Studies of the Vapor-Liquid-Solid

Total Page:16

File Type:pdf, Size:1020Kb

Studies of the Vapor-Liquid-Solid STUDIES OF THE VAPOR-LIQUID-SOLID SYNTHESIS OF MgSnN2 by ZIHANG XU Submitted in partial fulfillment of the requirements for the degree of Master of Science Physics Program CASE WESTERN RESERVE UNIVERSITY August, 2021 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of Zihang Xu Candidate for the degree of Master of Science Committee Chair Prof. Kathleen Kash Committee Member Prof. Corbin Covault Committee Member Prof. Walter Lambrecht Date of Defense June 4th, 2021 We also certify that written approval has been obtained for any proprietary material contained therein. 1 Table of Contents List of tables .......................................................................................................................4 List of figures .....................................................................................................................5 Acknowledgements ...........................................................................................................7 Abstract ..............................................................................................................................8 1 Introduction and overview .........................................................................................9 1.1 Overview ....................................................................................................................9 1.2 Scope of the thesis .....................................................................................................9 2 Background ...............................................................................................................11 2.1 III-Nitride semiconductors .......................................................................................11 2.2 II-IV-Nitride semiconductors ...................................................................................12 2.3 Previous research on MgSnN2 ..................................................................................13 2.3.1 Theoretical .......................................................................................................13 2.3.2 Experimental ....................................................................................................15 3 The growth experiments ............................................................................................17 3.1 Growth from Mg-Sn Alloys ...................................................................................17 3.1.1 The Mg-Sn phase diagram ...............................................................................17 3.1.2 Discussion of competing phases ......................................................................19 2 3.2 Description of the growth apparatus ......................................................................20 3.3 Growth procedure ..................................................................................................22 3.3.1 Preparation ......................................................................................................22 3.3.2 Growth experiments ........................................................................................23 4 Characterization results ..............................................................................................26 4.1 Optical microscopy ................................................................................................26 4.2 Scanning electron microscopy ...............................................................................31 5 Future work ..................................................................................................................38 Appendix Bibliography 3 List of Tables Table 1. Lattice parameters, lattice volume the average error with respect to experiment and lattice constant ratio in Mg-IV-N2 ...............................................................................14 Table 2. Calculated optoelectronic properties for the six cation ordered MgSnN2 structures ............................................................................................................................16 4 List of Figures Figure 1. Band gaps of II-IV-N2 and III-N compounds .....................................................12 Figure 2. Magnesium-Tin Binary Phase Diagram .............................................................17 Figure 3. Schematic of the growth instrument ...................................................................20 Figure 4. Experiment package. The crucible, not shown here, fits into the heater ............21 Figure 5. The thermocouple reading for the 350℃ growth. The point at which the nitrogen plasma was turned on is noted in the graph .........................................................23 Figure 6. The thermocouple reading for the 400℃ growth. The point at which the nitrogen plasma was turned on is noted in the graph .........................................................24 Figure 7. The alloys after the growth experiments. Note the boron nitride protector tubes embedded in the melts .......................................................................................................25 Figure 8. Optical microscope observation of the sample grown at 350℃ at 5X magnification .....................................................................................................................27 Figure 9. Optical microscope observation of the sample grown at 350℃ at 50X magnification. Circled areas are areas of particular interest, as discussed in the text .......28 Figure 10. Optical microscope observation of the sample grown at 400℃ at 5X magnification. Circled areas are particular areas of interest, as discussed in the text .......29 Figure 11. Optical microscope observation of the sample grown at 400℃ at 50X magnification. Circled areas are particular areas of interest, as discussed in the text .......30 5 Figure 12. SEM image of an area of the 350℃ sample surface with one example of a close-to-120-degree facet highlighted................................................................................31 Figure 13. SEM image of an area of the 400℃ sample surface with one example of a close-to-120-degree facet highlighted................................................................................32 Figure 14. EDX analysis of the selected area in Figure 13 on the 350℃ sample .............33 Figure 15. EDX analysis of the 400℃ sample ..................................................................35 Figure 16. EDX analysis of the 400℃ sample ..................................................................36 6 Acknowledgements I would like to express my gratitude to my advisor Prof. Kathleen Kash. Prof. Kathleen Kash provided inspiring guidance and support throughout my research at CWRU. I also want to thank other committee members of my thesis dissertation defense. I am grateful to Prof. Walter Lambercht from the Department of Physics, and Prof. Corbin Covault from the Department of Physics in CWRU. I am grateful to Dr. Dinushi Jayatunga for her help with the SEM/EDX measurements and support for materials from the NSF grant DMREF: SusChEM:1533957 and the U.S. Department of Energy award SSL: DE- EE0008718. Finally, I wish to express my deep and sincere gratitude to my family, especially my mother. Her encouragement always gives me confidence and strength to achieve my goals. Zihang Xu 7 Studies of the Vapor-Liquid-Solid Synthesis of MgSnN2 Abstract by ZIHANG XU MgSnN2 is a group II-IV nitride semiconductor. MgSnN2 has a wide band gap of 2.3 eV. It is also an affordable material because the tin element is abundant in the environment compared to the gallium and indium. This research focuses on the synthesis of the wurtzite structure of MgSnN2. In this work, the synthesis method is the vapor-liquid-solid method. Experiments on the growth of MgSnN2 from Mg/Sn pellets and Mg-Sn alloys were performed. The liquid Mg-Sn alloy was exposed to a plasma source in a vacuum chamber. According to observations using an optical microscope, the samples display structures that might be clusters of small crystallites. According to the scanning electron microscope observation, structures similar to crystallite are observed. Energy dispersive x-ray spectroscopy proves that the structures contain Mg, Sn, and N elements. There is a high possibility that MgSnN2 is successfully synthesized in these structures. 8 Chapter 1 Introduction and Overview 1.1 Overview MgSnN2 is a potentially promising semiconductor material because it is within the band 1 gap range for the green LED, as Sai Lyu et al. predicted. MgSnN2 is also promising because it is eco-friendly because of the availability and non-toxicity of Mg and Zn. In this thesis, experiments attempting to synthesize MgSnN2 using the vapor-liquid-solid method are described. The synthesis experiments took place in a low-pressure environment at temperatures lower than 500 degrees Celsius. Two different temperatures were chosen in the experiments: 350 degrees Celsius and 400 degrees Celsius. After growth the material was characterized by scanning electron microscopy and optical microscopy. 1.2 Scope of the Thesis Chapter 2 provides background information on nitride semiconductors. The chapter starts with group III-nitride semiconductors and compares them with group II-IV-nitride semiconductors. Previous theoretical and experimental studies of MgSnN2 are described. In Chapter 3, the growth experiments are described. This chapter discusses details of the Mg-Sn phase diagram
Recommended publications
  • Magnesium Nitride (Mg3n2) Powder
    Magnesium Nitride (Mg3N2) Powder US Research Nanomaterials, Inc. www.us-nano.com SAFTY DATA SHEET Revised Date 12/12/2015 1. PRODUCT AND COMPANY IDENTIFICATION 1.1 Product identifiers Product name: Magnesium Nitride (Mg3N2) Powder Product Number : US1115M Magnesium Nitride (Mg3N2) CAS#: 12057-71-5 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Research 1.3 Details of the supplier of the safety data sheet Company: US Research Nanomaterials, Inc. 3302 Twig Leaf Lane Houston, TX 77084 USA Telephone: +1 832-460-3661 Fax: +1 281-492-8628 1.4 Emergency telephone number Emergency Phone # : (832) 359-7887 2. HAZARDS IDENTIFICATION 2.1 Classification of the substance or mixture This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) 2.2 GHS Label elements, including precautionary statements Pictogram Signal word Warning Hazard statement(s) H260: In contact with water releases flammable gas. H302: Harmful if swallowed. H312: Harmful in contact with skin. H315: Causes skin irritation. H319: Causes serious eye irritation. H332: Harmful if inhaled. H335: May cause respiratory irritation. Precautionary statement(s) P223 Keep away from any possible contact with water, because of violent reaction and possible flash fire. P231+P232 Handle under inert gas. Protect from moisture. P261 Avoid breathing dust/fume/gas/mist/vapors/spray. P280 Wear protective gloves/protective clothing/eye protection/face protection. P301+P312 IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. P302+P352 IF ON SKIN: Wash with plenty of soap and water. P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
    [Show full text]
  • Investigations of Mixed-Anion Analogs of Manganite Perovskites and Bimetallic
    Investigations of Mixed-Anion Analogs of Manganite Perovskites and Bimetallic Group II Nitride Fluorides By Oscar Kipruto Keino Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in the Chemistry Program YOUNGSTOWN STATE UNIVERSITY December, 2017 Investigations of Mixed-Anion Analogs of Manganite Perovskites and Bimetallic Group II Nitride Fluorides By Oscar Kipruto Keino I hereby release this thesis to the public. I understand that this thesis will be made available from the Ohio LINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: ________________________________________________________________ Oscar Kipruto Keino, Student Date Approvals: ________________________________________________________________ Dr. Timothy R. Wagner, Thesis Advisor Date ________________________________________________________________ Dr. Sherri Lovelace-Cameron, Committee Member Date ________________________________________________________________ Dr. Allen Hunter, Committee Member Date ________________________________________________________________ Dr. Salvatore A. Sanders, Date Dean, College of Graduate Studies iii ABSTRACT Lanthanum manganites are perovskite related materials known in particular for their colossal magnetoresistance (CM) properties. Manganite compositions showing CM behavior are mixed cation compounds such as (CaxLa1-x) MnO3, which contain Mn ions in mixed
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Multi-Stage Synthesis of Magnesium Nitride Using an Atmospheric-Pressure Dielectric Barrier Discharge
    Int. J. Plasma Environ. Sci. Technol. 15 (2021) e02002 (6pp) Regular Paper DOI: 10.34343/ijpest.2021.15.e02002 Multi-stage synthesis of magnesium nitride using an atmospheric-pressure dielectric barrier discharge Shungo Zen*, Yingwen Huang, Nozomi Takeuchi Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1-S3-3, Ookayama, Meguro-ku, Tokyo, Japan * Corresponding author: [email protected] (Shungo Zen) Received: 18 March 2021 Revised: 8 May 2021 Accepted: 20 May 2021 Published online: 22 May 2021 Abstract A multi-stage dielectric barrier discharge (DBD) was used to elucidate the reaction pathway for synthesizing Mg3N2 from MgO, nitrogen, and hydrogen using atmospheric pressure plasma. Recently, ammonia has been considered as a promising carbon-free material for hydrogen storage and carrier owing to its high hydrogen density. However, the extensive use of ammonia as an energy carrier has problems with respect to transportation and storage because of its toxicity, odor, and combustibility. Therefore, we consider that Mg3N2 can solve these problems and focus on Mg3N2 synthesis by nitridation of MgO using a DBD in a N2 and H2 atmosphere instead of directly synthesizing ammonia. By investigating the Mg3N2 synthesis pathway using a multi-stage atmospheric pressure plasma, it is considered that H atoms and NH radicals reduce MgO and promote nitriding. Keywords: Ammonia carrier, dielectric barrier discharge, Mg3N2 synthesis, non-thermal plasma. 1. Introduction Owing to significant use of fossil fuel energy, environmental problems such as the greenhouse effect, acid rain, and smog are becoming severe [1]. Recognizing these issues has led to increased attention to renewable energy sources [2].
    [Show full text]
  • Tunable Light-Emission Through the Range 1.8–3.2 Ev and P-Type Conductivity at Room Temperature for Nitride Semiconductors, Ca(Mg1−Xznx)2N2 (X = 0 – 1)”
    Tunable light-emission through the range 1.8–3.2 eV and p-type conductivity at room temperature for nitride semiconductors, Ca(Mg1−xZnx)2N2 (x = 0 – 1) Masatake Tsuji,1 Hidenori Hiramatsu,1,2,a and Hideo Hosono1,2 1: Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Mailbox R3-3, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan 2: Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-1, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan a) Electronic mail: [email protected] 1 Abstract The ternary nitride CaZn2N2, composed only of earth-abundant elements, is a novel semiconductor with a band gap of ~1.8 eV. First-principles calculations predict that continuous Mg substitution at the Zn site will change the optical band gap in a wide range from ~3.3 eV to ~1.9 eV for Ca(Mg1−xZnx)2N2 (x = 0–1). In this study, we demonstrate that a solid-state reaction at ambient pressure and a high-pressure synthesis at 5 GPa produce x = 0 and 0.12, and 0.12 < x 1 polycrystalline samples, respectively. It is experimentally confirmed that the optical band gap can be continuously tuned from ~3.2 eV to ~1.8 eV, a range very close to that predicted by theory. Band-to-band photoluminescence is observed at room temperature in the ultraviolet–red region depending on x. A 2% Na doping at the Ca site of CaZn2N2 converts its highly resistive state to a p-type conducting state.
    [Show full text]
  • Formation, Stability and Presence of Magnesium Nitride in Magnesium Recycling Processes
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Berichte des Institutes für Geologie und Paläontologie der Karl- Franzens-Universität Graz Jahr/Year: 2004 Band/Volume: 9 Autor(en)/Author(s): Bauer Christoph, Mogessie Aberra, Galovsky Ulrike Artikel/Article: Formation, stability and presence of magnesium nitride in magnesium recycling processes. 70-71 ©Institut f. Erdwissensch., Geol. u. Paläont., Karl-Franzens-Universität Graz; download www.biologiezentrum.at Ber. Inst. Erdwiss. K.-F.-Univ. Graz ISSN 1608-8166 Band 9 Graz 2004 FORMATION, STABILITY AND PRESENCE OF MAGNESIUM NITRIDE IN MAGNESIUM RECYCLING PROCESSES Christoph BAUER1, Aberra MOGESSIE1 & Ulrike GALOVSKY2 1 Karl-Franzens Universität Graz 2 Leichtmetall Kompetenzzentrum Ranshofen In this study an attempt has been made to find methods of detecting magnesium nitride and to investigate in which part of the magnesium recycling process it is concentrated. As a light metal, magnesium has several interesting properties which enable it to be used in the automotive industry. Among the most important properties are its density and strength. Molten magnesium is unstable when exposed to air, and the usage of cover gases like SO2 or SF6 is necessary. For purifying the alloys, nitrogen is blown through the melt, so that impurities adhere to the bubbles’ surface and form compounds, which can be easily separated by gravitation. To produce high quality magnesium alloys, it is necessary to investigate the nitrogen compounds and their disposition. In moisture bearing environment, exothermic reactions take place when magnesium nitride reacts to ammonium and brucite and also when aluminium nitride reacts to ammonium and gibbsite.
    [Show full text]
  • Mg3n2 Nanocrystallites Formation During the Gan:Mg Layers Growth by the NH3-MBE Technique
    Journal of Crystal Growth 554 (2021) 125963 Contents lists available at ScienceDirect Journal of Crystal Growth journal homepage: www.elsevier.com/locate/jcrysgro Mg3N2 nanocrystallites formation during the GaN:Mg layers growth by the NH3-MBE technique T.V. Malin a, V.G. Mansurov a, Yu.G. Galitsyn a, D.S. Milakhin a, D.Yu. Protasov a,c, B.Ya. Ber b, D. Yu. Kazantsev b, V.V. Ratnikov b, M.P. Shcheglov b, A.N. Smirnov b, V.Yu. Davydov b, K. S. Zhuravlev a,d,* a Physics and Engineering of Semiconductor Structures Department, Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia b Ioffe Institute, St. Petersburg 194021, Russia c Novosibirsk State Technical University, Novosibirsk 630087, Russia d Novosibirsk State University, Novosibirsk 630090, Russia ARTICLE INFO ABSTRACT Communicated by H. Asahi The work is devoted to the study of p-GaN: Mg epitaxial layers grown by the ammonia MBE technique. We find that the conductivity of GaN layers doped with Mg does not change with a postgrowth heat treatment. Formation Keywords: of Mg3N2 nanocrystallites on GaN surface during epitaxial growth of the GaN layer with a high magnesium A1. Mg3N2-crystallites doping level was detected by the RHEED technique for the first time. It was shown that the Mg3N2 nano­ A3. Ammonia-MBE crystallites formation competes with the acceptor states formation process. It has been proposed that the growth B1. p-GaN temperature can be applied as an additional “tuning” mechanism which affects the Mg incorporation into the B1. GaN:Mg A1. RHEED growing GaN:Mg layers.
    [Show full text]
  • United States Patent [191 [11] 4,409,193 Sato Et Al
    United States Patent [191 [11] 4,409,193 Sato et al. [45] Oct. 11, 1983 [54] PROCESS FOR PREPARING CUBIC BORON shi Endo, Osamu' Fukunga, Minoru Iwata (1979) NITRIDE 1676-1680. [75] Inventors: Tadao Sato; Tadashi Endo; Osamu Journal of Material Science 16 (1981) 2227-2232, “The Fukunaga, all of Sakura; Minoru Synthesis of cBN Using Ca3B2N4”, Tadashi Endo, Iwata, Matsudo, all of Japan Osamu Fukunga, Minoru Iwata. [73] Assignee: National Institute for Researches in Primary Examiner-Brian E. Hearn Inorganic Materials, Ibaraki, Japan Assistant Examiner—Jackson Leeds Attorney, Agent, or Firm—Oblon, Fisher, Spivak, [21] Appl. No.: 354,354 McClelland & Maier [22] Filed: Mar. 3, 1982 [57] ABSTRACT [30] Foreign Application Priority Data A process for preparing cubic boron nitride comprises Mar. 6, 1981 [JP] Japan ................................ .. 56-32139 heating hexagonal boron nitride and magnesium boron Mar. 20, 1981 [JP] Japan ................................ .. 56-40563 nitride at a temperature of at least 1350“ C. under a [51] Int. Cl.3 ............................................ .. C01B 21/06 pressure at which the cubic boron nitride is thermody namically stable, whereby the cubic boron having high [52] U.S. C]. .. 423/290; 423/279 [58] Field of Search .............................. .. 423/290, 276 strength and high purity can readily be obtainable. Also disclosed is a process for the preparation of magnesium [56] References Cited boron useful as a starting material for the above process. FOREIGN PATENT DOCUMENTS This process comprises mixing hexagonal boron nitride and magnesium nitride or metal magnesium in a molar 506438 6/1971 Switzerland ...................... .. 423/290 ratio of hexagonal boron nitride/magnesium being at OTHER PUBLICATIONS least 0.6, and heating the mixture thus obtained, at a DeVries, R.
    [Show full text]
  • Nitrogen 1 Nitrogen
    Nitrogen 1 Nitrogen Nitrogen Appearance colorless gas, liquid or solid Spectral lines of Nitrogen General properties Name, symbol, number nitrogen, N, 7 Pronunciation /ˈnaɪtrɵdʒɪn/ nye-tro-jin Element category nonmetal Group, period, block 15, 2, p −1 Standard atomic weight 14.0067(2) g·mol Electron configuration 1s2 2s2 2p3 Electrons per shell 2, 5 (Image) Physical properties Phase gas Density (0 °C, 101.325 kPa) 1.251 g/L Melting point 63.15 K,-210.00 °C,-346.00 °F Boiling point 77.36 K,-195.79 °C,-320.33 °F Triple point 63.1526 K (-210°C), 12.53 kPa Critical point 126.19 K, 3.3978 MPa Heat of fusion (N ) 0.72 kJ·mol−1 2 Heat of vaporization (N ) 5.56 kJ·mol−1 2 Specific heat capacity (25 °C) (N ) 2 29.124 J·mol−1·K−1 Vapor pressure P/Pa 1 10 100 1 k 10 k 100 k at T/K 37 41 46 53 62 77 Atomic properties Nitrogen 2 Oxidation states 5, 4, 3, 2, 1, -1, -2, -3 (strongly acidic oxide) Electronegativity 3.04 (Pauling scale) Ionization energies 1st: 1402.3 kJ·mol−1 (more) 2nd: 2856 kJ·mol−1 3rd: 4578.1 kJ·mol−1 Covalent radius 71±1 pm Van der Waals radius 155 pm Miscellanea Crystal structure hexagonal Magnetic ordering diamagnetic Thermal conductivity (300 K) 25.83 × 10−3 W·m−1·K−1 Speed of sound (gas, 27 °C) 353 m/s CAS registry number 7727-37-9 Most stable isotopes iso NA half-life DM DE (MeV) DP 13N syn 9.965 min ε 2.220 13C 14N 99.634% 14N is stable with 7 neutron 15N 0.366% 15N is stable with 8 neutron Nitrogen ( /ˈnaɪtrɵdʒɪn/ ny-trə-jin) is a chemical element that has the symbol N, atomic number of 7 and atomic mass 14.00674 u.
    [Show full text]
  • Thermodynamic and Kinetic Analysis of Nitrogenization in Desulfurization of Hot Metal by Magnesium Injection
    ISIJ International, Vol. 49 (2009), No. 6, pp. 771–776 Review Thermodynamic and Kinetic Analysis of Nitrogenization in Desulfurization of Hot Metal by Magnesium Injection Haiping SUN,1,2) Yung-Chang LIU1) and Muh-Jung LU1) 1) Steel & Aluminum Research & Development Department, China Steel Corporation, Kaohsiung 81233, Taiwan. E-mail: [email protected] 2) School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia. E-mail: [email protected] (Received on November 25, 2008; accepted on February 18, 2009) Literature study and thermodynamic/kinetic analysis have been carried out on the effect of carrier gas on hot metal desulfurization by magnesium injection. The literature study shows that the magnesium efficiency of the process could be deteriorated by using nitrogen as carrier gas, but the difference in magnesium effi- ciency for the process using argon and that using nitrogen was not clearly identified. Thermodynamic/ki- netic analysis shows that when nitrogen is used as carrier gas for introducing magnesium into hot metal, the formation of magnesium nitride is possible in the regions close to the lance tip. The nitride formed at lance tip may cause lance clogging. Magnesium nitride is unstable in hot metal or in gas at high tempera- tures; and after leaving lance tip regions, magnesium nitride will undergo decomposition. Magnesium loss in process off gas will be increased by the decomposition of magnesium nitride that occurs too closely to bath surface or by any un-decomposed magnesium nitride at bath surface. The magnesium loss by nitroge- nization and the clogging problem could be minimized by optimizing injection conditions.
    [Show full text]
  • Chemical Safety and Waste Management Manual
    Chemical Safety and Waste Management Manual University of Alabama at Birmingham Department of Occupational Health & Safety Chemical Safety Division 2002 EDITION 1. INTRODUCTION In a comparatively short time, the University of Alabama at Birmingham has gained significant recognition as a center of excellence for teaching, medical services and research programs. This is a highly commendable achievement and one that could not have been realized without the continued support and dedication of faculty, staff members, and employees. Similar unfailing cooperation and support are necessary for the institution to be equally successful in its development of a comprehensive occupational health and safety program for the protection of University personnel, students, and the surrounding community. An important part of this program is concerned with the safe and prudent handling of chemicals and their proper legal disposal as regulated by the Environmental Protection Agency (EPA) and the Alabama Department of Environmental Management (ADEM). Almost every laboratory and many allied and support personnel at UAB use chemicals in their daily activities. It is the purpose of this manual to describe the operation of the Chemical Safety Program and to provide guidance in establishing safe work practices for the use of chemicals. This program applies to all work operations at this University where employees may be exposed to hazardous substances under normal working conditions or during an emergency. The Chemical Safety and Waste Management Manual combines both the Chemical Hygiene Plan for laboratories and the Hazard Communication Program for maintenance, environmental services, and other support personnel. The Occupational Safety and Health Administration (OSHA) Hazard Communication Standard may be found at : http://www.osha- slc.gov/OshStd_data/1910_1200.html.
    [Show full text]
  • Epitaxial Growth and Optical Properties of Mg3n2, Zn3n2, and Alloys by Peng Wu B.Sc., Xinjiang Normal University, 2010 M.Sc., Xi
    Epitaxial Growth and Optical Properties of Mg3N2, Zn3N2, and alloys by Peng Wu B.Sc., Xinjiang Normal University, 2010 M.Sc., Xinjiang Normal University/University of Science and Technology of China (joint), 2013 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Electrical and Computer Engineering ã Peng Wu, 2019 University of Victoria All rights reserved. This dissertation may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Epitaxial Growth and Physics Properties of Mg3N2, Zn3N2, and alloys by Peng Wu B.Sc., Xinjiang Normal University, 2010 M.Sc., Xinjiang Normal University/University of Science and Technology of China (joint), 2013 Supervisory Committee Thomas Tiedje, (Department of Electrical and Computer Engineering) Supervisor Reuven Gordon, (Department of Electrical and Computer Engineering) Departmental Member Frank Van Veggel, (Department of Chemistry) Outside Member iii Abstract Supervisory Committee Thomas Tiedje, (Department of Electrical and Computer Engineering) Supervisor Reuven Gordon, (Department of Electrical and Computer Engineering) Departmental Member Frank Van Veggel, (Department of Chemistry) Outside Member Zinc nitride and magnesium nitride are examples of the relatively unexplored II3V2 group of semiconductor materials. These materials have potential applications in the electronics industry due to their excellent optical and electrical properties. This study mainly focuses on the growth and characterization of the new semiconductor materials: zinc nitride, magnesium nitride, and their alloys. The (100) oriented zinc nitride thin films were grown on both (110) sapphire substrates and (100) MgO substrates by plasma-assisted molecular beam epitaxy (MBE).
    [Show full text]