratus (n = 21), Hylomyscus simus (n = 15) and Hybomys planifrons (n = 13). In the secondary forest, Hylomyscus simus (n = 29), Malacomys edwardsi (n = 23) and Praomys rostratus (n = 18) were the most abundant. In swamp forest, the most abundant species were: Malacomys edwardsi (n = 21), Praomys rostratus (n = 12) and Hybomys planifrons (n = 11). Of the listed species, two species are worthy for conservation, C. buettikoferi (NT) and G. buntingi (DD), and ten were endemic to the Upper Guinea forests. These results confirm once again the important animal diversity of the Taï National Park, which harbours nu- merous species endemic to the Upper Guinea forests. Key words: biodiversity, conservation status, Muridae, Soricidae, tropical rainforest Introduction These actions thus, consecrate the recognition of Tropical areas are known for their high bio- its biological specificity at international level (All- diversity compared to temperate regions (Brown, port et al., 1994; Kone, 2004). Several conserva- 2014). In fact, several hotspots have been defined tion and scientific research programmes have been in tropical regions. Some Upper Guinea forest conducted in the TNP (Chatelain et al., 2001). blocks have been particularly identified as prior- Studies in the TNP have focused mainly on ity areas for biodiversity conservation in the world botanical diversity (Ake-Assi & Pfeffer, 1975; (Myers et al., 2000; Kuper et al., 2004). The Taï Adou Yao & N’Guessan, 2005). At the level of National Park (TNP), which covers 457 000 ha, fauna, the majority of the work carried out has is one of the largest intact blocks of biodiversity been focused on large mammals, particularly on hotspots in the Upper Guinea. It is made up of for- Primates: Pan troglodytes verus (Soiret et al., ests which could have been maintained during the 2015; Ban et al., 2016) and the family Cercopithe- Pleistocene glacial and interglacial cycles (Maley, cidae (Kone, 2004; Kouassi, 2016). Compared to 1996; Anhuf et al., 2006). Thus, it has been able to large mammals, very few studies have been con- function as a forest refuge during arid periods (An- ducted on terrestrial small mammals, in particular huf et al., 2006). This paleoclimatic phenomenon the composition of the community. The inventory could explain its great biological richness and the data on Muridae and Soricidae in the TNP come existence of many endemic species (Maley, 2001). from the work of Dosso (1975, 1983) and Barri- In order to conserve this exceptional biological ere et al. (1999). The studies carried out on these diversity, the TNP was created by decree on Au- groups in recent years are more focused on the gust 28, 1972. In 1978, it joined the international diet of Soricidae (Churchfield et al., 2004) and the network of Biosphere Reserves and has been listed taxonomic review of the genera Praomys (Akpa- since 1982 on the UNESCO World Heritage sites. tou, 2009) and Malacomys (Bohoussou, 2016). 66 Nature Conservation Research. Заповедная наука 2018. 3(Suppl.2): 66–75 DOI: 10.24189/ncr.2018.067 It is therefore difficult to appreciate the ter- restrial small mammal communities in the TNP in terms of diversity and abundance. However, it is recognised that terrestrial small mammals form an important component of tropical natural environments (Adam et al., 2015; Bantihun & Bekele, 2015). Terrestrial small mammals play an important ecological role. They are an impor- tant component in the trophic chain, since they are prey for small carnivores, raptors and rep- tiles (Habtamu & Bekele, 2012) and also con- tribute to the regeneration of forests through the dissemination of seeds (Angelici & Luiselli, 2005). In addition, their reduced longevity, off- set by strong population dynamics, enables them to react quickly to environmental conditions changes and habitat fragmentation (Delattre et Fig. 1. Location of the study area in the Taï National Park, al., 1992; Nicolas et al., 2009). Thus, the spe- Côte d’Ivoire. cies richness and abundance of terrestrial small mammals are regularly used to measure the level of disturbance of different habitats (Nicolas et Rodents and shrews were inventoried in three al., 2009; Avenant, 2011). And hence a better types of habitats: primary forest, secondary forest, understanding of the composition of terrestrial swamp forest, from March to June 2010 in the western small mammal communities can contribute to a part of the TNP (Fig. 1). The primary forest (5°50′N; better assessment of the conservation status and 7°20′W) vegetation is characterised by Phyllocos- the functioning of particular forest ecosystems mus africanus Klotzsch, Corynanthe pachyceras like that of TNP. K.Schum., Xylopia quintasii Engl. & Diels, Coula The purpose of this study was to compare the edulis Baill., Octoknema borealis Hutch. & Dalziel, species richness and relative abundance of terres- Trichoscypha arborea A. Chev., Bombax brevicuspe trial small mammals in the three dominant TNP Sprague, Parkia bicolor A. Chev., Bussea occiden- habitats, represented by primary, secondary, and talis Hutch, and Erythrophleum ivorense A. Chev. swamp forests. In the secondary forest (5°49′N; 7°23′W), the most common species were Uapaca guineensis Müll. Arg., Material and Methods Ricinodendron heudelotii (Baill.) Pierre ex Heckel, Study area and habitats surveyed Pycnanthus angolensis (Welw.) Warb, Petersianthus This study was carried out in the TNP, locat- macrocarpus (P. Beauv.) Liben, Funtumia africana ed in southwestern Côte d’Ivoire (5°08′–6°24′N (Benth.) Stapf, Entandrophragma angolense (Welw.) and 6°47′–7°25′W). The TNP is the largest in- C. DC., and Entandrophragma cylindricum Sprague. tact block of lowland rainforest in West Africa. The vegetation of the swamp forest (5°50′N; 7°21′W) It covers an area of 457 000 ha and is extended is dominated by Thaumatococcus daniellii (Benn.) to the north by the Wildlife Reserve of N’zo with Benth., Megaphrynium macrostachyum (Benth.) 790 km2 (Schweter, 1999; Kone, 2004). The TNP Milne-Redh., Sarcophrynium brachystachyum is situated 20 km east of Tai City. It is bounded (Benth.) K.Schum., Sacoglottis gabonensis (Baill.) by the River Cavally on the west, the River Sas- Urb., Afzelia bella var. gracilior, Hypselodelphys sandra on the east, the region of San Pedro on violacea (Ridl.) Milne-Redh., Anthostema aubryan- the south, and on the north by the Cavally re- um Baill., Protomegabaria stapfiana (Beille) Hutch., gion (Guiglo) (Fig. 1). The average annual rain- Hunteria umbellata (K. Schum.) Hallier f., and Saco- fall is 1800 mm, the average annual temperature glottis gabonensis (Baill.) Urb. (Ake-Assi & Pfeffer, is 24°C. The TNP is subjected to a four-season 1975; Adou Yao & N’Guessan, 2005). subequatorial climate: two rainy seasons (March – June and September – November) and two dry Small mammal sampling seasons (July – August and December – Febru- Two types of traps were used to capture ter- ary) (Collinet et al., 1984). restrial small mammals: 67 Nature Conservation Research. Заповедная наука 2018. 3(Suppl.2): 66–75 DOI: 10.24189/ncr.2018.067 Sherman live traps. In each habitat, four Molecular Systematics Service (UMS 2700) of plots of 5000 m2 (100 m × 50 m) each were de- the MNHN in Paris. The results of the molecular lineated and sampled. The different trapping analyses are not presented in this document. plots were sat at about 500 m apart to avoid in- Small mammals were identified following the fluences on each other during sampling. A total established taxonomic nomenclature (Meester & of 12 plots were prospected during this study. Setzer, 1971; Happold, 2013; Happold & Hap- In each plot, ten equidistant trap lines of 10 m pold, 2013). were arranged. On each trapping line, ten Sher- man live traps (7.5 × 9 × 23 cm) were set, spaced Data analysis 5 m apart, making a total of 100 Sherman live The composition and structure of terrestrial traps per plot. The traps were baited with fresh small mammal populations in different habitats palm nuts (Elaeis guineensis Jacq.). Traps were were described using several ecological vari- checked every morning after sunrise. Traps were ables and indices. For each habitat, we deter- set for 7 consecutive nights, making a trapping mined the species richness (S), which corre- effort of 700 trap-nights per plot, resulting in a sponds to the total number of species sampled.
Recommended publications
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale.
    [Show full text]
  • SHORT NOTE the PHYLOGENY of SOME AFRICAN MUROIDS (RODENTIA) BASED UPON PARTIAL MITOCHONDRIAL CYTOCHROME B SEQUENCES
    Belg. J. Zoo!. - Volume 125 (1995) - issue 2 - pages 403-407 - Brussels 1995 SHORT NOTE THE PHYLOGENY OF SOME AFRICAN MUROIDS (RODENTIA) BASED UPON PARTIAL MITOCHONDRIAL CYTOCHROME b SEQUENCES ERIK VERHEYEN ( 1), MARc COLYN (2) and WALTER VERHEYEN (3) (!)Section Taxonomy and Biochemical Systematics, Royal Belgian Institute ofNatural Scien­ ces, Vautierstraat, 29, B-1040 Brussels (Belgium) (2) Station Biologique de Paimpont, F-35380 Plélanle-Grand (France) (3) Department Biology, University of Antwerp (RUCA), Groenen­ borgerlaari, 171, B-2020 Antwerpen (Be1gium) Key words : African Muridae, mtDNA, cytochrome b, phylogeny. Almost 50 % of al! extant mammal species are rodents and' much of the taxonomie confusion in this group concerns the Muroidea. Immunological data, DNA/DNA hybridization experiments, amino acid sequences, distribution of highly amplified Lx fragments and mitochondrial DNA sequences disagree with the morphology based systematics and suggest that the genus Acomys does not belong to the Murinae Illiger, 1814 (1, 2, 3, 4, 5, 6, 7, 8, 9). If the« acomyines » (Acomys Geoffroy, 1838, Uranomys Dollman, 1909 and Lophuromys Peters, 1874) and the Murinae are found to be separated by at !east two nodes in the cladogram, the similarity between the cranial and dental morphologies of these two clades could be the result of convergent evolution. To test recently published phylogenies based on different molecular data we analyzed the nucleic acid sequences of portions of the mitochondrial cytochrome b gene (cyt b). In order to evaluate the potential importance of biological sampling on phylogenetic inference, we studied the relations among a number of African genera instead of Mus L., 1758 and Rattus Fisher, 1803 often used as the repre­ sentatives of the Murinae.
    [Show full text]
  • Comparative Phylogeography of Three Endemic Rodents from the Albertine Rift, East Central Africa
    Molecular Ecology (2007) 16, 663–674 doi: 10.1111/j.1365-294X.2007.03153.x ComparativeBlackwell Publishing Ltd phylogeography of three endemic rodents from the Albertine Rift, east central Africa MICHAEL H. HUHNDORF,*† JULIAN C. KERBIS PETERHANS†‡ and SABINE S. LOEW*† *Department of Biological Sciences, Behaviour, Ecology, Evolution and Systematics Section, Illinois State University, Normal, Illinois 61790-4120, USA, †Department of Zoology, The Field Museum, Chicago, Illinois, 60605-2496, USA, ‡University College, Roosevelt University, Chicago, Illinois, 60605, USA Abstract The major aim of this study was to compare the phylogeographic patterns of codistributed rodents from the fragmented montane rainforests of the Albertine Rift region of east central Africa. We sampled individuals of three endemic rodent species, Hylomyscus denniae, Hybomys lunaris and Lophuromys woosnami from four localities in the Albertine Rift. We analysed mitochondrial DNA sequence variation from fragments of the cytochrome b and con- trol region genes and found significant phylogeographic structuring for the three taxa examined. The recovered phylogenies suggest that climatic fluctuations and volcanic activity of the Virunga Volcanoes chain have caused the fragmentation of rainforest habitat during the past 2 million years. This fragmentation has played a major role in the diversification of the montane endemic rodents of the region. Estimation of the divergence times within each species suggests a separation of the major clades occurring during the mid to late Pleistocene. Keywords: Africa, Albertine Rift, control region, cytochrome b, phylogeography, rodent Received 26 May 2006; revision accepted 1 September 2006 The Albertine Rift is the western branch of the Great Rift Introduction Valley in central and east Africa.
    [Show full text]
  • Chapter 15 the Mammals of Angola
    Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E.
    [Show full text]
  • Terrestrial Small Mammals (Soricidae and Muridae) from the Gamba Complex of Protected Areas, Gabon: Species Composition and Comparison of Sampling Techniques
    Terrestrial Small Mammals (Soricidae and Muridae) from the Gamba Complex of Protected Areas, Gabon: Species Composition and Comparison of Sampling Techniques Carrie 0'BRIEN\ William McSHEA^ Sylvain GUIMONDOU^ Patrick BARRIERE^ and Michael CARLETON^ 1 Introduction In this paper, we document species of terrestrial insectivores (Soricidae) and rodents (Muridae) The Guineo-Congolian region encompasses 2.8 mil- weighing less than 100 g that occur in the Gamba lion km"^ of lowland rainforest stretching from the Complex, compare faunal composition between coastal regions of West Africa to eastern Democratic coastal and inland sites, and test the success of dif- Republic of Congo (White 2001). The altitude is less ferent sampling protocols. In addition, we discuss than 1000 m except for a few higher peaks, and the our findings in the context of other mammal surveys rainfall averages 1600-2000 mm per year The region conducted in lowland rainforests of Central Africa. is renowned for both its plant and animal diversity, with an estimated 8000 species of plants (80% 2 Study Area endemic. White 1983) and 270 species of lowland mammals belonging to 120 genera (Grubb 2001, The Gamba Complex in southern Gabon comprises White 2001). Gabon, in the heart of the Guineo- the Ndogo and Ngové lagoons and their drainages and Congolian region, has some 80% of its original trop- encompasses over 11,000 km^ of coastal and inland ical moist forest remaining, which is the highest of rainforest. The major habitat types within the Complex all West, Central, and East African rainforest coun- include coastal scrub forest, mangrove forest, savan- tries (Naughton-Treves and Weber 2001).
    [Show full text]
  • Lassa Virus Circulation in Small Mammal Populations in Bo District, Sierra Leone
    biology Article Lassa Virus Circulation in Small Mammal Populations in Bo District, Sierra Leone Umaru Bangura 1,2,* , Jacob Buanie 1, Joyce Lamin 1, Christopher Davis 3,Gédéon Ngiala Bongo 2, Michael Dawson 1, Rashid Ansumana 1, Dianah Sondufu 1, Emma C. Thomson 3, Foday Sahr 4 and Elisabeth Fichet-Calvet 2,* 1 Mercy Hospital Research Laboratory, Bo, Sierra Leone; [email protected] (J.B.); [email protected] (J.L.); [email protected] (M.D.); [email protected] (R.A.); [email protected] (D.S.) 2 Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; [email protected] 3 Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK; [email protected] (C.D.); [email protected] (E.C.T.) 4 College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown PMB 595, Sierra Leone; [email protected] * Correspondence: [email protected] (U.B.); fi[email protected] (E.F.-C.) Simple Summary: Lassa fever is a viral hemorrhagic fever caused by the Lassa virus (LASV). It is a deadly rodent-borne zoonosis with outbreaks occurring mostly in Sierra Leone, Guinea, Liberia, and Nigeria, in West Africa. In Sierra Leone, surveillance activities of LASV focus mainly on the Kenema area in the eastern region, known to be the epicentre. Little is known about the presence of the virus in the Bo area, where Mastomys natalensis and Rattus rattus share habitats with humans. Our study investigated the circulation and phylogeny of new LASV strains and virus seroprevalence in rodent populations of villages in Bo district.
    [Show full text]
  • 2018 Environment and Conservation Monitoring
    Research Project Title: Seabird conservation and censusing in the antarctic region: a systematic overview Student Presenter: Joanne Ash Faculty Mentor: Krissek Yes Faculty Mentor Department: Lawrence Research Abstract: Four main bird orders populate Antarctica and the surrounding ocean: Sphenisciformes, Procellariiformes, Pelecaniformes, and Charadriiformes. Seabirds are threatened on a global scale, due to threats such as climate change, fishery by-catch, and pollution. During a 10 day stint of Antarctic field research, a census was conducted on seabird populations. The census research contributed to the worldwide understanding of conservation through the bird collection database eBird and aided in the evaluation of how field results reflected the current seabird conservation statuses. Seabird census data was taken from a ship traversing the Drake Passage and the waters surrounding the Antarctic Peninsula. Observations were taken from the bridge of the ship four times a day for fifteen minute intervals along with detailed environmental variables, such as sea temperature, latitude, and longitude. All census data was submitted to the eBird database. A total of 922 birds were censused, with high frequencies of expected species such as gentoo penguins, Antarctic cormorants, black-browed albatrosses, and brown skuas, with overall census results presenting little deviation form the expected species counts. But with a small sample size and limited locations, no broad correlations between our studies and conservation statuses can be made. The data was compiled in eBird allowing for our contribution to benefit large-scale seabird conservation studies. Research Project Title: The effect of allogrooming on social group dynamics in captive bonobos, Pan paniscus Student Presenter: Chelsea Mascuch Faculty Mentor: Benderlioglu No Faculty Mentor Department: Zeynep Research Abstract: Social allogrooming among the members of the same species serves important functions across taxa.
    [Show full text]
  • A Global-Scale Evaluation of Mammalian Exposure and Vulnerability to Anthropogenic Climate Change
    A Global-Scale Evaluation of Mammalian Exposure and Vulnerability to Anthropogenic Climate Change Tanya L. Graham A Thesis in The Department of Geography, Planning and Environment Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (Geography, Urban and Environmental Studies) at Concordia University Montreal, Quebec, Canada March 2018 © Tanya L. Graham, 2018 Abstract A Global-Scale Evaluation of Mammalian Exposure and Vulnerability to Anthropogenic Climate Change Tanya L. Graham There is considerable evidence demonstrating that anthropogenic climate change is impacting species living in the wild. The vulnerability of a given species to such change may be understood as a combination of the magnitude of climate change to which the species is exposed, the sensitivity of the species to changes in climate, and the capacity of the species to adapt to climatic change. I used species distributions and estimates of expected changes in local temperatures per teratonne of carbon emissions to assess the exposure of terrestrial mammal species to human-induced climate change. I evaluated species vulnerability to climate change by combining expected local temperature changes with species conservation status, using the latter as a proxy for species sensitivity and adaptive capacity to climate change. I also performed a global-scale analysis to identify hotspots of mammalian vulnerability to climate change using expected temperature changes, species richness and average species threat level for each km2 across the globe. The average expected change in local annual average temperature for terrestrial mammal species is 1.85 oC/TtC. Highest temperature changes are expected for species living in high northern latitudes, while smaller changes are expected for species living in tropical locations.
    [Show full text]
  • Rodents of Ndola (Copperbelt Province, Zambia)
    Rodents of Ndola (Copperbelt Province, Zambia) Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. des Fachbereichs Bio- und Geografie, an der Universität - Duisburg-Essen vorgelegt von Mathias Kawalika, MSc. aus Chipata (Sambia) Juli 2004 2 Die der vorliegenden Arbeit zugrundeliegenden Untersuchungen wurden unter direkter Betreuung von Herrn Prof. Dr. Hynek Burda, FB Bio- und Geowissenschaften, Land- schaftsarchitektur der Universität Duisburg-Essen, im Freiland und in Laboratory Sec- tion von Ndola City Council sowie im Labor Kafubu Water and Sewerage Co. Ltd. in Ndola (Sambia) durchgeführt. 1. Gutachter: Prof. Dr. Hynek Burda (Univ. Duisburg-Essen) 2. Gutachter: Prof. Dr. Herwig Leirs (Univ. Antwerpen) 3. Gutachter: prof. Dr. Friedemann Schrenk (Univ. Frankfurt am Main) Vorsitzender des Prüfungsausschusses: Prof. Dr. Guido Benno Feige (Univ. Duisburg-Essen) Tag der mündlichen Prüfung: 23. November 2004 3 I dedicate this thesis to my spiritual guide and mentor Sant Thakar Singh, my lovely wife Doyen, the children Enid, Clara, Jean, Henry, Margaret, Mirriam and Luwin and also my father Mr. Henry Chimpumba Kawalika. They all felt I deserved this one. 4 Abstract The present thesis deals with rodents of Ndola, capital of the Copperbelt Prov- ince, Zambia, and its surroundings. The study area is located approximately 13 o South and 28 o 35 East, about 1,300 m above sea level, is characterised by average monthly rainfall of 1,198 mm (with a highly variable rain: monthly range 0-283 mm, with 5 to 7 virtually rainless months per year). The region exhibits a mosaic of built up areas, culti- vated fields, forests and natural habitats of the original Zambezian savannah woodland.
    [Show full text]
  • Oceanic Islands of Wallacea As a Source for Dispersal and Diversification of Murine Rodents
    Received: 1 April 2019 | Revised: 14 August 2019 | Accepted: 28 August 2019 DOI: 10.1111/jbi.13720 RESEARCH PAPER Oceanic islands of Wallacea as a source for dispersal and diversification of murine rodents Kevin C. Rowe1,2 | Anang S. Achmadi3 | Pierre‐Henri Fabre4 | John J. Schenk5 | Scott J. Steppan6 | Jacob A. Esselstyn7,8 1Sciences Department, Museums Victoria, Melbourne, Vic., Australia Abstract 2School of BioSciences, The Univeristy of Aim: To determine the historical dynamics of colonization and whether the relative Melbourne, Parkvillie, Vic., Australia timing of colonization predicts diversification rate in the species‐rich, murine rodent 3Museum Zoologicum Bogoriense, Research Center For Biology, Indonesian Institute of communities of Indo‐Australia. Sciences (LIPI), Cibinong, Indonesia Location: Indo‐Australian Archipelago including the Sunda shelf of continental Asia, 4 Institut des Sciences de Sahul shelf of continental Australia, the Philippines and Wallacea of Indonesia. l'Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Taxon: Order Rodentia, Family Muridae. Montpellier, Montpellier, France Methods: We used a fossil‐calibrated molecular phylogeny and Bayesian biogeo‐ 5Department of Environmental and Plant graphical modelling to infer the frequency and temporal sequence of biogeographical Biology, Ohio University, Athens, OH, USA 6Department of Biological Science, Florida transitions among Sunda, Sahul, the Philippines and Wallacea. We estimated diver‐ State University, Tallahassee, FL, USA sification rates for each colonizing lineage using a method‐of‐moments estimator of 7 Museum of Natural Science, Louisiana State net diversification and Bayesian mixture model estimates of diversification rate shifts. University, Baton Rouge, LA, USA 8Department of Biological Results: We identified 17 biogeographical transitions, including nine originating from Sciences, Louisiana State University, Baton Sunda, seven originating from Sulawesi and broader Wallacea and one originating Rouge, LA, USA from Sahul.
    [Show full text]
  • Diversity, Distribution, and Conservation of Endemic Island Rodents
    ARTICLE IN PRESS Quaternary International 182 (2008) 6–15 Diversity, distribution, and conservation of endemic island rodents Giovanni Amoria,Ã, Spartaco Gippolitib, Kristofer M. Helgenc,d aInstitute of Ecosystem Studies, CNR-Institute of Ecosystem Studies, Via A. Borelli 50, 00161 Rome, Italy bConservation Unit, Pistoia Zoological Garden, Italy cDivision of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA dDepartment of Biological Sciences, Division of Environmental and Life Sciences, Macquarie University, Sydney, New South Wales 2109, Australia Available online 8 June 2007 Abstract Rodents on islands are usually thought of by conservationists mainly in reference to invasive pest species, which have wrought considerable ecological damage on islands around the globe. However, almost one in five of the world’s nearly 2300 rodent species is an island endemic, and insular rodents suffer from high rates of extinction and endangerment. Rates of Quaternary extinction and current threat are especially high in the West Indies and the species-rich archipelagos of Southeast Asia. Rodent endemism reaches its most striking levels on large or remote oceanic islands, such as Madagascar, the Caribbean, the Ryukyu Islands, the oceanic Philippines, Sulawesi, the Galapagos, and the Solomon Islands, as well as on very large land-bridge islands, especially New Guinea. While conservation efforts in the past and present have focused mainly on charismatic mammals (such as birds and large mammals), efforts specifically targeted toward less conspicuous animals (such as insular rodents) may be necessary to stem large numbers of extinctions in the near future. r 2007 Elsevier Ltd and INQUA. All rights reserved.
    [Show full text]