2018 Environment and Conservation Monitoring
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . .................................................... -
Harnessing Population Genetics for Pest
Human–Wildlife Interactions 13(2):250–263, Fall 2019 • digitalcommons.usu.edu/hwi Commentary Harnessing population genetics for pest management: theory and application for urban rats Matthew Combs, Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA [email protected] Kaylee Byers, Department of Interdisciplinary Studies, University of British Columbia, #270 2357 Main Mall, Vancouver, BC V6T IZ4, Canada Chelsea Himsworth, School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3, Canada Jason Munshi-South, Louis Calder Center Biological Field Station, Fordham University, 31 Whippoorwill Road, Armonk, NY 10504, USA Abstract: Effective management of rodent pests requires an ecological understanding of how they move through their environment and how those movements influence the invasion, persistence, or reinvasion of problematic colonies. Traditional methodologies used to describe rodent movement patterns, such as mark-recapture, are hindered by their time-consuming nature and limited geographic scope. As such, our understanding of how rodents interact with urban environments remains limited. Population genetic principles and tools have the capacity to greatly increase our understanding of rodent population dynamics, ecological relationships, and movements across space, but this field is often unapproachable to non- scientist pest management professionals (PMPs). In this commentary, we aim to promote collaborative -
Exploratory Trip to Democratic Republic of the Congo, August 20 – September 15, 2004
Exploratory Trip to Democratic Republic of the Congo, August 20 – September 15, 2004 Trip Report for International Programs Office, USDA Forest Service, Washington, D.C. Final version: December 15, 2004 Bruce G. Marcot, USDA Forest Service Pacific Northwest Research Station, 620 S.W. Main St., Suite 400, Portland, Oregon 97205, 503-808-2010, [email protected] Rick Alexander, USDA Forest Service Forest Service Pacific Southwest Region, 1323 Club Dr., Vallejo CA 94592, 707 562-9014, [email protected] CONTENTS 1 Summary ……………………………………………………………………………………… 4 2 Introduction and Setting ………………………………………………………….…………… 5 3 Terms of Reference ……………………….…………………...……………………………… 5 4 Team Members and Contacts ………………………………………………….……………… 6 5 Team Schedule and Itinerary …………………………………………..….………...………… 6 6 Challenges to Community Forestry ...…………………………………………….…………… 7 6.1 Use of Community Options and Investment Tools (COAIT) ……………………… 7 6.2 Feasibility and Desirability of Lac Tumba Communities Engaging in Sustainable Timber Harvesting ..……………………………………….….…… 10 7 Conclusions, Recommendations, and Opportunities ..………………………...……………... 15 7.1 Overall Conclusions ...……………………………………………….………….…. 15 7.2 Recommendations …………………………………………………….…………… 19 7.2.1 Potential further involvement by FS .…………………………...………. 19 7.2.2 Aiding village communities under the IRM COAIT process .………..… 20 7.2.3 IRM’s community forest management program ..…………………...….. 23 7.2.4 USAID and CARPE .………………………………………….………… 26 7.2.5 Implementation Decrees under the 2002 Forestry Code ……………….. 28 8 Specific Observations ..……………………………………………...…………………….…. 32 8.1 Wildlife and Biodiversity …………………………………………..……………… 32 8.1.1 Endangered wildlife and the bushmeat trade .………………………..…. 32 8.1.2 Wildlife of young and old forests .…………………………………...…. 34 8.1.3 Forest trees and their associations .………………………………….….. 37 8.1.4 Caterpillars and trees .……………………………………………….….. 38 8.1.5 Islands and trees …………………………………………………….….. 39 8.1.6 Army ants ………………..………………………….…………………. -
Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale. -
Isolation by Marine Barriers and Climate Explain Areas of Endemism in an Island Rodent
Received: 9 January 2018 | Revised: 9 April 2018 | Accepted: 6 May 2018 DOI: 10.1111/jbi.13392 RESEARCH PAPER Isolation by marine barriers and climate explain areas of endemism in an island rodent Thomas C. Giarla1 | Sean P. Maher2 | Anang S. Achmadi3 | Meagan K. Moore4 | Mark T. Swanson4,5 | Kevin C. Rowe6,7 | Jacob A. Esselstyn4,5 1Department of Biology, Siena College, Loudonville, New York Abstract 2Department of Biology, Missouri State Aim: The Indonesian island of Sulawesi is home to thousands of endemic terrestrial University, Springfield, Missouri animal species. Phylogeographical studies of some of these taxa revealed concordant 3Museum Zoologicum Bogoriense, Research Center for Biology, Cibinong, Indonesia distribution patterns (areas of endemism; AoEs), suggestive of a shared evolutionary 4Museum of Natural Science, Louisiana or ecological mechanism driving divergence among various terrestrial taxa. Generally, State University, Baton Rouge, Louisiana AoEs have been attributed to Pleistocene marine incursions, geological fault zones 5 Department of Biological Sciences, ’ Louisiana State University, Baton Rouge, and Sulawesi s history as an archipelago. We test, for the first time, the hypothesis Louisiana that population divergences are associated with unsuitable climate spaces at the 6 Sciences Department, Museums Victoria, boundaries between these areas. Melbourne, VIC, Australia Location: Sulawesi, Indonesia. 7BioSciences, University of Melbourne, Melbourne, VIC, Australia Taxon: Maxomys musschenbroekii, a common murid rodent endemic to Sulawesi. Methods: We sequenced a mitochondrial gene, four nuclear protein-coding genes Correspondence Thomas C. Giarla, Siena College, 515 Loudon and hundreds of ultraconserved elements from individuals sampled across the island, Rd, Loudonville, NY 12211. which we used to build intraspecific phylogenies and identify population structure. -
SHORT NOTE the PHYLOGENY of SOME AFRICAN MUROIDS (RODENTIA) BASED UPON PARTIAL MITOCHONDRIAL CYTOCHROME B SEQUENCES
Belg. J. Zoo!. - Volume 125 (1995) - issue 2 - pages 403-407 - Brussels 1995 SHORT NOTE THE PHYLOGENY OF SOME AFRICAN MUROIDS (RODENTIA) BASED UPON PARTIAL MITOCHONDRIAL CYTOCHROME b SEQUENCES ERIK VERHEYEN ( 1), MARc COLYN (2) and WALTER VERHEYEN (3) (!)Section Taxonomy and Biochemical Systematics, Royal Belgian Institute ofNatural Scien ces, Vautierstraat, 29, B-1040 Brussels (Belgium) (2) Station Biologique de Paimpont, F-35380 Plélanle-Grand (France) (3) Department Biology, University of Antwerp (RUCA), Groenen borgerlaari, 171, B-2020 Antwerpen (Be1gium) Key words : African Muridae, mtDNA, cytochrome b, phylogeny. Almost 50 % of al! extant mammal species are rodents and' much of the taxonomie confusion in this group concerns the Muroidea. Immunological data, DNA/DNA hybridization experiments, amino acid sequences, distribution of highly amplified Lx fragments and mitochondrial DNA sequences disagree with the morphology based systematics and suggest that the genus Acomys does not belong to the Murinae Illiger, 1814 (1, 2, 3, 4, 5, 6, 7, 8, 9). If the« acomyines » (Acomys Geoffroy, 1838, Uranomys Dollman, 1909 and Lophuromys Peters, 1874) and the Murinae are found to be separated by at !east two nodes in the cladogram, the similarity between the cranial and dental morphologies of these two clades could be the result of convergent evolution. To test recently published phylogenies based on different molecular data we analyzed the nucleic acid sequences of portions of the mitochondrial cytochrome b gene (cyt b). In order to evaluate the potential importance of biological sampling on phylogenetic inference, we studied the relations among a number of African genera instead of Mus L., 1758 and Rattus Fisher, 1803 often used as the repre sentatives of the Murinae. -
Comparative Phylogeography of Three Endemic Rodents from the Albertine Rift, East Central Africa
Molecular Ecology (2007) 16, 663–674 doi: 10.1111/j.1365-294X.2007.03153.x ComparativeBlackwell Publishing Ltd phylogeography of three endemic rodents from the Albertine Rift, east central Africa MICHAEL H. HUHNDORF,*† JULIAN C. KERBIS PETERHANS†‡ and SABINE S. LOEW*† *Department of Biological Sciences, Behaviour, Ecology, Evolution and Systematics Section, Illinois State University, Normal, Illinois 61790-4120, USA, †Department of Zoology, The Field Museum, Chicago, Illinois, 60605-2496, USA, ‡University College, Roosevelt University, Chicago, Illinois, 60605, USA Abstract The major aim of this study was to compare the phylogeographic patterns of codistributed rodents from the fragmented montane rainforests of the Albertine Rift region of east central Africa. We sampled individuals of three endemic rodent species, Hylomyscus denniae, Hybomys lunaris and Lophuromys woosnami from four localities in the Albertine Rift. We analysed mitochondrial DNA sequence variation from fragments of the cytochrome b and con- trol region genes and found significant phylogeographic structuring for the three taxa examined. The recovered phylogenies suggest that climatic fluctuations and volcanic activity of the Virunga Volcanoes chain have caused the fragmentation of rainforest habitat during the past 2 million years. This fragmentation has played a major role in the diversification of the montane endemic rodents of the region. Estimation of the divergence times within each species suggests a separation of the major clades occurring during the mid to late Pleistocene. Keywords: Africa, Albertine Rift, control region, cytochrome b, phylogeography, rodent Received 26 May 2006; revision accepted 1 September 2006 The Albertine Rift is the western branch of the Great Rift Introduction Valley in central and east Africa. -
Chapter 15 the Mammals of Angola
Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E. -
Best Practice Guidelines for Rat Eradication on Tropical Islands
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2015 Best practice guidelines for rat eradication on tropical islands B. B. Keitt Island Conservation, Santa Cruz, CA, [email protected] R. Griffiths Island Conservation, Santa Cruz, CA S. Boudjelas University of Auckland K. Broome Department of Conservation, Hamilton, New Zealand S. Cranwell Birdlife International, Suva, Fiji See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Life Sciences Commons Keitt, B. B.; Griffiths, R.; Boudjelas, S.; oome,Br K.; Cranwell, S.; Millett, J.; Pitt, W.; and Samaniego-Herrera, A., "Best practice guidelines for rat eradication on tropical islands" (2015). USDA National Wildlife Research Center - Staff Publications. 1700. https://digitalcommons.unl.edu/icwdm_usdanwrc/1700 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors B. B. Keitt, R. Griffiths, S. Boudjelas, K. oome,Br S. Cranwell, J. Millett, W. Pitt, and A. Samaniego-Herrera This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ icwdm_usdanwrc/1700 Biological Conservation 185 (2015) 17–26 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Special Issue Article: Tropical rat eradication Best practice guidelines for rat eradication on tropical islands ⇑ B. -
Terrestrial Small Mammals (Soricidae and Muridae) from the Gamba Complex of Protected Areas, Gabon: Species Composition and Comparison of Sampling Techniques
Terrestrial Small Mammals (Soricidae and Muridae) from the Gamba Complex of Protected Areas, Gabon: Species Composition and Comparison of Sampling Techniques Carrie 0'BRIEN\ William McSHEA^ Sylvain GUIMONDOU^ Patrick BARRIERE^ and Michael CARLETON^ 1 Introduction In this paper, we document species of terrestrial insectivores (Soricidae) and rodents (Muridae) The Guineo-Congolian region encompasses 2.8 mil- weighing less than 100 g that occur in the Gamba lion km"^ of lowland rainforest stretching from the Complex, compare faunal composition between coastal regions of West Africa to eastern Democratic coastal and inland sites, and test the success of dif- Republic of Congo (White 2001). The altitude is less ferent sampling protocols. In addition, we discuss than 1000 m except for a few higher peaks, and the our findings in the context of other mammal surveys rainfall averages 1600-2000 mm per year The region conducted in lowland rainforests of Central Africa. is renowned for both its plant and animal diversity, with an estimated 8000 species of plants (80% 2 Study Area endemic. White 1983) and 270 species of lowland mammals belonging to 120 genera (Grubb 2001, The Gamba Complex in southern Gabon comprises White 2001). Gabon, in the heart of the Guineo- the Ndogo and Ngové lagoons and their drainages and Congolian region, has some 80% of its original trop- encompasses over 11,000 km^ of coastal and inland ical moist forest remaining, which is the highest of rainforest. The major habitat types within the Complex all West, Central, and East African rainforest coun- include coastal scrub forest, mangrove forest, savan- tries (Naughton-Treves and Weber 2001). -
Seed Dispersal Strategies and the Threat of Defaunation in a Congo Forest
Biodivers Conserv DOI 10.1007/s10531-012-0416-x ORIGINAL PAPER Seed dispersal strategies and the threat of defaunation in a Congo forest David Beaune • Franc¸ois Bretagnolle • Loı¨c Bollache • Gottfried Hohmann • Martin Surbeck • Barbara Fruth Received: 2 May 2012 / Accepted: 22 November 2012 Ó Springer Science+Business Media Dordrecht 2012 Abstract Seed dispersal mode of plants and primary interactions with animals are studied in the evergreen Afrotropical forest of LuiKotale, at the south-western part of Salonga National Park (DR Congo). We first analysed seed dispersal strategies for (a) the plant species inventoried over a decade at the study site and (b) the tree community in 12 9 1 ha census plots. Our analyses of dispersal syndromes for 735 identified plant species show that 85 % produce fleshy fruits and rely on animals for primary seed dis- persal. Trees depending on animals for primary dispersal dominate the tree community (95 %), while wind-dispersed and autochorous trees are rare in mixed tropical forests. A list of frugivorous vertebrate species of the ecosystem was established. Among the fruit- eating vertebrate species identified in the ecosystem, forest elephants and bonobos are threatened with extinction (IUCN, The IUCN red list of threatened species, 2012). Although most of the species listed previously are internationally and regionally protected, all the species we observed dispersing seeds are hunted, fished or trapped by humans in the area. With the exception of bush pigs, seed predators, mainly small-sized animals, are generally not targeted by hunters. As a consequence, we expect human pressure on key animal species to impact the plant community. -
Seed Dispersal Strategies and the Threat of Defaunation in a Congo Forest
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/256303581 Seed dispersal strategies and the threat of defaunation in a Congo forest ARTICLE in BIODIVERSITY AND CONSERVATION · JANUARY 2013 Impact Factor: 2.37 · DOI: 10.1007/s10531-012-0416-x CITATIONS READS 20 93 6 AUTHORS, INCLUDING: David Beaune National Nature Reserve, RN… 27 PUBLICATIONS 202 CITATIONS SEE PROFILE Loic Bollache University Bourgogne Franc… 67 PUBLICATIONS 1,182 CITATIONS SEE PROFILE Available from: David Beaune Retrieved on: 28 March 2016 Biodivers Conserv (2013) 22:225–238 DOI 10.1007/s10531-012-0416-x ORIGINAL PAPER Seed dispersal strategies and the threat of defaunation in a Congo forest David Beaune • Franc¸ois Bretagnolle • Loı¨c Bollache • Gottfried Hohmann • Martin Surbeck • Barbara Fruth Received: 2 May 2012 / Accepted: 22 November 2012 / Published online: 4 December 2012 Ó Springer Science+Business Media Dordrecht 2012 Abstract Seed dispersal mode of plants and primary interactions with animals are studied in the evergreen Afrotropical forest of LuiKotale, at the south-western part of Salonga National Park (DR Congo). We first analysed seed dispersal strategies for (a) the plant species inventoried over a decade at the study site and (b) the tree community in 12 9 1 ha census plots. Our analyses of dispersal syndromes for 735 identified plant species show that 85 % produce fleshy fruits and rely on animals for primary seed dis- persal. Trees depending on animals for primary dispersal dominate the tree community (95 %), while wind-dispersed and autochorous trees are rare in mixed tropical forests. A list of frugivorous vertebrate species of the ecosystem was established.